留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同分子结构偶联剂改性玄武岩对玄武岩/聚丙烯复合材料发泡行为与性能的影响

朱能贵 李胜男 曾祥补 沈超 蒋团辉 龚维 何力 黄安荣

朱能贵, 李胜男, 曾祥补, 等. 不同分子结构偶联剂改性玄武岩对玄武岩/聚丙烯复合材料发泡行为与性能的影响[J]. 复合材料学报, 2024, 41(3): 1281-1289. doi: 10.13801/j.cnki.fhclxb.20230707.002
引用本文: 朱能贵, 李胜男, 曾祥补, 等. 不同分子结构偶联剂改性玄武岩对玄武岩/聚丙烯复合材料发泡行为与性能的影响[J]. 复合材料学报, 2024, 41(3): 1281-1289. doi: 10.13801/j.cnki.fhclxb.20230707.002
ZHU Nenggui, LI Shengnan, ZENG Xiangbu, et al. Effect of basalt modified by coupling agents with different molecular structures on foaming behavior and properties of basalt/polypropylene composites[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1281-1289. doi: 10.13801/j.cnki.fhclxb.20230707.002
Citation: ZHU Nenggui, LI Shengnan, ZENG Xiangbu, et al. Effect of basalt modified by coupling agents with different molecular structures on foaming behavior and properties of basalt/polypropylene composites[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1281-1289. doi: 10.13801/j.cnki.fhclxb.20230707.002

不同分子结构偶联剂改性玄武岩对玄武岩/聚丙烯复合材料发泡行为与性能的影响

doi: 10.13801/j.cnki.fhclxb.20230707.002
基金项目: 黔科合平台人才-GCC[2022]045;黔科合平台人才-GCC[2022]043;国家自然科学基金(51863003)
详细信息
    通讯作者:

    蒋团辉,正高级工程师,研究方向为聚合物改性及发泡研究 E-mail: jth1983@126.com

  • 中图分类号: TB332

Effect of basalt modified by coupling agents with different molecular structures on foaming behavior and properties of basalt/polypropylene composites

Funds: Talents from Guizhou Science and Technology Cooperation Platform-GCC[2022]045; Talents from Guizhou Science and Technology Cooperation Platform-GCC[2022]043; National Natural Science Foundation of China (51863003)
  • 摘要: 以不同分子结构的偶联剂为改性剂、以玄武岩纤维(BF)为增强相、以聚丙烯(PP)为基体,采用化学发泡二次开模工艺制备了BF/PP发泡复合材料,通过DSC、SEM等表征技术,研究了不同分子结构偶联剂改性BF时,BF/PP发泡复合材料的热性能、流变性能、发泡行为及力学性能。结果表明,通过不同分子结构偶联剂改性BF后,复合材料的结晶性能和流变性能得到改善,结晶度增加,熔体粘弹性变好。KH-550改性BF时,BF/PP发泡复合材料的发泡质量最好,此时泡孔尺寸为84.52 μm,泡孔密度为2.45×105 cells/cm3。BF被偶联剂改性后,发泡复合材料的弯曲强度、弯曲模量和拉伸强度相对于BF未改性时均有所提高;用KH-792改性BF时,弯曲强度、弯曲模量和拉伸强度最大,最大值分别为33.4 MPa、1919 MPa和21.4 MPa。本文将为BF/PP发泡复合材料的研发和工业化应用提供一定的理论参考。

     

  • 图  1  BF/PP发泡复合材料的制备过程

    Figure  1.  Preparation process of BF/PP foaming composite

    图  2  BF/PP复合材料的DSC曲线:(a) 结晶曲线;(b) 熔融曲线

    Figure  2.  DSC curves of BF/PP composite: (a) Crystallization curves; (b) Melting curves

    图  3  BF/PP复合材料的各种动态流变性能变化曲线:(a) 储能模量(G');(b) 损耗模量(G'');(c) 损耗因子(tanδ);(d) 复数黏度(η*)

    Figure  3.  Various dynamic rheological properties of BF/PP composites: (a) Storage modulus (G'); (b) Loss modulus (G''); (c) Loss factor (tanδ); (d) Complex viscosity (η*)

    图  4  BF/PP 发泡复合材料的局部SEM图像

    Figure  4.  Partial SEM images of BF/PP foamed composites

    图  5  纯PP及BF/PP发泡复合材料的泡孔结构图

    Figure  5.  Cell structure of pure PP and BF/PP foamed composites

    图  6  纯PP及BF/PP发泡复合材料的泡孔尺寸和泡孔密度变化图

    Figure  6.  Changes in cell size and cell density of pure PP and BF/PP foamed composite materials

    图  7  BF/PP发泡复合材料力学性能变化:(a) 弯曲性能;(b) 拉伸强度;(c) 缺口冲击强度

    Figure  7.  Changes in mechanical properties of BF/PP foam composites: (a) Bending properties; (b) Tensile strength; (c) Notched impact strength

    表  1  玄武岩纤维/聚丙烯(BF/PP)复合材料各试样的配比及偶联剂类型

    Table  1.   Proportion and coupling agent type of basalt fiber/polypropylene (BF/PP) composite samples

    SamplePP/wt%BF/wt%Coupling agent modelMolecular structure
    PP100 0
    BF/PP 9010
    BF/PP+KH-550 9010KH-550C9H23NO3Si
    BF/PP+KH-602 9010KH-602C8H22N2O2Si
    BF/PP+KH-792 9010KH-792C8H22N2O3Si
    下载: 导出CSV

    表  2  BF/PP发泡复合材料的注塑工艺参数

    Table  2.   Injection molding process parameters of BF/PP foamed composite

    ParametersValue (foam)
    Melt temperature/℃ 210
    Injection pressure/MPa 4.5
    Injection rate/(mm·s−1) 80
    Mold temperature/℃ 90

    Core-back distance/mm
    0.8
    Cooling time/s 35
    下载: 导出CSV

    表  3  BF/PP复合材料的热参数

    Table  3.   Thermal parameters of BF/PP composites

    SampleTc/℃Tm/℃ΔHc/ (J·g−1)ΔHm/(J·g−1)Xc/%
    PP112.6164.884.694.745.8
    BF/PP114.6164.777.185.746.0
    BF/PP+KH-550113.7164.684.091.749.2
    BF/PP+KH-602113.0164.782.388.547.5
    BF/PP+KH-792114.5163.980.788.447.4
    Notes: Tc—Crystallization peak temperature; Tm—Melting peak temperature; ΔHc—Crystallization enthalpy; ΔHm—Melting enthalpy; Xc—Crystallinity.
    下载: 导出CSV
  • [1] LI X, MENG L, ZHANG Y, et al. Research and application of polypropylene carbonate composite materials: A review[J]. Polymers (Basel),2022,14(11):2159-2181. doi: 10.3390/polym14112159
    [2] ZHAO J, QIAO Y, WANG G, et al. Lightweight and tough PP/TALC composite foam with bimodal nanoporous structure achieved by microcellular injection molding [J]. Materials & Design, 2020, 195: 109051.
    [3] AGARWAL J, SAHOO S, MOHANTY S, et al. Progress of novel techniques for lightweight automobile applications through innovative eco-friendly composite materials: A review[J]. Journal of Thermoplastic Composite Materials,2019,33(7):978-1013.
    [4] WANG S, ZHONG J, GU Y, et al. Mechanical properties, flame retardancy, and thermal stability of basalt fiber reinforced polypropylene composites[J]. Polymer Composites,2020,41(10):4181-4191. doi: 10.1002/pc.25702
    [5] YANG C, WANG G, ZHAO J, et al. Lightweight and strong glass fiber reinforced polypropylene composite foams achieved by mold-opening microcellular injection molding[J]. Journal of Materials Research and Technology,2021,14:2920-2931. doi: 10.1016/j.jmrt.2021.08.052
    [6] WANG G, ZHAO J, WANG G, et al. Strong and super thermally insulating in-situ nanofibrillar PLA/PET composite foam fabricated by high-pressure microcellular injection molding[J]. Chemical Engineering Journal,2020,390:124520. doi: 10.1016/j.cej.2020.124520
    [7] GUO J, MU S, YU C, et al. Mechanical and thermal properties of polypropylene/modified basalt fabric composites[J]. Journal of Applied Polymer Science,2015,132(36):42504.
    [8] YU S, OH K H, HWANG J Y, et al. The effect of amino-silane coupling agents having different molecular structures on the mechanical properties of basalt fiber-reinforced polyamide 6, 6 composites[J]. Composites Part B: Engineering,2019,163:511-521.
    [9] LIU S, WU G, YU J, et al. Surface modification of basalt fiber (BF) for improving compatibilities between BF and poly lactic acid (PLA) matrix[J]. Composite Interfaces,2018,26(4):275-290.
    [10] K V B, SHIRVANIMOGHADDAM K, RAJAN G S, et al. Surface treatment of basalt fiber for use in automotive composites[J]. Materials Today Chemistry,2020,17:100334. doi: 10.1016/j.mtchem.2020.100334
    [11] 马志远, 关明杰. 偶联剂处理对碳纤维竹展平板复合材料界面结合强度的影响[J]. 复合材料学报, 2023, 40(1):419-427.

    MA Zhiyuan, GUAN Mingjie. Effect of coupling agent treatment on interfacial bonding strength of carbon fiber/flattened bamboo composite[J]. Acta Materiae Compositae Sinica,2023,40(1):419-427(in Chinese).
    [12] 李静, 申士杰, 李伟娜, 等. 酸刻蚀对玄武岩纤维表面偶联剂吸附量及纤维/环氧树脂复合材料力学性能的影响[J]. 复合材料学报, 2014, 31(4):888-894.

    LI Jing, SHEN Shijie, LI Weina, et al. Effects of acid modifification on coupling agent amount of basalt surface and mechanical property of BF/epoxy composites[J]. Acta Materiae Composite Sinica,2014,31(4):888-894(in Chinese).
    [13] LIU B, GU J, JIANG T, et al. Designer petals shape ZnO nano-particles as nucleating agents: Verification the mecha-nism of cavity nucleation in the polymer for foaming [J]. Polymer Testing, 2021, 104: 107398.
    [14] LIU B, JIANG T, ZENG X, et al. Polypropylene/thermoplastic polyester elastomer blend: Crystallization properties, rheological behavior, and foaming performance[J]. Polymers for Advanced Technologies,2021,32(5):2102-2117. doi: 10.1002/pat.5240
    [15] 中国国家标准化管理委员会. 塑料拉伸性能的测定标准: GB/T 1040.2—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People's Republic of China. Standard for determination of tensile properties of plastics: GB/T 1040.2—2006[S]. Beijing: Standards Press of China, 2006(in Chinese).
    [16] 中国国家标准化管理委员会. 塑料缺口冲击强度测定标准: GB/T 1843—2008 [S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of China. Standard for determination of notch impact strength of plastics: GB/T 1843—2008[S]. Beijing: Standards Press of China, 2008.
    [17] 中国国家标准化管理委员会. 塑料弯曲性能的测定标准: GB/T 9341—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic ofChina. Standard for determination of bending properties of plastics: GB/T 9341—2008[S]. Beijing: Standards Press of China, 2008(in Chinese).
    [18] 王卫霞, 周帅, 辛忠, 等 山梨醇类成核剂对改性聚丙烯发泡性能的影响 [J]. 中国塑料, 2016, 30(5): 87-92.

    WANG Weixia, ZHOU Shuai, XIN Zhong, et al. Effect of sorbitol nucleating agent on foaming behavior of modified polypropylene[J]. China Plastics, 2016, 30(5): 87-92(in Chinese).
    [19] LI M, LI S, LIU B, et al. Rheological behavior, crystallization properties, and foaming performance of chain-extended poly (lactic acid) by functionalized epoxy[J]. RSC Advances,2021,11(52):32799-32809. doi: 10.1039/D1RA06382K
    [20] 张恒, 周玉惠, 张飞, 等. 聚丙烯/β-环糊精复合材料发泡性能及力学性能的研究[J]. 材料导报, 2020, 34(2):4148-4152, 4165.

    ZHANG Heng, ZHOU Yuhui, ZHANG Fei, et al. Studies on foaming properties and mechanical properties of polypropylene/β-cyclodextrin foamed composite[J]. Materials Reports,2020,34(2):4148-4152, 4165(in Chinese).
    [21] ZHU N, JIANG T, ZENG X, et al. High strength and light weight polyamide 6/carbon fiber composite foams for electromagnetic interference shielding [J]. Journal of Applied Polymer Science, 2023, 140(17): e53818.
    [22] CAO J, WEN N, ZHENG Y Y. Effect of long chain branching on the rheological behavior, crystallization and mechani-cal properties of polypropylene random copolymer[J]. Chinese Journal of Polymer Science,2016,34(9):1158-1171. doi: 10.1007/s10118-016-1830-4
    [23] ZHANG X, WANG X, DONG B, et al. Synergetic effect of crystal nucleating agent and melt self-enhancement of isotactic polypropylene on its rheological and microcellular foaming properties[J]. Journal of Cellular Plastics,2020,57(1):101-121.
    [24] GHANBARI A, SEYEDIN S, NOFAR M, et al. Mechanical properties and foaming behavior of polypropylene/elasto-mer/recycled carbon fiber composites[J]. Polymer Composites,2021,42(7):3482-3492. doi: 10.1002/pc.26073
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  534
  • HTML全文浏览量:  359
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-26
  • 修回日期:  2023-06-15
  • 录用日期:  2023-06-24
  • 网络出版日期:  2023-07-10
  • 刊出日期:  2024-03-01

目录

    /

    返回文章
    返回