Low-velocity impact properties of foam sandwich composites with different thicknesses prepared via thermal expansion molding process
-
摘要: 热膨胀工艺能够一体化成型各种泡沫夹芯复合材料。选择初始厚度为1 mm的可膨胀环氧泡沫预浸胶,通过控制模具型腔尺寸以控制不同成型压力制备4种不同厚度的泡沫夹芯板。以10 J和42 J冲击能量研究热膨胀工艺和芯材厚度对泡沫夹芯复合材料低速冲击性能的影响。通过ABAQUS有限元分析、超声C扫描对比试验数据分析了不同试样的损伤模式。通过冲击后压缩试验分析了不同试样的损伤容限。结果发现更高膨胀倍率的泡沫芯子,产生更低的膨胀力,泡沫夹芯板的抗冲击强度降低,但结构具有更优异的吸能效果。高能量和低强度的泡沫芯子都会导致蒙皮更高的损伤程度。试样在10 J能量冲击后的压缩强度衰减率为8.2%,而42 J能量冲击后的压缩强度衰减率达到38.2%。成型压力和芯子的厚度对泡沫夹芯板的损伤容限影响很小。研究确定了热膨胀工艺成型泡沫夹芯复合材料具有高的结构和抗冲击性能可设计性。Abstract: Thermal expansion molding process is expected to be integrated to form various foam sandwich composites. The expandable epoxy foam prepreg with an initial thickness of 1 mm was selected, and four kinds of foam sandwich panels with different thicknesses were prepared by controlling the mold cavity size and different molding pressures. The impact energies of 10 J and 42 J were used to study the effects of thermal expansion process and core thickness on the low-velocity impact properties of foam sandwich composites. The damage patterns of different specimens were investigated by ABAQUS finite element analysis, ultrasonic C-scan and the test data. Compression after impact tests were conducted to investigate the damage tolerance of different specimens. The results show that the foam core with higher expansion rate produces lower expansion force, and the impact strength of the foam sandwich board is reduced, but the structure has better energy absorption effect. Both high impact energy and low strength foam cores lead to higher damage degree of the skin. The compression strength decay rate of the sample at 10 J impact energy is 8.2%, and the compression strength decay rate of the sample at 42 J impact energy is 38.2%. The forming pressure and the thickness of the core have little effect on the damage tolerance of the foam sandwich plate. The high designability of structural and impact resistance properties of foam sandwich composites formed by thermal expansion process was determined.
-
图 1 (a) 热膨胀成型工艺制备泡沫夹芯复合材料示意图;(b) 模具及试样铺层示意图;(c) 泡沫膨胀不同倍率制备的夹芯复合材料断面图
Figure 1. (a) Schematic diagram of foam sandwich composites prepared via thermal expansion molding process; (b) Schematic diagram of mold and sample lay-up; (c) Sectional diagram of sandwich composites prepared by foam expansion at different ratios
表 1 有限元分析(FEA)相关的材料参数
Table 1. Material parameters related to finite element analysis (FEA)
Materials Density/
(kg·m−3)Tensile strength/MPa Young's modulus/MPa Compressive strength/MPa Poisson's
ratio vShear strength τ/MPa Shear modulus G/MPa X1 M-1 318 7.98 395 3.47 0 3.91 62.28 X2 M-1 162 4.68 201 2.31 0 1.95 39.29 X3 M-1 109 2.23 170 1.95 0 1.64 31.26 X4 M-1 78 1.34 113 0.99 0 1.08 21.17 805 (XT) 61340 (E1) 509 (XC) 0.04 (v12) 112 (S12) 7600 (G12) CFRP 1580 805 (YT) 61340 (E2) 509 (YC) 0.30 (v13) 59 (S13) 2700 (G13) 50 (ZT) 6900 (E3) 170 (ZC) 0.30 (v23) 59 (S23) 2700 (G23) Cohesive 2000 — 1200 — 0.32 — 385 Notes: XT, YT, ZT—Tensile strength of the three directions of CFRP; E1, E2, E3—Young's modulus of the three directions of CFRP; XC, YC, ZC—Compressive strength of the three directions of CFRP; v12, v13, v23—Poisson's ratio; S12, S13, S23—Shear strength; G12, G13, G23—Shear modulus; CFRP—Carbon fber reinforced polymer; M-1—Epoxy resin based rigid foam with thermal expansion function. 表 2 冲击有限元分析模型数据
Table 2. Finite element analysis model data of impact test
Sample number Part Thickness Mesh style Mesh number X1 CFRP 2 mm+2 mm
2 mm
0SC8R 141880 Foam C3D8R 14188 Cohesive COH3D8 7094 X2 CFRP 2 mm+2 mm
4 mm
0SC8R 141880 Foam C3D8R 14188 Cohesive COH3D8 7094 X3 CFRP 2 mm+2 mm
6 mm
0SC8R 141880 Foam C3D8R 14188 Cohesive COH3D8 7094 X4 CFRP
Foam
Cohesive2 mm+2 mm
8 mm
0SC8R
C3D8R
COH3D8141880
28376
7094Notes: SC8R—8-node quadrilateral in-plane general continuous shell elements; C3D8R—Linear 3D reduced integration solid elements; COH3D8—Cohesive element. 表 3 X1~X4试样冲击试验损伤数据对比
Table 3. Comparison of impact test damage data for X1-X4 samples
Sample number Stress/MPa (FEA) Displacement/mm Area of damage/mm2 Experiment FEA Error/% Experiment FEA Error/% C-scan Error/% X1-10 J 960 2.71 2.45 9.59 39.57 45.23 14.30 44.16 11.60 X2-10 J 971 2.92 2.68 8.22 47.76 54.37 13.84 54.08 13.23 X3-10 J 1086 3.20 3.16 1.25 58.06 67.89 16.93 65.01 11.97 X4-10 J 1111 3.26 3.38 3.68 69.36 80.21 15.64 76.94 10.93 X1-42 J 1119 6.91 6.76 2.17 114.93 136.64 18.89 134.71 17.21 X2-42 J 1067 7.67 7.63 0.52 145.19 167.59 15.43 160.52 10.56 X3-42 J 1028 9.04 9.19 1.65 206.02 238.96 15.99 229.54 11.42 X4-42 J 1055 11.44 11.08 3.15 298.49 353.25 18.35 320.31 7.31 -
[1] 徐佳佳, 方海, 韩娟, 等. 格构腹板增强泡沫夹芯复合材料准静态压缩吸能特性[J]. 复合材料学报, 2022, 39(8):3965-3981. doi: 10.13801/j.cnki.fhclxb.20211117.002XU Jiajia, FANG Hai, HAN Juan, et al. Energy absorption behavior of foam-filled sandwich composite materials reinforced by lattice webs under quasi-static compression[J]. Acta Materiae Compositae Sinica,2022,39(8):3965-3981(in Chinese). doi: 10.13801/j.cnki.fhclxb.20211117.002 [2] 辛志东, 杜娟, 聂彦平, 等. 某全泡沫夹芯复合材料无人机平尾的强度分析与验证[J]. 纤维复合材料, 2022, 39(4):61-64.XIN Zhidong, DU Juan, NIE Yanping, et al. Strength analysis and verification of an all-foam sandwich composite UAV flat tail[J]. Fiber Composites,2022,39(4):61-64(in Chinese). [3] ONDER A, ROBINSON M. Investigating the feasibility of a new testing method for GFRP/polymer foam sandwich composites used in railway passenger vehicles[J]. Composite Structures,2020,233:111576. doi: 10.1016/j.compstruct.2019.111576 [4] DOGAN A. Low-velocity impact, bending, and compression response of carbon fiber/epoxy-based sandwich composites with different types of core materials[J]. Journal of Sandwich Structures & Materials,2021,23(6):1956-1971. [5] KANG G H, JOUNG C, KIM H G, et al. Manufacturing, thermoforming, and recycling of glass fiber/PET/PET foam sandwich composites: DOE analysis of recycled materials[J]. Polymer Composites,2022,43(12):8807-8817. doi: 10.1002/pc.27063 [6] 石昌, 王继辉, 朱俊, 等. 梯形格栅结构增强泡沫夹芯复合材料平压性能[J]. 复合材料学报, 2022, 39(2):590-600. doi: 10.13801/j.cnki.fhclxb.20210506.002SHI Chang, WANG Jihui, ZHU Jun, et al. Flatwise compression properties of trapezoidal lattice-web reinforced foam core sandwich composites[J]. Acta Materiae Compositae Sinica,2022,39(2):590-600(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210506.002 [7] UYTTERSPROT J, DE CORTE W, INGELBINCK B. Influence of SLS design requirements on the material consumption and self-weight of web-core sandwich panel FRP composite footbridges[J]. Composite Structures,2021,262:113334. doi: 10.1016/j.compstruct.2020.113334 [8] TAO J, LI F, ZHU R, et al. Compression properties of a novel foam-core sandwich cylinder reinforced with stiffeners[J]. Composite Structures,2018,206:499-508. doi: 10.1016/j.compstruct.2018.08.085 [9] 曹晓明, 顾轶卓, 李超, 等. 碳纤维复合材料方管硅橡胶热膨胀成型工艺研究[J]. 玻璃钢/复合材料, 2012(6):64-68, 46.CAO Xiaoming, GU Yizhuo, LI Chao, et al. Research on thermal expansion molding process of carbon fiber composite square tube silicone rubber[J]. FRP/Composites,2012(6):64-68, 46(in Chinese). [10] 张艳芳, 刘志杰, 胡克伟, 等. 硅橡胶热膨胀法成型复合材料制件的研究[J]. 塑料工业, 2014, 42(12):55-58. doi: 10.3969/j.issn.1005-5770.2014.12.015ZHANG Yanfang, LIU Zhijie, HU Kewei, et al. Research on composite parts formed by thermal expansion of silicone rubber[J]. China Plastics Industry,2014,42(12):55-58(in Chinese). doi: 10.3969/j.issn.1005-5770.2014.12.015 [11] 杜刚, 曾竟成, 张长安, 等. 硅橡胶热膨胀模塑成型法制备碳/环氧复合材料管研究[J]. 纤维复合材料, 2003(2):26-28. doi: 10.3969/j.issn.1003-6423.2003.02.008DU Gang, ZENG Jingcheng, ZHANG Chang'an, et al. Preparation of carbon/epoxy composite pipe by thermal expansion molding of silicone rubber[J]. Fiber Composites,2003(2):26-28(in Chinese). doi: 10.3969/j.issn.1003-6423.2003.02.008 [12] MIN W, TAO L, YAN Z, et al. Feasibility verification and bending property of web-reinforced foam sandwich composites prepared via thermal expansion molding process[J]. Composite Structures,2022,294:115720. doi: 10.1016/j.compstruct.2022.115720 [13] 张钟. 热膨胀模压法成型复合材料夹层结构工艺及其性能研究[D]. 南京: 南京航空航天大学, 2007.ZHANG Zhong. Study on the process and properties of composite sandwich structure formed by thermal expansion molding[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007(in Chinese). [14] 施赫荣, 王继辉, 倪爱清, 等. 穿孔泡沫夹芯复合材料灌注工艺仿真与方案优选[J]. 复合材料学报, 2023, 40(2):782-793. doi: 10.13801/j.cnki.fhclxb.20220323.001SHI Herong, WANG Jihui, NI Aiqing, et al. Simulation and optimization of infusion process for perforated foam sandwich composite[J]. Acta Materiae Compositae Sinica,2023,40(2):782-793(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220323.001 [15] 杨张韬, 倪爱清, 王继辉, 等. 孔槽泡沫夹芯复合材料真空辅助树脂传递工艺仿真与优化[J]. 材料导报, 2024, 38(2): 253-261.YANG Zhangtao, NI Aiqing, WANG Jihui, et al. Simulation and optimization of vacuum-assisted resin transfer process for porous foam sandwich composites[J]. Materials Reports, 38(2): 253-261(in Chinese). [16] 袁超, 邱启艳. 复合材料泡沫夹层结构翼尖小翼成型技术研究[J]. 科技与创新, 2019(6):62-63. doi: 10.15913/j.cnki.kjycx.2019.06.062YUAN Chao, QIU Qiyan. Research on forming technology of composite foam sandwich structure wingtip winglet[J]. Science, Technology and Innovation,2019(6):62-63(in Chinese). doi: 10.15913/j.cnki.kjycx.2019.06.062 [17] AL-SHAMARY A K J, KARAKUZU R, OZDEMIR O. Low-velocity impact response of sandwich composites with different foam core configurations[J]. Journal of Sandwich Structures & Materials,2016,18(6):754-768. doi: 10.1177/109963621665326 [18] 孙子恒, 王继辉, 倪爱清, 等. 不同铺层复合材料夹芯结构低速冲击与冲击后剩余强度研究[J]. 复合材料科学与工程, 2020(11):102-110. doi: 10.3969/j.issn.1003-0999.2020.11.017SUN Ziheng, WANG Jihui, NI Aiqing, et al. Study on low-velocity impact and residual strength of composite sandwich structures with different lay-up layers[J]. Composite Materials Science and Engineering,2020(11):102-110(in Chinese). doi: 10.3969/j.issn.1003-0999.2020.11.017 [19] DOGAN A, ARIKAN V. Low-velocity impact response of E-glass reinforced thermoset and thermoplastic based sandwich composites[J]. Composites Part B: Engineering,2017,127:63-69. doi: 10.1016/j.compositesb.2017.06.027 [20] NANAYAKKARA A, FEIH S, MOURITZ A P. Experimental impact damage study of a Z-pinned foam core sandwich composite[J]. Journal of Sandwich Structures & Materials,2012,14(4):469-486. [21] KAYA G, SELVER E. Impact resistance of Z-pin-reinforced sandwich composites[J]. Journal of Composite Materials,2019,53(26-27):3681-3699. doi: 10.1177/0021998319845428 [22] 程树良, 吴灵杰, 孙帅, 等. X型点阵夹芯结构受局部冲击时动态力学性能试验与数值模拟[J]. 复合材料学报, 2022, 39(7):3641-3651. doi: 10.13801/j.cnki.fhclxb.20210903.005CHENG Shuliang, WU Lingjie, SUN Shuai, et al. Experiment and numerical simulation of dynamic mechanical properties of X-lattice sandwich structure under local impact[J]. Acta Materiae Compositae Sinica,2022,39(7):3641-3651(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210903.005 [23] HE W, LIU J, TAO B, et al. Experimental and numerical research on the low velocity impact behavior of hybrid corrugated core sandwich structures[J]. Composite Structures,2016,158:30-43. doi: 10.1016/j.compstruct.2016.09.009 [24] HUNT C J, MORABITO F, GRACE C, et al. A review of composite lattice structures[J]. Composite Structures, 2022, 284: 115120. [25] 孙士勇, 秦进, 杨睿, 等. 缝纫泡沫夹芯复合材料细观纤维柱破坏行为[J]. 复合材料学报, 2020, 37(4):837-844. doi: 10.13801/j.cnki.fhclxb.20190617.003SUN Shiyong, QIN Jin, YANG Rui, et al. Fracture behavior of meso-fiber column in the stitched foam sandwich composites[J]. Acta Materiae Compositae Sinica,2020,37(4):837-844(in Chinese). doi: 10.13801/j.cnki.fhclxb.20190617.003 [26] MIN W, QI L, ZHAO X, et al. Preparation and properties of expandable epoxy foam prepreg for sandwich composites prepared via thermal expansion molding process[J]. Journal of Applied Polymer Science,2022,140(7):53469. [27] TAO L, MIN W, QI L, et al. The hygrothermal aging process and mechanism of CFRP papered by prepreg that may be stored at room temperature[J]. Polymer Degradation and Stability,2020,182:109395. doi: 10.1016/j.polymdegradstab.2020.109395 [28] ASTM International. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event: ASTM D7136/D7136M—2015[S]. West Conshohocken: ASTM, 2015. [29] GU J, CHEN P. Some modifications of Hashin's failure criteria for unidirectional composite materials[J]. Composite Structures,2017,182:143-152. doi: 10.1016/j.compstruct.2017.09.011 [30] DUARTE A P C, DÍAZ SÁEZ A, SILVESTRE N. Comparative study between XFEM and Hashin damage criterion applied to failure of composites[J]. Thin-Walled Structures,2017,115:277-288. doi: 10.1016/j.tws.2017.02.020 [31] ASTM International. Standard test method for compressive residual strength properties of damaged polymer matrix composite plates: ASTM D7137/D7137M—2007[S]. West Conshohocken: ASTM, 2007. [32] YANG B, WANG Z, ZHOU L, et al. Study on the low-velocity impact response and CAI behavior of foam-filled sandwich panels with hybrid facesheet[J]. Composite Structures,2015,132:1129-1140. doi: 10.1016/j.compstruct.2015.07.058