留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维针刺SiO2f/SiO2复合材料高温拉-拉疲劳特性

王恒 张培伟 徐培飞 陈强 费庆国

王恒, 张培伟, 徐培飞, 等. 三维针刺SiO2f/SiO2复合材料高温拉-拉疲劳特性[J]. 复合材料学报, 2024, 41(2): 1038-1046. doi: 10.13801/j.cnki.fhclxb.20230710.001
引用本文: 王恒, 张培伟, 徐培飞, 等. 三维针刺SiO2f/SiO2复合材料高温拉-拉疲劳特性[J]. 复合材料学报, 2024, 41(2): 1038-1046. doi: 10.13801/j.cnki.fhclxb.20230710.001
WANG Heng, ZHANG Peiwei, XU Peifei, et al. Tensile fatigue of three-dimensional needling SiO2f/SiO2 composites at high temperatures[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 1038-1046. doi: 10.13801/j.cnki.fhclxb.20230710.001
Citation: WANG Heng, ZHANG Peiwei, XU Peifei, et al. Tensile fatigue of three-dimensional needling SiO2f/SiO2 composites at high temperatures[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 1038-1046. doi: 10.13801/j.cnki.fhclxb.20230710.001

三维针刺SiO2f/SiO2复合材料高温拉-拉疲劳特性

doi: 10.13801/j.cnki.fhclxb.20230710.001
基金项目: 国家杰出青年科学基金(52125209);江苏省六大人才高峰(XCL-008)
详细信息
    通讯作者:

    张培伟,博士,副教授,硕士生导师,研究方向为先进复合材料失效行为研究 E-mail:zhangpeiwei@seu.edu.cn

  • 中图分类号: TB332

Tensile fatigue of three-dimensional needling SiO2f/SiO2 composites at high temperatures

Funds: National Natural Science Funds for Distinguished Young Scholar (52125209); Six Talent Peaks in Jiangsu Province (XCL-008)
  • 摘要: 三维针刺SiO2f/SiO2复合材料是一种理想的耐高温透波材料,对其开展了600℃和800℃下的拉-拉疲劳试验和疲劳加载后的剩余强度拉伸试验,得到相应的应力-应变曲线。通过分析材料在不同循环次数下的滞回环形状和大小及模量随循环次数的变化规律,探究了三维针刺SiO2f/SiO2复合材料的高温拉-拉疲劳力学行为。结果表明:温度对三维针刺SiO2f/SiO2复合材料所承受的疲劳应力大小有很大影响,试件在600℃和800℃下表现出不同的疲劳性能;大部分试件的模量随循环次数的增加而逐渐下降,但出现部分试件的模量随着循环加载而波动变化。

     

  • 图  1  SiO2f/SiO2复合材料拉伸疲劳试样外形尺寸和截面CT扫描图

    Figure  1.  Dimensions of tensile fatigue samples of SiO2f/SiO2 composite and cross section CT scan

    h—Thickness of specimen

    图  2  SDS-100 电液伺服疲劳试验机

    Figure  2.  SDS-100 electro-hydraulic servo fatigue testing machine

    图  3  600℃和800℃下SiO2f/SiO2复合材料疲劳应力和寿命示意图

    Figure  3.  Diagram of fatigue stress and life of SiO2f/SiO2 composite at 600℃ and 800℃

    图  4  SiO2f/SiO2复合材料剩余强度应力-应变曲线

    Figure  4.  Residual strength stress-strain curves of SiO2f/SiO2 composite

    图  5  在600℃ (a)和800℃ (b)下SiO2f/SiO2复合材料试件滞回环曲线

    Figure  5.  Hysteretic loop curves of SiO2f/SiO2 composites at 600℃ (a) and 800℃ (b)

    图  6  疲劳损伤及模量退化示意图

    En/E0—Ratio of residual modulus to initial modulus; n/N—Ratio of the number of cycles to the final fatigue cycle

    Figure  6.  Schematic diagram of fatigue damage and modulus degradation

    图  7  SiO2f/SiO2复合材料在600℃ (a)和800℃ (b)下模量退化曲线

    Figure  7.  Modulus degradation curves of SiO2f/SiO2 composites at 600℃ (a) and 800℃ (b)

    图  8  600℃ (a)和800℃ (b)下SiO2f/SiO2复合材料试件模量试验值及拟合曲线

    Figure  8.  Life cycle modulus test value and fitting curves of SiO2f/SiO2 composites at 600℃ (a) and 800℃ (b)

    表  1  三维针刺SiO2f/SiO2复合材料性能

    Table  1.   Properties of three-dimensional needled SiO2f/SiO2 composites

    Fiber volume fraction/vol%Density
    /
    (g·cm−3)
    Flexural strength/
    MPa
    Flexural elastic modulus/GPa
    451.66101.424.74
    下载: 导出CSV

    表  2  SiO2f/SiO2复合材料试件疲劳性能数据

    Table  2.   Fatigue performance data of SiO2f/SiO2 composites

    SpecimenTempera-
    ture/℃
    Fatigue
    stress/MPa
    Cycles
    (n)
    Initial
    modulus/
    GPa
    SiO2f/SiO2-S1 600 28.7 100000 22.8
    SiO2f/SiO2-S2 600 28.9 100000 24.0
    SiO2f/SiO2-S3 600 31.7 45504 27.0
    SiO2f/SiO2-S4 600 35.9 1412 26.7
    SiO2f/SiO2-S5 600 34.8 0
    SiO2f/SiO2-S6 600 44.8 0
    SiO2f/SiO2-E1 800 31.0 100000 35.0
    SiO2f/SiO2-E2 800 33.0 3948 23.0
    SiO2f/SiO2-E3 800 35.8 45599 24.7
    SiO2f/SiO2-E4 800 36.0 100000 30.5
    SiO2f/SiO2-E5 800 37.7 100000 30.0
    SiO2f/SiO2-E6 800 38.6 100000 34.0
    SiO2f/SiO2-E7 800 38.8 764 20.2
    下载: 导出CSV

    表  3  SiO2f/SiO2复合材料试件模量退化模型拟合参数及拟合优度

    Table  3.   Fitting parameters and correlation coefficients of modulus degradation model for SiO2f/SiO2 composites

    Test part numberCycle nErc/E0abcR2
    SiO2f/SiO2-E41000000.96754.84306.0170.98650.9847
    SiO2f/SiO2-E61000000.93252.78001.8240.41630.9874
    SiO2f/SiO2-E239480.92550.57552.6641.11000.9914
    SiO2f/SiO2-S11000000.92661.997012.0900.53850.9754
    SiO2f/SiO2-S21000000.90662.05501.99712.09000.8152
    SiO2f/SiO2-S3455040.911792.42003.5810.50280.9616
    SiO2f/SiO2-S414120.96172.16605.6521.48700.9948
    Notes: Erc/E0—Ratio of the critical residual modulus to the initial modulus; a, b, c—Model fitting parameters; R2—Correlation coefficients.
    下载: 导出CSV
  • [1] SUZDAL'TSEV E I. Radio-transparent ceremics: Yeserday, today, tomorrow[J]. Refractories and Induatrial Ceramics,2015,55(5):377-390. doi: 10.1007/s11148-015-9731-6
    [2] 李斌. 氮化物陶瓷基耐烧蚀、透波复合材料及其天线罩的制备与性能研究[D]. 长沙: 国防科技大学, 2007.

    LI Bin. Preparation and performance of ablation resistant, wave-transparent nitride ceramic matrix composites and radome[D]. Changsha: National University of Defense Technology, 2007(in Chinese).
    [3] 齐共金, 张长瑞, 胡海峰, 等. 陶瓷基复合材料天线罩制备工艺进展[J]. 硅酸盐学报, 2005(5):632-638.

    QI Gongjin, ZHANG Changrui, HU Haifeng, et al. Progress of preparation progress for ceramic matrix composites redomes[J]. Journal of the Chinese Ceramic Society,2005(5):632-638(in Chinese).
    [4] 吴纯治. SiO2f/SiO2复合材料的叠层穿刺制备工艺及性能研究[D]. 长沙: 国防科技大学, 2015.

    WU Chunzhi. Properties and preparation research of the SiO2f/SiO2 composites with stitched fiber cloth reinforcement[D]. Changsha: National University of Defense Technology, 2015(in Chinese).
    [5] 陈亚丽. SiO2/SiO2复合材料介电性能及数值模拟[D]. 秦皇岛: 燕山大学, 2006.

    CHEN Yali. Dielectric properties and numerical simulation of SiO2/SiO2 composites[D]. Qinhuangdao: Yanshan University, 2006(in Chinese).
    [6] 董洁. 纤维增强吸波复合材料的制备与性能研究[D]. 西安: 西北工业大学, 2019.

    DONG Jie. Preparation and properties of fiber reinforced absorbing composites[D]. Xi'an: Northwestern Polytechnical University, 2019(in Chinese).
    [7] 雷景轩, 邬浩, 赵中坚. 石英陶瓷天线罩材料研究进展[J]. 中国陶瓷, 2020, 56(4):7-12.

    LEI Jingxuan, WU Hao, ZHAO Zhongjian. Research progress on preparation of silica ceramic radome materials[J]. China Ceramics,2020,56(4):7-12(in Chinese).
    [8] 刘勇. 石英纤维织物结构对二氧化硅基复合材料料力学性能影响研究[D]. 南京: 南京航空航天大学, 2013.

    LIU Yong. Influence of quartz fabric structures on the mechanical properties of silica matrix composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013(in Chinese).
    [9] XIANG Y, WANG Q, PENG Z H, et al. High temperature properties of 2.5D SiO2f/SiO2 composites by sol-gel[J]. Ceramics International,2016,42(11):12802-12806. doi: 10.1016/j.ceramint.2016.05.043
    [10] YU L P, PAN B. Experimental study of tensile properties and deformation evolutions of 2D and 2.5D woven SiO2f/SiO2 composites using single-camera stereo-digital image correlation[J]. Composite Structures,2018,200:589-598. doi: 10.1016/j.compstruct.2018.05.135
    [11] SHI D Q, LIU C Q. On the tensile behaviors of 2D twill woven SiO2f/SiO2 composites at ambient and elevated temperatures: Mesoscale analysis and in situ experimental investigation[J]. Ceramics International,2021,47(9):12680-12694. doi: 10.1016/j.ceramint.2021.01.128
    [12] LI Y, XIAO P, LUO H, et al. Fatigue behavior and residual strength evolution of 2.5D C/C-SiC composites[J]. Journal of the European Ceramic Society,2016,36:3977-3985. doi: 10.1016/j.jeurceramsoc.2016.07.009
    [13] 方光武, 高希光, 宋迎东. 针刺C/SiC复合材料拉-压疲劳特性与失效机理[J]. 材料工程, 2016, 44(11):78-82.

    FANG Guangwu, GAO Xiguang, SONG Yingdong. Tension-compression fatigue behavior and failure mechanism of needled C/SiC composite[J]. Journal of Materials Engi-neering,2016,44(11):78-82(in Chinese).
    [14] WANG Y Q, ZHANG L T, CHENG L F, et al. Tensile performance and damage evolution of a 2.5D C/SiC composite characterized by acoustic emission[J]. Applied Composite Materials,2008,15:183-188. doi: 10.1007/s10443-008-9066-2
    [15] DALMAZ A, REYANUD P, ROUBY D, et al. Mechanical behavior and damage development during cyclic fatigue at high-temperature of a 2.5D carbon SiC composite[J]. Composites Science and Technology,1998,58(5):693-699. doi: 10.1016/S0266-3538(97)00150-4
    [16] 中国航空工业集团有限公司. 连续纤维增强陶瓷基复合材料高温力学性能试验方法 第一部分 拉伸性能试验方法: Q/AVIC 06185.1—2015[S]. 北京: 中央军委装备发展部, 2015.

    Aviation Industry Corporation of China, Ltd.. Mechanical properties of continuous fiber-reinforced ceramic composites at high temperature I: Test method for tensile properties: Q/AVIC 06185.1—2015[S]. Beijing: Equipment Development Department of the Central Military Commission, 2015(in Chinese).
    [17] UDAYAKUMAR A, GANESH A S, RAJA S, et al. Effect of intermediate heat treatment on mechanical properties of SiCf/SiC composites with BN interphase prepared by ICVI[J]. Journal of the European Ceramic Society,2011,31:1145-1153. doi: 10.1016/j.jeurceramsoc.2010.12.018
    [18] MEI H, CHENG L F. Stress-dependence and time-dependence of the post-fatigue tensile behavior of carbon fiber reinforced SiC matrix composites[J]. Composites Science Technology,2011,71(11):1404-1409. doi: 10.1016/j.compscitech.2011.05.013
    [19] LI Y, XIAO P, LI Z, et al. Tensile fatigue behavior of plain-weave reinforced Cf/C-SiC composites[J]. Ceramics International,2016,42(6):6850-6857. doi: 10.1016/j.ceramint.2016.01.068
    [20] SHULER S F, HOLMES J W, WU X, et al. Influence of loading frequency on the room-temperature fatigue of a carbon-fiber/SiC matrix composite[J]. Journal of the European Ceramic Society,1993,76(9):2327-2336. doi: 10.1111/j.1151-2916.1993.tb07772.x
    [21] 宋江北, 安宗文, 汤婷, 等. 恒幅载荷下复合材料剩余模量退化模型[J]. 太阳能学报, 2022, 43(3):382-387.

    SONG Jiangbei, AN Zongwen, TANG Ting, et al. Degradation model of residual stiffness of composite materials under constant amplitude load[J]. Acta Energiae Solaris Sinica,2022,43(3):382-387(in Chinese).
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  541
  • HTML全文浏览量:  234
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-21
  • 修回日期:  2023-05-24
  • 录用日期:  2023-06-08
  • 网络出版日期:  2023-07-11
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回