Tensile fatigue of three-dimensional needling SiO2f/SiO2 composites at high temperatures
-
摘要: 三维针刺SiO2f/SiO2复合材料是一种理想的耐高温透波材料,对其开展了600℃和800℃下的拉-拉疲劳试验和疲劳加载后的剩余强度拉伸试验,得到相应的应力-应变曲线。通过分析材料在不同循环次数下的滞回环形状和大小及模量随循环次数的变化规律,探究了三维针刺SiO2f/SiO2复合材料的高温拉-拉疲劳力学行为。结果表明:温度对三维针刺SiO2f/SiO2复合材料所承受的疲劳应力大小有很大影响,试件在600℃和800℃下表现出不同的疲劳性能;大部分试件的模量随循环次数的增加而逐渐下降,但出现部分试件的模量随着循环加载而波动变化。
-
关键词:
- 三维针刺SiO2f/SiO2复合材料 /
- 高温拉-拉疲劳 /
- 模量退化 /
- 疲劳损伤 /
- 滞回环
Abstract: Three-dimensional needled SiO2f/SiO2 composite material is suitable for aircraft radome. Tensile fatigue tests at 600℃ and 800℃ and tensile tests after fatigue loading were carried out to obtain the stress-strain curves of the corresponding tests. By analyzing the shape and size of hysteresis loops under different cycles and the variation of stiffness with cycles, the tensile fatigue mechanical behavior of 3D needled SiO2f/SiO2 composites at high temperature was investigated. The results show that temperature has great influence on fatigue stress of 3D needled SiO2f/SiO2 composites, and the fatigue properties of the composites are different at 600℃ and 800℃. The modulus of most specimens decreases gradually with the increase of the number of cycles, but the modulus of some specimens fluctuates with the cyclic loading. -
表 1 三维针刺SiO2f/SiO2复合材料性能
Table 1. Properties of three-dimensional needled SiO2f/SiO2 composites
Fiber volume fraction/vol% Density
/
(g·cm−3)Flexural strength/
MPaFlexural elastic modulus/GPa 45 1.66 101.4 24.74 表 2 SiO2f/SiO2复合材料试件疲劳性能数据
Table 2. Fatigue performance data of SiO2f/SiO2 composites
Specimen Tempera-
ture/℃Fatigue
stress/MPaCycles
(n)Initial
modulus/
GPaSiO2f/SiO2-S1 600 28.7 100000 22.8 SiO2f/SiO2-S2 600 28.9 100000 24.0 SiO2f/SiO2-S3 600 31.7 45504 27.0 SiO2f/SiO2-S4 600 35.9 1412 26.7 SiO2f/SiO2-S5 600 34.8 0 — SiO2f/SiO2-S6 600 44.8 0 — SiO2f/SiO2-E1 800 31.0 100000 35.0 SiO2f/SiO2-E2 800 33.0 3948 23.0 SiO2f/SiO2-E3 800 35.8 45599 24.7 SiO2f/SiO2-E4 800 36.0 100000 30.5 SiO2f/SiO2-E5 800 37.7 100000 30.0 SiO2f/SiO2-E6 800 38.6 100000 34.0 SiO2f/SiO2-E7 800 38.8 764 20.2 表 3 SiO2f/SiO2复合材料试件模量退化模型拟合参数及拟合优度
Table 3. Fitting parameters and correlation coefficients of modulus degradation model for SiO2f/SiO2 composites
Test part number Cycle n Erc/E0 a b c R2 SiO2f/SiO2-E4 100000 0.9675 4.8430 6.017 0.9865 0.9847 SiO2f/SiO2-E6 100000 0.9325 2.7800 1.824 0.4163 0.9874 SiO2f/SiO2-E2 3948 0.9255 0.5755 2.664 1.1100 0.9914 SiO2f/SiO2-S1 100000 0.9266 1.9970 12.090 0.5385 0.9754 SiO2f/SiO2-S2 100000 0.9066 2.0550 1.997 12.0900 0.8152 SiO2f/SiO2-S3 45504 0.9117 92.4200 3.581 0.5028 0.9616 SiO2f/SiO2-S4 1412 0.9617 2.1660 5.652 1.4870 0.9948 Notes: Erc/E0—Ratio of the critical residual modulus to the initial modulus; a, b, c—Model fitting parameters; R2—Correlation coefficients. -
[1] SUZDAL'TSEV E I. Radio-transparent ceremics: Yeserday, today, tomorrow[J]. Refractories and Induatrial Ceramics,2015,55(5):377-390. doi: 10.1007/s11148-015-9731-6 [2] 李斌. 氮化物陶瓷基耐烧蚀、透波复合材料及其天线罩的制备与性能研究[D]. 长沙: 国防科技大学, 2007.LI Bin. Preparation and performance of ablation resistant, wave-transparent nitride ceramic matrix composites and radome[D]. Changsha: National University of Defense Technology, 2007(in Chinese). [3] 齐共金, 张长瑞, 胡海峰, 等. 陶瓷基复合材料天线罩制备工艺进展[J]. 硅酸盐学报, 2005(5):632-638.QI Gongjin, ZHANG Changrui, HU Haifeng, et al. Progress of preparation progress for ceramic matrix composites redomes[J]. Journal of the Chinese Ceramic Society,2005(5):632-638(in Chinese). [4] 吴纯治. SiO2f/SiO2复合材料的叠层穿刺制备工艺及性能研究[D]. 长沙: 国防科技大学, 2015.WU Chunzhi. Properties and preparation research of the SiO2f/SiO2 composites with stitched fiber cloth reinforcement[D]. Changsha: National University of Defense Technology, 2015(in Chinese). [5] 陈亚丽. SiO2/SiO2复合材料介电性能及数值模拟[D]. 秦皇岛: 燕山大学, 2006.CHEN Yali. Dielectric properties and numerical simulation of SiO2/SiO2 composites[D]. Qinhuangdao: Yanshan University, 2006(in Chinese). [6] 董洁. 纤维增强吸波复合材料的制备与性能研究[D]. 西安: 西北工业大学, 2019.DONG Jie. Preparation and properties of fiber reinforced absorbing composites[D]. Xi'an: Northwestern Polytechnical University, 2019(in Chinese). [7] 雷景轩, 邬浩, 赵中坚. 石英陶瓷天线罩材料研究进展[J]. 中国陶瓷, 2020, 56(4):7-12.LEI Jingxuan, WU Hao, ZHAO Zhongjian. Research progress on preparation of silica ceramic radome materials[J]. China Ceramics,2020,56(4):7-12(in Chinese). [8] 刘勇. 石英纤维织物结构对二氧化硅基复合材料料力学性能影响研究[D]. 南京: 南京航空航天大学, 2013.LIU Yong. Influence of quartz fabric structures on the mechanical properties of silica matrix composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013(in Chinese). [9] XIANG Y, WANG Q, PENG Z H, et al. High temperature properties of 2.5D SiO2f/SiO2 composites by sol-gel[J]. Ceramics International,2016,42(11):12802-12806. doi: 10.1016/j.ceramint.2016.05.043 [10] YU L P, PAN B. Experimental study of tensile properties and deformation evolutions of 2D and 2.5D woven SiO2f/SiO2 composites using single-camera stereo-digital image correlation[J]. Composite Structures,2018,200:589-598. doi: 10.1016/j.compstruct.2018.05.135 [11] SHI D Q, LIU C Q. On the tensile behaviors of 2D twill woven SiO2f/SiO2 composites at ambient and elevated temperatures: Mesoscale analysis and in situ experimental investigation[J]. Ceramics International,2021,47(9):12680-12694. doi: 10.1016/j.ceramint.2021.01.128 [12] LI Y, XIAO P, LUO H, et al. Fatigue behavior and residual strength evolution of 2.5D C/C-SiC composites[J]. Journal of the European Ceramic Society,2016,36:3977-3985. doi: 10.1016/j.jeurceramsoc.2016.07.009 [13] 方光武, 高希光, 宋迎东. 针刺C/SiC复合材料拉-压疲劳特性与失效机理[J]. 材料工程, 2016, 44(11):78-82.FANG Guangwu, GAO Xiguang, SONG Yingdong. Tension-compression fatigue behavior and failure mechanism of needled C/SiC composite[J]. Journal of Materials Engi-neering,2016,44(11):78-82(in Chinese). [14] WANG Y Q, ZHANG L T, CHENG L F, et al. Tensile performance and damage evolution of a 2.5D C/SiC composite characterized by acoustic emission[J]. Applied Composite Materials,2008,15:183-188. doi: 10.1007/s10443-008-9066-2 [15] DALMAZ A, REYANUD P, ROUBY D, et al. Mechanical behavior and damage development during cyclic fatigue at high-temperature of a 2.5D carbon SiC composite[J]. Composites Science and Technology,1998,58(5):693-699. doi: 10.1016/S0266-3538(97)00150-4 [16] 中国航空工业集团有限公司. 连续纤维增强陶瓷基复合材料高温力学性能试验方法 第一部分 拉伸性能试验方法: Q/AVIC 06185.1—2015[S]. 北京: 中央军委装备发展部, 2015.Aviation Industry Corporation of China, Ltd.. Mechanical properties of continuous fiber-reinforced ceramic composites at high temperature I: Test method for tensile properties: Q/AVIC 06185.1—2015[S]. Beijing: Equipment Development Department of the Central Military Commission, 2015(in Chinese). [17] UDAYAKUMAR A, GANESH A S, RAJA S, et al. Effect of intermediate heat treatment on mechanical properties of SiCf/SiC composites with BN interphase prepared by ICVI[J]. Journal of the European Ceramic Society,2011,31:1145-1153. doi: 10.1016/j.jeurceramsoc.2010.12.018 [18] MEI H, CHENG L F. Stress-dependence and time-dependence of the post-fatigue tensile behavior of carbon fiber reinforced SiC matrix composites[J]. Composites Science Technology,2011,71(11):1404-1409. doi: 10.1016/j.compscitech.2011.05.013 [19] LI Y, XIAO P, LI Z, et al. Tensile fatigue behavior of plain-weave reinforced Cf/C-SiC composites[J]. Ceramics International,2016,42(6):6850-6857. doi: 10.1016/j.ceramint.2016.01.068 [20] SHULER S F, HOLMES J W, WU X, et al. Influence of loading frequency on the room-temperature fatigue of a carbon-fiber/SiC matrix composite[J]. Journal of the European Ceramic Society,1993,76(9):2327-2336. doi: 10.1111/j.1151-2916.1993.tb07772.x [21] 宋江北, 安宗文, 汤婷, 等. 恒幅载荷下复合材料剩余模量退化模型[J]. 太阳能学报, 2022, 43(3):382-387.SONG Jiangbei, AN Zongwen, TANG Ting, et al. Degradation model of residual stiffness of composite materials under constant amplitude load[J]. Acta Energiae Solaris Sinica,2022,43(3):382-387(in Chinese).