Effect of basalt modified by coupling agents with different molecular structures on foaming behavior and properties of basalt/polypropylene composites
-
摘要: 以不同分子结构的偶联剂为改性剂、以玄武岩纤维(BF)为增强相、以聚丙烯(PP)为基体,采用化学发泡二次开模工艺制备了BF/PP发泡复合材料,通过DSC、SEM等表征技术,研究了不同分子结构偶联剂改性BF时,BF/PP发泡复合材料的热性能、流变性能、发泡行为及力学性能。结果表明,通过不同分子结构偶联剂改性BF后,复合材料的结晶性能和流变性能得到改善,结晶度增加,熔体粘弹性变好。KH-550改性BF时,BF/PP发泡复合材料的发泡质量最好,此时泡孔尺寸为84.52 μm,泡孔密度为2.45×105 cells/cm3。BF被偶联剂改性后,发泡复合材料的弯曲强度、弯曲模量和拉伸强度相对于BF未改性时均有所提高;用KH-792改性BF时,弯曲强度、弯曲模量和拉伸强度最大,最大值分别为33.4 MPa、1919 MPa和21.4 MPa。本文将为BF/PP发泡复合材料的研发和工业化应用提供一定的理论参考。Abstract: In this paper, basalt fiber (BF) was used as reinforcement phase and polypropylene (PP) as the matrix, BF/PP foam composites were prepared using a chemical foaming secondary mold opening process. The thermal properties, rheological properties, foaming behavior and mechanical properties of BF/PP foam composites modified with different sub structure coupling agents were studied using DSC, SEM and other characterization techniques. The results show that after modifying BF with different molecular structure coupling agents, the crystallization and rheological properties of the composite improve, the crystallinity increase, and the melt viscoelasticity improve. When KH-550 is used to modify BF, the foaming quality of BF/PP foamed composites is the best, with a foam cell size of 84.52 μm. Cell density is 2.45×105 cells/cm3. After BF is modified by coupling agent, the flexural strength, flexural modulus, and tensile strength of the foam composite are improved compared to those of the unmodified BF; When modifying BF with KH-792, the maximum flexural strength, flexural modulus, and tensile strength are 33.4 MPa, 1919 MPa, and 21.4 MPa, respectively. This study provides a theoretical reference for the development and industrial application of BF/PP foam composite materials.
-
Key words:
- coupling agent /
- polypropylene /
- basalt fiber /
- foaming behavior /
- mechanical property
-
表 1 玄武岩纤维/聚丙烯(BF/PP)复合材料各试样的配比及偶联剂类型
Table 1. Proportion and coupling agent type of basalt fiber/polypropylene (BF/PP) composite samples
Sample PP/wt% BF/wt% Coupling agent model Molecular structure PP 100 0 — — BF/PP 90 10 — — BF/PP+KH-550 90 10 KH-550 C9H23NO3Si BF/PP+KH-602 90 10 KH-602 C8H22N2O2Si BF/PP+KH-792 90 10 KH-792 C8H22N2O3Si 表 2 BF/PP发泡复合材料的注塑工艺参数
Table 2. Injection molding process parameters of BF/PP foamed composite
Parameters Value (foam) Melt temperature/℃ 210 Injection pressure/MPa 4.5 Injection rate/(mm·s−1) 80 Mold temperature/℃ 90
Core-back distance/mm0.8 Cooling time/s 35 表 3 BF/PP复合材料的热参数
Table 3. Thermal parameters of BF/PP composites
Sample Tc/℃ Tm/℃ ΔHc/ (J·g−1) ΔHm/(J·g−1) Xc/% PP 112.6 164.8 84.6 94.7 45.8 BF/PP 114.6 164.7 77.1 85.7 46.0 BF/PP+KH-550 113.7 164.6 84.0 91.7 49.2 BF/PP+KH-602 113.0 164.7 82.3 88.5 47.5 BF/PP+KH-792 114.5 163.9 80.7 88.4 47.4 Notes: Tc—Crystallization peak temperature; Tm—Melting peak temperature; ΔHc—Crystallization enthalpy; ΔHm—Melting enthalpy; Xc—Crystallinity. -
[1] LI X, MENG L, ZHANG Y, et al. Research and application of polypropylene carbonate composite materials: A review[J]. Polymers (Basel),2022,14(11):2159-2181. doi: 10.3390/polym14112159 [2] ZHAO J, QIAO Y, WANG G, et al. Lightweight and tough PP/TALC composite foam with bimodal nanoporous structure achieved by microcellular injection molding [J]. Materials & Design, 2020, 195: 109051. [3] AGARWAL J, SAHOO S, MOHANTY S, et al. Progress of novel techniques for lightweight automobile applications through innovative eco-friendly composite materials: A review[J]. Journal of Thermoplastic Composite Materials,2019,33(7):978-1013. [4] WANG S, ZHONG J, GU Y, et al. Mechanical properties, flame retardancy, and thermal stability of basalt fiber reinforced polypropylene composites[J]. Polymer Composites,2020,41(10):4181-4191. doi: 10.1002/pc.25702 [5] YANG C, WANG G, ZHAO J, et al. Lightweight and strong glass fiber reinforced polypropylene composite foams achieved by mold-opening microcellular injection molding[J]. Journal of Materials Research and Technology,2021,14:2920-2931. doi: 10.1016/j.jmrt.2021.08.052 [6] WANG G, ZHAO J, WANG G, et al. Strong and super thermally insulating in-situ nanofibrillar PLA/PET composite foam fabricated by high-pressure microcellular injection molding[J]. Chemical Engineering Journal,2020,390:124520. doi: 10.1016/j.cej.2020.124520 [7] GUO J, MU S, YU C, et al. Mechanical and thermal properties of polypropylene/modified basalt fabric composites[J]. Journal of Applied Polymer Science,2015,132(36):42504. [8] YU S, OH K H, HWANG J Y, et al. The effect of amino-silane coupling agents having different molecular structures on the mechanical properties of basalt fiber-reinforced polyamide 6, 6 composites[J]. Composites Part B: Engineering,2019,163:511-521. [9] LIU S, WU G, YU J, et al. Surface modification of basalt fiber (BF) for improving compatibilities between BF and poly lactic acid (PLA) matrix[J]. Composite Interfaces,2018,26(4):275-290. [10] K V B, SHIRVANIMOGHADDAM K, RAJAN G S, et al. Surface treatment of basalt fiber for use in automotive composites[J]. Materials Today Chemistry,2020,17:100334. doi: 10.1016/j.mtchem.2020.100334 [11] 马志远, 关明杰. 偶联剂处理对碳纤维竹展平板复合材料界面结合强度的影响[J]. 复合材料学报, 2023, 40(1):419-427.MA Zhiyuan, GUAN Mingjie. Effect of coupling agent treatment on interfacial bonding strength of carbon fiber/flattened bamboo composite[J]. Acta Materiae Compositae Sinica,2023,40(1):419-427(in Chinese). [12] 李静, 申士杰, 李伟娜, 等. 酸刻蚀对玄武岩纤维表面偶联剂吸附量及纤维/环氧树脂复合材料力学性能的影响[J]. 复合材料学报, 2014, 31(4):888-894.LI Jing, SHEN Shijie, LI Weina, et al. Effects of acid modifification on coupling agent amount of basalt surface and mechanical property of BF/epoxy composites[J]. Acta Materiae Composite Sinica,2014,31(4):888-894(in Chinese). [13] LIU B, GU J, JIANG T, et al. Designer petals shape ZnO nano-particles as nucleating agents: Verification the mecha-nism of cavity nucleation in the polymer for foaming [J]. Polymer Testing, 2021, 104: 107398. [14] LIU B, JIANG T, ZENG X, et al. Polypropylene/thermoplastic polyester elastomer blend: Crystallization properties, rheological behavior, and foaming performance[J]. Polymers for Advanced Technologies,2021,32(5):2102-2117. doi: 10.1002/pat.5240 [15] 中国国家标准化管理委员会. 塑料拉伸性能的测定标准: GB/T 1040.2—2006[S]. 北京: 中国标准出版社, 2006.Standardization Administration of the People's Republic of China. Standard for determination of tensile properties of plastics: GB/T 1040.2—2006[S]. Beijing: Standards Press of China, 2006(in Chinese). [16] 中国国家标准化管理委员会. 塑料缺口冲击强度测定标准: GB/T 1843—2008 [S]. 北京: 中国标准出版社, 2008.Standardization Administration of China. Standard for determination of notch impact strength of plastics: GB/T 1843—2008[S]. Beijing: Standards Press of China, 2008. [17] 中国国家标准化管理委员会. 塑料弯曲性能的测定标准: GB/T 9341—2008[S]. 北京: 中国标准出版社, 2008.Standardization Administration of the People's Republic ofChina. Standard for determination of bending properties of plastics: GB/T 9341—2008[S]. Beijing: Standards Press of China, 2008(in Chinese). [18] 王卫霞, 周帅, 辛忠, 等 山梨醇类成核剂对改性聚丙烯发泡性能的影响 [J]. 中国塑料, 2016, 30(5): 87-92.WANG Weixia, ZHOU Shuai, XIN Zhong, et al. Effect of sorbitol nucleating agent on foaming behavior of modified polypropylene[J]. China Plastics, 2016, 30(5): 87-92(in Chinese). [19] LI M, LI S, LIU B, et al. Rheological behavior, crystallization properties, and foaming performance of chain-extended poly (lactic acid) by functionalized epoxy[J]. RSC Advances,2021,11(52):32799-32809. doi: 10.1039/D1RA06382K [20] 张恒, 周玉惠, 张飞, 等. 聚丙烯/β-环糊精复合材料发泡性能及力学性能的研究[J]. 材料导报, 2020, 34(2):4148-4152, 4165.ZHANG Heng, ZHOU Yuhui, ZHANG Fei, et al. Studies on foaming properties and mechanical properties of polypropylene/β-cyclodextrin foamed composite[J]. Materials Reports,2020,34(2):4148-4152, 4165(in Chinese). [21] ZHU N, JIANG T, ZENG X, et al. High strength and light weight polyamide 6/carbon fiber composite foams for electromagnetic interference shielding [J]. Journal of Applied Polymer Science, 2023, 140(17): e53818. [22] CAO J, WEN N, ZHENG Y Y. Effect of long chain branching on the rheological behavior, crystallization and mechani-cal properties of polypropylene random copolymer[J]. Chinese Journal of Polymer Science,2016,34(9):1158-1171. doi: 10.1007/s10118-016-1830-4 [23] ZHANG X, WANG X, DONG B, et al. Synergetic effect of crystal nucleating agent and melt self-enhancement of isotactic polypropylene on its rheological and microcellular foaming properties[J]. Journal of Cellular Plastics,2020,57(1):101-121. [24] GHANBARI A, SEYEDIN S, NOFAR M, et al. Mechanical properties and foaming behavior of polypropylene/elasto-mer/recycled carbon fiber composites[J]. Polymer Composites,2021,42(7):3482-3492. doi: 10.1002/pc.26073