Preparation and electrochemical properties of MOF/polypyrrole/graphene ternary composite aerogel
-
摘要: 具有丰富多孔结构的金属有机框架(MOF)差的导电性限制了其在超级电容器电极材料中的实际应用。将MOF晶体材料内嵌于石墨烯(GE)气凝胶三维网络结构中,协同聚吡咯(PPy)的共轭长链构筑3D分级多孔结构的同时可实现导电PPy的高水平及稳定掺杂,进一步提高复合气凝胶的超电容性能。首先以Co(NO3)2·6H2O和Ni(NO3)2·6H2O为金属源,均苯三甲酸 (H3BTC)为有机配体,水热制备得到单金属Co-MOF、Ni-MOF和双金属CoNi-MOF晶体材料;然后将MOF晶体材料与吡咯(Py)、氧化石墨烯(GO)通过一步水热法制备得到MOF/PPy/GE三元复合气凝胶,采用SEM、TEM、FTIR、XRD、Raman和XPS等技术对复合材料的形貌、化学结构、掺杂结构进行表征。结果表明:双金属CoNi-MOF材料更易内嵌于气凝胶三维网络结构中,与石墨烯片层和PPy共轭长链共同构筑稳定的三维多孔网络结构,可有效抑制GE片层的堆积。电化学测试结果表明,CoNi-MOF/GE/PPy复合气凝胶(GPMOF-CoNi)比电容可达447 F/g,且循环10000圈电容保持率高达97%,表现出良好的超电容特性。Abstract: The poor electrical conductivity of metal organic frameworks (MOF) with rich porous structures limits their practical application in supercapacitor electrode materials. With MOF crystalline material and polypyrrole (PPy) chains embedded in the 3D network structure of graphene (GE) aerogel, 3D hierarchical porous structure can be successfully constructed. Simultaneously, high level and stable doping of conductive PPy, which can further improve the supercapacitive performance of the composite aerogel. Co-MOF, Ni-MOF and bimetallic CoNi-MOF were obtained by hydrothermal method with Co(NO3)2·6H2O and Ni(NO3)2·6H2O as metal source and trimesic acid (H3BTC) as organic ligand. Then MOF/PPy/GE ternary composite aerogels were prepared with MOF crystal material pyrrole (Py) and graphene oxide (GO) by one-step hydrothermal method. The composite morphology, chemical structure, and doping structures were characterized by SEM, TEM, FTIR, XRD, Raman and XPS techniques. The results show that the bimetallic CoNi-MOF material is more easily embedded in the three-dimensional network structure of the composite aerogel, and could effectively suppress the accumulation of GE layers by constructing a stable three-dimensional porous network structure together with graphene layers and PPy conjugated long chains. The electrochemical test results show that the specific capacitance of the CoNi-MOF/GE/PPy composite aerogel (GPMOF-CoNi) can reach 447 F/g, and the capacitance retention rate of 10000 cycles is up to 97%, showing good supercapacitive performance.
-
Key words:
- supercapacitor /
- metal-organic framework /
- polypyrrole /
- graphene /
- aerogel
-
图 5 所得复合气凝胶样品的 N2 吸脱附等温线 (a)、孔径分布曲线 (b)、 FTIR 图谱 (c)、XRD图谱(d)和Raman图谱 (e)
dV/dD—Pore volume
Figure 5. N2 adsorption and desorption isotherms of the resulting composite aerogel sample (a), pore size distributions (b), FTIR spectra (c), XRD patterns (d) and Raman spectra (e) of the obtained composite aerogel
图 9 (a) GP、GPMOF-Co、GPMOF-Ni、GPMOF-CoNi的CV曲线(10 mV/s);(b) GPMOF-CoNi的CV曲线;(c) GP、GPMOF-Co、GPMOF-Ni、GPMOF-CoNi的GCD (1 A/g);(d) GPMOF-CoNi的GCD; (e) GP、GPMOF-Co、GPMOF-Ni、GPMOF-CoNi的EIS;(f) GPMOF-CoNi的10000圈循环稳定性测试(10 A/g)
Figure 9. (a) CV (10 mV/s) of GP, GPMOF-Co, GPMOF-Ni, GPMOF-CoNi; (b) CV of GPMOF-CoNi; (c) GCD of GP, GPMOF-Co, GPMOF-Ni, GPMOF-CoNi (1 A/g); (d) GCD of GPMOF-CoNi; (e) EIS of GP, GPMOF-Co, GPMOF-Ni, GPMOF-CoNi; (f) 10000 cycle stability test of GPMOF-CoNi (10 A/g)
表 1 Ni-MOF/石墨烯/聚吡咯(GPMOF-Ni)复合气凝胶的原材料配比
Table 1. Ratios of the raw materials used in the Ni-MOF/graphene/polypyrrole (GPMOF-Ni) composite aerogels
Sample Py/mg GO/mg Ni-MOF/mg GP 140 56 0 10 GPMOF-Ni 140 56 10 20 GPMOF-Ni 140 56 20 40 GPMOF-Ni 140 56 40 60 GPMOF-Ni 140 56 60 Notes: Py—Pyrrole; GO—Graphene oxide; GP—GO/PPy. 表 2 GPMOF复合气凝胶的原材料配比
Table 2. Ratios of the raw materials used in the GPMOFs composite aerogels
Sample Py/mg GO/mg MOF/mg GP 140 56 0 GPMOF-Co 140 56 20 GPMOF-Ni 140 56 20 GPMOF-CoNi 140 56 20 Notes: GP, GPMOF-Co, GPMOF-Ni and GPMOF-CoNi—Variety of MOF in the prepared composite aerogel as Co-MOF, Ni-MOF, CoNi-MOF, respectively. 表 3 复合气凝胶的BET比表面积SBET、孔体积Vtotal和平均孔径参数
Table 3. BET specific surface area SBET, pore volume Vtotal and average pore diameter parameters of composite aerogel
SampleSBET/
(m2·g−1)Vtotal/
(cm3·g−1)Average pore diameter/nm GP 14.047 0.026 3.663 GPMOF-Co 15.633 0.028 3.820 GPMOF-Ni 14.417 0.027 3.794 GPMOF-CoNi 43.513 0.063 1.614 Notes: SBET—Total area of the sample per unit mass; Vtotal—Total pore volume per unit mass of the sample. -
[1] 魏帅, 李朝霞, 孟淑娟, 等. Fe2O3/氮掺杂生物质碳复合材料制备及其在超级电容器中的应用[J]. 复合材料学报, 2023, 40(10):5736-5749.WEI Shuai, LI Zhaoxia, MENG Shujuan, et al. Preparation of Fe2O3/nitrogen-doped biomass carbon composites and their application in supercapacitors[J]. Acta Materiae Compositae Sinica,2023,40(10):5736-5749(in Chinese). [2] ZHENG S S, LI X R, YAN B Y, et al. Transition-metal (Fe, Co, Ni) based metal-organic frameworks for electrochemical energy storage[J]. Advanced Energy Materials,2017,7(18):1602733. doi: 10.1002/aenm.201602733 [3] DONG Y F, WU Z S, REN W C, et al. Graphene: A promising 2D material for electrochemical energy storage[J]. Science Bulletin,2017,62(10):724-740. doi: 10.1016/j.scib.2017.04.010 [4] CAO X H, TAN C L, SINDORO M, et al. Hybrid micro-nano-structures derived from metal-organic frameworks: Preparation and applications in energy storage and conversion[J]. Chemical Society Reviews,2017,46(10):2660-2677. doi: 10.1039/C6CS00426A [5] PERSHAANAA M, BASHIR S, RAMESH S, et al. Every bite of supercap: A brief review on construction and enhancement of supercapacitor[J]. Journal of Energy Storage,2022,50:104599. doi: 10.1016/j.est.2022.104599 [6] HUANG Y, LI H F, WANG Z F, et al. Nanostructured polypyrrole as a flexible electrode material of supercapacitor[J]. Nano Energy,2016,22:422-438. doi: 10.1016/j.nanoen.2016.02.047 [7] HAMRA A A B, LIM H N, HUANG N M, et al. Microwave exfoliated graphene-based materials for flexible solid-state supercapacitor[J]. Journal of Molecular Structure,2020,1220:128710. doi: 10.1016/j.molstruc.2020.128710 [8] CHIAM S L, LIM H N, FOO C Y, et al. How did nickel cobaltite reinforced carbon microfibre symmetrical supercapacitor fare against a commercial supercapacitor?[J]. Electrochimica Acta,2017,246:1141-1146. doi: 10.1016/j.electacta.2017.06.132 [9] FOO C Y, LIM H N, MAHDI M A, et al. High-performance supercapacitor based on three-dimensional hierarchical rGO/nickel cobaltite nanostructures as electrode materials[J]. The Journal of Physical Chemistry C,2016,120(38):21202-21210. doi: 10.1021/acs.jpcc.6b05930 [10] ZHAO Y H, HE X Y, CHEN R R, et al. A flexible all-solid-state asymmetric supercapacitors based on hierarchical carbon cloth@CoMoO4@NiCo layered double hydroxide core-shell heterostructures[J]. Chemical Engineering Journal,2018,352:29-38. doi: 10.1016/j.cej.2018.06.181 [11] CHEE W K, LIM H N, HARRISON I, et al. Performance of flexible and binderless polypyrrole/graphene oxide/zinc oxide supercapacitor electrode in a symmetrical two-electrode configuration[J]. Electrochimica Acta,2015,157:88-94. doi: 10.1016/j.electacta.2015.01.080 [12] HAMRA A A B, LIM H N, HAFIZ S M, et al. Performance stability of solid-state polypyrrole-reduced graphene oxide-modified carbon bundle fiber for supercapacitor application[J]. Electrochimica Acta,2018,285:9-15. doi: 10.1016/j.electacta.2018.07.212 [13] KORKMAZ S, KARIPER İ A. Graphene and graphene oxide based aerogels: Synthesis, characteristics and supercapacitor applications[J]. Journal of Energy Storage,2020,27:101038. doi: 10.1016/j.est.2019.101038 [14] XU J, SHU R W, WAN Z L, et al. Construction of three-dimensional hierarchical porous nitrogen-doped reduced graphene oxide/hollow cobalt ferrite composite aerogels toward highly efficient electromagnetic wave absorption[J]. Journal of Materials Science & Technology,2023,132:193-200. [15] DENG L L, SHU R W, ZHANG J B. Fabrication of ultralight nitrogen-doped reduced graphene oxide/nickel ferrite composite foams with three-dimensional porous network structure as ultrathin and high-performance microwave absorbers[J]. Journal of Colloid and Interface Science,2022,614:110-119. doi: 10.1016/j.jcis.2022.01.104 [16] LEE S P, ALI G A M, HEGAZY H H, et al. Optimizing reduced graphene oxide aerogel for a supercapacitor[J]. Energy & Fuels,2021,35(5):4559-4569. [17] ZHANG Q Q, WANG Y, ZHANG B Q, et al. 3D superelastic graphene aerogel-nanosheet hybrid hierarchical nanostructures as high-performance supercapacitor electrodes[J]. Carbon,2018,127:449-458. doi: 10.1016/j.carbon.2017.11.037 [18] LE Q B, VARGUN E, FEI H J, et al. Effect of PANI and PPy on electrochemical performance of rGO/ZnMn2O4 aerogels as electrodes for supercapacitors[J]. Journal of Electronic Materials,2020,49(8):4697-4706. doi: 10.1007/s11664-020-08198-4 [19] HE Y B, BAI Y L, YANG X F, et al. Holey graphene/polypyrrole nanoparticle hybrid aerogels with three-dimensional hierarchical porous structure for high performance supercapacitor[J]. Journal of Power Sources,2016,317:10-18. doi: 10.1016/j.jpowsour.2016.03.089 [20] ZHANG Y M, CHEN Z, ZHANG D D, et al. Diversified applications of polypyrrole/graphene aerogel in supercapacitors and three-dimensional electrode system[J]. Materials Letters,2018,227:158-160. doi: 10.1016/j.matlet.2018.04.113 [21] LI G, CAI H R, LI X L, et al. Construction of hierarchical NiCo2O4@Ni-MOF hybrid arrays on carbon cloth as superior battery-type electrodes for flexible solid-state hybrid supercapacitors[J]. ACS Applied Materials & Interfaces,2019,11(41):37675-37684. [22] 李文青, 王艺锟, 王全璐, 等. 5-磺基水杨酸掺杂聚吡咯/ZIF67复合材料的超电容性能[J]. 复合材料学报, 2022, 39(12):5788-5800.LI Wenqing, WANG Yikun, WANG Quanlu, et al. Supercapacitive performances of 5-sulfosalicylic acid doped polypyrrole/ZIF67 composites[J]. Acta Materiae Compo-sitae Sinica,2022,39(12):5788-5800(in Chinese). [23] JIANG X B, LI G N, LU D P, et al. Hybrid control mechanism of crystal morphology modification for ternary solution treatment via membrane assisted crystallization[J]. Crystal Growth & Design,2018,18(2):934-943. [24] YADAV H, SINHA N, KUMAR B. New geometrical modeling to study crystal morphology[J]. Crystal Growth & Design,2016,16(8):4559-4566. [25] HE Q M, RUI K, CHEN C H, et al. Interconnected CoFe2O4-polypyrrole nanotubes as anode materials for high performance sodium ion batteries[J]. ACS Applied Materials & Interfaces,2017,9(42):36927-36935. [26] LIM S P, PANDIKUMAR A, LIM Y S, et al. In-situ electrochemically deposited polypyrrole nanoparticles incorporated reduced graphene oxide as an efficient counter electrode for platinum-free dye-sensitized solar cells[J]. Scientific Reports,2014,4(1):5305. doi: 10.1038/srep05305 [27] YANG J, WANG X, LI B, et al. Novel iron/cobalt-containing polypyrrole hydrogel-derived trifunctional electrocatalyst for self-powered overall water splitting[J]. Advanced Functional Materials,2017,27(17):1606497. doi: 10.1002/adfm.201606497 [28] RAJESH M, RAJ C J, KIM B C, et al. Supercapacitive studies on electropolymerized natural organic phosphate doped polypyrrole thin films[J]. Electrochimica Acta,2016,220:373-383. doi: 10.1016/j.electacta.2016.10.118 [29] JIAO Y, CHEN G, CHEN D H, et al. Bimetal-organic framework assisted polymerization of pyrrole involving air oxidant to prepare composite electrodes for portable energy storage[J]. Journal of Materials Chemistry A,2017,5(45):23744-23752. doi: 10.1039/C7TA07464F [30] CHI Y, YANG W P, XING Y C, et al. Ni/Co bimetallic organic framework nanosheet assemblies for high-performance electrochemical energy storage[J]. Nanoscale,2020,12(19):10685-10692. doi: 10.1039/D0NR02016H [31] WANG J, XU Y L, YAN F, et al. Template-free prepared micro/nanostructured polypyrrole with ultrafast charging/discharging rate and long cycle life[J]. Journal of Power Sources,2011,196(4):2373-2379. doi: 10.1016/j.jpowsour.2010.10.066 [32] SHI K Y, ZHITOMIRSKY I. Polypyrrole nanofiber-carbon nanotube electrodes for supercapacitors with high mass loading obtained using an organic dye as a co-dispersant[J]. Journal of Materials Chemistry A,2013,1(38):11614-11622. doi: 10.1039/c3ta12466e