Photoelectrochemical cathodic protection performance of two-dimensional Ti3C2-modified WO3/SrTiO3 heterojunction composites
-
摘要: 引入第二相材料构建异质结及加入助催化剂都可以有效提高半导体材料的光电化学性能。本文设计制备了WO3/SrTiO3异质结复合材料并选用助催化剂Ti3C2进行修饰,在模拟太阳光环境下通过光电化学阴极保护技术保护304不锈钢(304 SS)。结果表明:Ti3C2-WO3/SrTiO3复合材料的光电化学阴极保护性能显著增强。将304 SS与Ti3C2-WO3/SrTiO3复合材料耦合,可将304 SS的电位从−0.13 V转移到−0.42 V,并且三元复合材料产生的光电流密度是单独使用SrTiO3的7倍。在WO3/SrTiO3界面上形成的异质结电场及助催化剂Ti3C2的加入协同提高了光生电子和空穴的分离效率,提高了光电化学阴极保护性能。
-
关键词:
- 异质结 /
- 助催化剂 /
- Ti3C2-WO3/SrTiO3 /
- 复合材料 /
- 光电化学阴极保护
Abstract: The introduction of second-phase materials to construct heterojunctions and the addition of co-catalysts can effectively improve the photoelectrochemical performance of semiconductor materials. In this study, Ti3C2-WO3/SrTiO3 composites were designed and prepared to protect 304 stainless steel (304 SS) by photochemical cathodic protection technology in simulated sunlight environment. The results show that the photoelectrochemical cathodic protection performance of Ti3C2-WO3/SrTiO3 composites is significantly enhanced. Coupling 304 SS with Ti3C2-WO3/SrTiO3 composites transfers the potential of 304 SS from −0.13 V to −0.42 V, and the ternary composites produce a photocurrent density 7 times higher than SrTiO3 alone. The heterojunction electric field formed at the WO3/SrTiO3 interface and the addition of co-catalyst Ti3C2 synergistically improve the separation efficiency of photogenerated electrons and holes, and improve the photoelectrochemical cathodic protection performance.-
Key words:
- heterojunctions /
- co-catalyst /
- Ti3C2-WO3/SrTiO3 /
- composites /
- photoelectrochemical cathodic protection
-
图 6 SrTiO3、WO3/SrTiO3和Ti3C2-WO3/SrTiO3复合材料的光电流密度-时间曲线(a)和开路电位-时间曲线(b);(c) 光电化学阴极保护测试装置图;(d) 光电化学阴极保护机制图
Figure 6. Photocurrent density-time curves (a) and open-circuit potential-time curves (b) of SrTiO3, WO3/SrTiO3 and Ti3C2-WO3/SrTiO3 composites; (c) Test device diagram for photoelectrochemical cathodic protection; (d) Diagram of the photoelectrochemical cathodic protection mechanism
304 SS—304 stainless steel; E304 SS—Self-corrosion potential of 304 SS; GW— Ground; CE—Counter electrode; RE—Reference electrode; WE—Working electrode; SCE—Saturated calomel electrode; VB—Valence band; CB—Conduction band; NHE—Normal hydrogen electrode; hv—Photon energy
-
[1] KONG C H, QING D, SU X Y, et al. Improved photoelectrochemical cathodic protection properties of a flower-like SrTiO3 photoanode decorated with g-C3N4[J]. Journal of Alloys and Compounds, 2022, 924: 166629. [2] 韩恩厚, 陈建敏, 宿彦京, 等. 海洋工程结构与船舶的腐蚀防护−现状与趋势[J]. 中国材料进展, 2014, 33(2):65-76, 113.HAN Enhou, CHEN Jianmin, SU Yanjing, et al. Corrosion protection techniques of marine engineering structure and ship equipment-current status and future trend[J]. Materials China,2014,33(2):65-76, 113(in Chinese). [3] SAJI V S. Review—Photoelectrochemical cathodic protection in the dark: A review of nanocomposite and energy-storing photoanodes[J]. Journal of the Electrochemical Society, 2020, 167(12): 121505. [4] YUAN J N, TSUJIKAWA S. Characterization of sol-gel-derived TiO2 coatings and their photoeffects on copper substrates[J]. Journal of the Electrochemical Society,1995,142(10):3444-3450. doi: 10.1149/1.2050002 [5] ZHANG W, GUO H, SUN H, et al. Photogenerated cathodic protection and invalidation of silane/TiO2 hybrid coatings[J]. Journal of Coatings Technology and Research,2017,14(2):417-424. doi: 10.1007/s11998-016-9859-4 [6] YANG Y Y, ZHANG W, XU Y, et al. Preparation of PbS and CdS cosensitized graphene/TiO2 nanosheets for photoelectrochemical protection of 304 stainless steels[J]. Applied Surface Science,2018,452:58-66. doi: 10.1016/j.apsusc.2018.05.016 [7] ZUO J, WU H, CHEN A J, et al. Shape-dependent photogenerated cathodic protection by hierarchically nanostructured TiO2 films[J]. Applied Surface Science,2018,462:142-148. doi: 10.1016/j.apsusc.2018.07.143 [8] LI H, SONG W Z, CUI X Q, et al. Preparation of SnIn4S8/TiO2 nanotube photoanode and its photocathodic protection for Q235 carbon steel under visible light[J]. Nanoscale Research Letters, 2021, 16(1): 1-13. [9] LI H, SONG W Z, CUI X Q, et al. AgInS2 and graphene co-sensitized TiO2 photoanodes for photocathodic protection of Q235 carbon steel under visible light[J]. Nanotechnology,2020,31:305704. doi: 10.1088/1361-6528/ab85eb [10] LI H, LI Y H, WANG X T, et al. 3D ZnIn2S4 nanosheets/TiO2 nanotubes as photoanodes for photocathodic protection of Q235 CS with high efficiency under visible light[J]. Journal of Alloys and Compounds,2019,771:892-899. doi: 10.1016/j.jallcom.2018.09.027 [11] PATIAL S, HASIJA V, RAIZADA P, et al. Tunable photocatalytic activity of SrTiO3 for water splitting: Strategies and future scenario[J]. Journal of Environmental Chemical Engineering,2020,8(3):103791. doi: 10.1016/j.jece.2020.103791 [12] XU Y, LIANG Y H, HE Q Q, et al. Review of doping SrTiO3 for photocatalytic applications[J]. Bulletin of Materials Science,2023,46:6. [13] TAN C E, LEE J T, SU E C, et al. Facile approach for Z-scheme type Pt/g-C3N4/SrTiO3 heterojunction semiconductor synthesis via low-temperature process for si-multaneous dyes degradation and hydrogen production[J]. International Journal of Hydrogen Energy,2020,45:13330-13339. doi: 10.1016/j.ijhydene.2020.03.034 [14] MEI P, XIAO J T, HUANG X S, et al. Enhanced photocatalytic reduction of U(VI) on SrTiO3/g-C3N4 composites: Synergistic interaction[J]. European Journal of Inorganic Chemistry,2022,15:240-249. [15] 许进博, 董晓珠, 孔存辉, 等. SrTiO3/TiO2复合薄膜的制备及其光电化学阴极保护性能[J]. 复合材料学报, 2022, 39(8):3922-3928.XU Jinbo, DONG Xiaozhu, KONG Cunhui, et al. Preparation of SrTiO3/TiO2 composite film for photoelectrochemical cathodic protection[J]. Acta Materiae Compositae Sinica,2022,39(8):3922-3928(in Chinese). [16] PAN J Q, LIU Y Y, OU W, et al. The photocatalytic hydrogen evolution enhancement of the MoS2 lamellas modified g-C3N4/SrTiO3 core-shell heterojunction[J]. Renewable Energy,2020,161:340-349. doi: 10.1016/j.renene.2020.07.097 [17] JING J P, CHEN Z Y, BU Y Y, et al. Significantly enhanced photo-electrochemical cathodic protection performance of hydrogen treated Cr-doped SrTiO3 by Cr6+ reduction and oxygen vacancy modification[J]. Electrochimica Acta,2019,304:386-395. doi: 10.1016/j.electacta.2019.03.020 [18] ABDI M, MAHDIKHAH V, SHEIBANI S. Visible light photocatalytic performance of La-Fe co-doped SrTiO3 perovskite powder[J]. Optical Materials,2020,102:358-361. [19] HAN X, LIU P Y, RAN R, et al. Non-metal fluorine doping in Ruddlesden-Popper perovskite oxide enables high-efficiency photocatalytic water splitting for hydrogen production[J]. Materials Today Energy,2021,23:100896. [20] LEE J, CHEN Y, SU E, et al. Synthesis of solar-light responsive Pt/g-C3N4/SrTiO3 composite for improved hydrogen production: Investigation of Pt/g-C3N4/SrTiO3 synthetic sequences[J]. International Journal of Hydrogen Energy,2019,44:21413-21423. doi: 10.1016/j.ijhydene.2019.06.178 [21] CUI W, CHEN L C, SHENG J P, et al. The pivotal roles of spatially separated charge localization centers on the molecules activation and photo-catalysis mechanism[J]. Applied Catalysis B: Environmental,2020,262:118251. doi: 10.1016/j.apcatb.2019.118251 [22] ZHENG Y, YU Z H, OU H H, et al. Black phosphorus and polymeric carbon nitride heterostructure for photoinduced molecular oxygen activation[J]. Advanced Functional Materials,2018,28(10):1705407. doi: 10.1002/adfm.201705407 [23] CHENG C, ZHANG H Y, LI F, et al. High performance ammonia gas detection based on TiO2/WO3·H2O heterojunction sensor[J]. Materials Chemistry and Physics,2021,273:125098. doi: 10.1016/j.matchemphys.2021.125098 [24] ARZAEE N A, NOH M F M, AADENAN A, et al. Accelerating the controlled synthesis of WO3 photoanode by modifying aerosol-assisted chemical vapour deposition for photoelectrochemical water splitting[J]. Chemical Engineering Science,2022,252:117294. doi: 10.1016/j.ces.2021.117294 [25] KALANUR S S, YOO I, EOM K, et al. Enhancement of photoelectrochemical water splitting response of WO3 by means of Bi doping[J]. Journal of Catalysis,2018,357:127-137. doi: 10.1016/j.jcat.2017.11.012 [26] MOKHTARIFAR M, NGUYEN D T, DIAMANTI M V, et al. Fabrication of dual-phase TiO2/WO3 with post-illumination photocatalytic memory[J]. New Journal of Chemistry, 2020, 44(46): 20375-20386. [27] LIANG Y, GUAN Z C, WANG H P, et al. Enhanced photoelectrochemical anticorrosion performance of WO3/TiO2 nanotube composite films formed by anodization and electrodeposition[J]. Electrochemistry Communications,2017,77:120-123. doi: 10.1016/j.elecom.2017.03.008 [28] YANG H, JIN Z L, HU H Y, et al. Ni-Mo-S nanoparticles modified graphitic C3N4 for efficient hydrogen evolution[J]. Applied Surface Science,2018,427:587-597. doi: 10.1016/j.apsusc.2017.09.021 [29] LI Y B, JIN Z L, ZHANG L J, et al. Controllable design of Zn-Ni-P on g-C3N4 for efficient photocatalytic hydrogen production[J]. Chinese Journal of Catalysis,2019,40(3):390-402. doi: 10.1016/S1872-2067(18)63173-0 [30] CHEN Y, LI X, CAI G N, et al. In situ formation of (001) TiO2/Ti3C2 heterojunctions for enhanced photoelectrochemical detection of dopamine[J]. Electrochemistry Communications,2021,125:106987. doi: 10.1016/j.elecom.2021.106987 [31] 罗强. 二维层状Ti3C2材料在光催化领域的应用研究现状[J]. 科技视界, 2020(24):144-145. doi: 10.19694/j.cnki.issn2095-2457.2020.24.55LUO Qiang. Application research status of two-dimensional layered Ti3C2 materials in the field of photocatalysis[J]. Science & Technology Vision,2020(24):144-145(in Chinese). doi: 10.19694/j.cnki.issn2095-2457.2020.24.55 [32] QUYEN V T, HA L T T, THANH D M, et al. Advanced synthesis of MXene-derived nanoflower-shaped TiO2@Ti3C2 heterojunction to enhance photocatalytic degradation of rhodamine B[J]. Environmental Technology & Innovation,2020,21:101286. [33] ZHU J F, TANG Y, YANG C H, et al. Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance[J]. Journal of the Electrochemical Society,2016,163(5):A785-A791. doi: 10.1149/2.0981605jes [34] 苏新悦, 孔存辉, 庆达, 等. Ti3C2/SrTiO3复合材料的制备及其光电化学阴极保护性能[J]. 复合材料学报, 2023, 40(7): 3964-3972.SU Xinyue, KONG Cunhui, QING Da, et al. Preparation of Ti3C2/SrTiO3 composites and their photoelectrochemical cathodic protection[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3964-3972(in Chinese). [35] KONG C H, SU X Y, QING D, et al. Controlled synthesis of various SrTiO3 morphologies and their effects on photoelectrochemical cathodic protection performance[J]. Ceramics International,2022,48(14):20228-20236. doi: 10.1016/j.ceramint.2022.03.302 [36] SU X Y, QING D, XIAO X L, et al. Construction of novel type-II SrTiO3/g-C3N4 heterojunction photocatalysts: Photodegradation of tetracycline and photocatalytic mechanism[J]. Russian Journal of Physical Chemistry A,2023,97:277-283. [37] JIANG J Z, JIA Y S, WANG Y B, et al. Insight into efficient photocatalytic elimination of tetracycline over SrTiO3 (La, Cr) under visible-light irradiation: The relationship of doping and performance[J]. Applied Surface Science,2019,486:93-101. doi: 10.1016/j.apsusc.2019.04.261 [38] MA X M, MA Z, ZHANG H G, et al. Interfacial schottky junction of Ti3C2Tx MXene/g-C3N4 for promoting spatial charge separation in photoelectrochemical cathodic protection of steel[J]. Journal of Photochemistry and Photobiology A: Chemistry,2022,426:113772. doi: 10.1016/j.jphotochem.2022.113772 [39] KIM B, JUNG Y, PARK B J, et al. Photo-assisted electrolysis of urea using Ni-modified WO3/g-C3N4 as a bifunctional catalyst[J]. International Journal of Hydrogen Energy,2022,47(9):5797-5806. doi: 10.1016/j.ijhydene.2021.11.237 [40] GOVINDARAJ T, MAHENDRAN C, MANIKANDAN V S, et al. Fabrication of WO3 nanorods/RGO hybrid nanostructures for enhanced visible-light-driven photocatalytic degradation of Ciprofloxacin and Rhodamine B in an ecosystem[J]. Journal of Alloys and Compounds,2021,868:159091-159103. doi: 10.1016/j.jallcom.2021.159091 [41] TANG Y Q, JIANG D, WANG H, et al. Band gap modulation of nanostructured WO3 nanoplate film by Ti doping for enhanced photoelectrochemical performance[J]. Journal of Central South University,2022,29:2968-2979. doi: 10.1007/s11771-022-5125-3 [42] JIA Q B, LIU J, ZHONG L, et al. Preparation of the regular polyhedral single-crystalline SrTiO3 particles with exposing different crystal facets[J]. Materials Letters,2021,288:129338. doi: 10.1016/j.matlet.2021.129338 [43] ROSY A, KALPANA G. Reduced graphene oxide/strontium titanate heterostructured nanocomposite as sunlight driven photocatalyst for degradation of organic dye pollutants[J]. Current Applied Physics,2018,18:1026-1033. doi: 10.1016/j.cap.2018.05.019 [44] CHENG C, HE B W, FAN J J, et al. An inorganic/organic S-scheme heterojunction H2-production photocatalyst and its charge transfer mechanism[J]. Advanced Materials,2021,33:2100317. doi: 10.1002/adma.202100317 [45] ZHANG J, SHAO S, ZHOU D S, et al. ZnO nanowire arrays decorated 3D N-doped reduced graphene oxide nanotube framework for enhanced photocatalytic CO2 reduction performance[J]. Journal of CO2 Utilization,2021,50:101584. doi: 10.1016/j.jcou.2021.101584 [46] SUN L, LI L L, FAN J J, et al. Construction of highly active WO3/TpPa-1-COF S-scheme heterojunction toward photocatalytic H2 generation[J]. Journal of Materials Science & Technology,2022,123:41-48. [47] YOON D, BISWAS M R U D, SAKTHISABARIMOORTHI A. Composite nanostructures of black TiO2/WO3 on rGO nanosheets for photoelectrochemical water splitting[J]. Diamond and Related Materials,2022,129:109363. doi: 10.1016/j.diamond.2022.109363 [48] ZHANG L Y, ZHANG J J, YU H G, et al. Emerging S-scheme photocatalyst[J]. Advanced Materials,2022,34:2107668. doi: 10.1002/adma.202107668 [49] ZHANG W, TIAN M, JIAO H M, et al. Conformal BiVO4/WO3 nanobowl array photoanode for efficient photoelectrochemical water splitting[J]. Chinese Journal of Catalysis,2022,43:2321-2331. doi: 10.1016/S1872-2067(21)63927-X [50] WU Y L, QI M Y, TAN C L, et al. Photocatalytic selective oxidation of aromatic alcohols coupled with hydrogen evolution over CdS/WO3 composites[J]. Chinese Journal of Catalysis,2022,43:1851-1859. doi: 10.1016/S1872-2067(21)63989-X [51] HE F, MENG A Y, CENG B, et al. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification[J]. Chinese Journal of Catalysis,2020,41:9-20. doi: 10.1016/S1872-2067(19)63382-6 [52] WAGEH S, AL-GHAMDI A A, JAFER B, et al. A new heterojunction in photocatalysis: S-scheme heterojunction[J]. Chinese Journal of Catalysis,2021,42:667-669. doi: 10.1016/S1872-2067(20)63705-6