Loading [MathJax]/jax/output/SVG/jax.js

预制UHPC-RAC组合梁受弯性能试验与理论计算

秦朝刚, 吴涛, 刘伯权, 王博, 李寓

秦朝刚, 吴涛, 刘伯权, 等. 预制UHPC-RAC组合梁受弯性能试验与理论计算[J]. 复合材料学报, 2024, 41(3): 1420-1435. DOI: 10.13801/j.cnki.fhclxb.20230704.001
引用本文: 秦朝刚, 吴涛, 刘伯权, 等. 预制UHPC-RAC组合梁受弯性能试验与理论计算[J]. 复合材料学报, 2024, 41(3): 1420-1435. DOI: 10.13801/j.cnki.fhclxb.20230704.001
QIN Chaogang, WU Tao, LIU Boquan, et al. Experimental and theoretical study on flexural behavior of precast UHPC-RAC composite beams[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1420-1435. DOI: 10.13801/j.cnki.fhclxb.20230704.001
Citation: QIN Chaogang, WU Tao, LIU Boquan, et al. Experimental and theoretical study on flexural behavior of precast UHPC-RAC composite beams[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1420-1435. DOI: 10.13801/j.cnki.fhclxb.20230704.001

预制UHPC-RAC组合梁受弯性能试验与理论计算

基金项目: 中国博士后科学基金资助项目(2021T140587;2019M660051XB);陕西省自然科学基础研究计划项目(2023-JC-YB-326);长安大学中央高校基本科研业务费高新技术项目(300102282208)
详细信息
    通讯作者:

    秦朝刚,博士研究生,副教授,硕士生导师,研究方向为新型装配式混凝土结构 E-mail:qinchaogang@chd.edu.cn

  • 中图分类号: TU375.1;TB333

Experimental and theoretical study on flexural behavior of precast UHPC-RAC composite beams

Funds: China Postdoctoral Science Foundation (2021T140587; 2019M660051XB); Natural Science Foundation of Shaanxi Province (2023-JC-YB-326); Fundamental Research Funds for the Central Universities, CHD (300102282208)
  • 摘要: 超高性能混凝土(Ultra-high performance concrete,UHPC)和再生混凝土(Recycled aggregate concrete,RAC),碳足迹低,属于“低碳混凝土”。将再生混凝土梁受拉侧或侧壁的部分RAC用UHPC替换,形成“绿色低碳”UHPC-RAC组合截面,以提高力学性能。采用工厂预制工艺,制作了预制UHPC-RAC组合梁。通过四分点抗弯性能试验,分析了受拉UHPC厚度、UHPC-RAC结合面粗糙度和侧壁UHPC高度,对预制UHPC-RAC组合梁破坏机制、承载力、变形和初始刚度的影响规律,提出了承载力计算公式。研究表明:与RAC梁相比,预制UHPC-RAC组合梁随受拉UHPC厚度的增加,形成的UHPC-RAC穿筋结合面,限制了开裂后UHPC剥离脱落;增加界面粗糙度,阻滞了水平裂缝的延展,初始刚度可提高16.6%;随受拉UHPC钢纤维拔出,荷载-位移曲线下降明显,待再生混凝土压溃后,仍有较高的残余强度。预制UHPC-RAC组合梁的开裂荷载和极限荷载,分别增加63.1%和22.9%,截面抗弯刚度、初始刚度均得到明显改善。组合截面内钢筋、UHPC和RAC协同受力,应变沿截面高度线性变化,符合平截面假定;将截面应力等效分布后,推导了预制UHPC-RAC组合梁的受弯承载力计算公式,计算结果与试验值吻合较好。

     

    Abstract: Ultra-high performance concrete (UHPC) and recycled aggregate concrete (RAC), with a low carbon footprint, belong to the "Low Carbon Concrete". A portion of RAC on the tensile side or side wall of the RAC beam was replaced with UHPC to form a "green and low carbon" UHPC-RAC composite section to improve mechanical pro-perties. The precast UHPC-RAC composite beam was fabricated by precast technology. The influences of tensile UHPC thickness, roughness of UHPC-RAC joint surface and UHPC height of side wall on failure mechanism, bearing capacity, deformation and initial stiffness of precast UHPC-RAC composite beams were analyzed by four-point flexural tests, then the calculation formula of bearing capacity were proposed. The results show that, comparing precast UHPC-RAC composite beams with RAC beams, the UHPC-RAC bonding surface traversed by the stirrups with the increase of UHPC thickness on the tensile side limits the peeling off of UHPC after cracking. The increasing roughness of the interface further retards the extension of horizontal cracks and improves the initial stiffness about 16.6%. With the failure of steel fiber pulling out in the UHPC on the tensile side, the load-displacement curves decrease obviously. The precast composite beams still have a high residual strength when the compression concrete is crushed. Compared with RAC beams, the cracking load and ultimate load of precast UHPC-RAC composite beams are increased by 63.1% and 22.9%, respectively, and the section flexural stiffness and initial stiffness are signifi-cantly improved. In the composite section, reinforcement, UHPC and RAC work collaboratively, and the strain changes linearly along the section height, conforming to the assumption of plain section. After equivalent section stress distribution, the calculation formula of the bending capacity of the precast UHPC-RAC composite beams is deduced, and the calculated results are in good agreement with the experimental values.

     

  • 图  1   预制组合梁的设计图

    Figure  1.   Design drawing of the precast composite beams

    图  2   UHPC与RAC结合面设计

    Figure  2.   Surface design between UHPC and RAC

    图  3   预制组合梁的加载设计

    Figure  3.   Loading design of the precast composite beams

    图  4   预制组合梁侧面和底面裂缝形态

    Figure  4.   Crack morphologies on the side and bottom of the precast composite beams

    图  5   预制组合梁的表面应变云图

    Figure  5.   Surface strain cloud map of the precast composite beams

    The left fulcrum of the prefabricated composite beam is the starting point and the coordinate is 0 mm; and the right fulcrum is the end point and the coordinate is 2000 mm; The coordinates 500 mm to 1500 mm are pure curved areas

    图  6   预制组合梁纯弯区的典型破坏形态

    Figure  6.   Typical failure patterns in the pure bending zone of the precast composite beams

    图  7   预制组合梁的荷载-位移曲线

    Figure  7.   Load-displacement curves of the precast composite beams

    图  8   不同因素影响下预制组合梁的初始刚度

    Figure  8.   Initial stiffness of the precast composite beam effecting by different factors

    图  9   不同因素影响下预制组合梁跨中纯弯区的竖向变形

    Figure  9.   Vertical deformation of the pure bending zone in the span of precast composite beam effecting by different factors

    图  10   预制组合梁表面RAC/UHPC的应变

    Figure  10.   Strain of RAC/UHPC on the precast composite beam surface

    图  11   沿截面高度RAC/UHPC的应变对比

    Figure  11.   Comparison of RAC/UHPC strain along section height

    图  12   预制组合梁的受拉钢筋应变

    Figure  12.   Tensile reinforcement strain of the precast composite beams

    图  13   预制组合梁的延性系数

    Figure  13.   Ductility factor of the precast composite beams

    图  14   不同受拉UHPC厚度预制组合梁的应力-应变分布:(a) 截面;(b) 截面应变;(c) 截面应力

    Figure  14.   Stress-strain distribution of prefabricated composite beams with different tensile UHPC thicknesses: (a) Section; (b) Strain distribution of section; (c) Stress distribution of section

    h—Cross section height; b—Cross section width; ht—Height of tensile zone; h0—Section effective height; hu—Thickness of UHPC on tensile side; xn—Actual height of compression zone; as—Distance from resultant force point of tensile reinforcement to edge of tensile zone; Ast—Section area of tensile reinforcement; εcu—Ultimate compressive strain of RAC; εut—Tensile strain of UHPC; εs—Tensile strain of tensile reinforcement; αc1 and βc1—Characteristic parameters of equivalent rectangular stress pattern about RAC; fcc—Axial compressive strength of RAC; fy—Yield strength of the reinforcement; fut—Tensile strength of UHPC; Ccc—Pressure of RAC; Tst—Tensile force of the reinforcement; Tu1—Tensile force of the UHPC on the tensile side; Mu—Ultimate bending moment of the combined section

    图  15   U型预制组合梁的应力-应变分布:(a) 截面;(b) 截面应变;(c) RAC截面应力;(d) UHPC截面应力

    Figure  15.   Stress-strain distribution of U-shaped precast composite beams: (a) Section; (b) Strain distribution of section; (c) Stress distribution of section of RAC; (d) Stress distribution of section of UHPC

    bf—Width of side wall UHPC; εut,0—Peak tensile strain of UHPC; εu0—Peak compressive strain of UHPC; εc0—Peak compressive strain of RAC; εut,p—Ultimate tensile strain of UHPC; σut,p—Ultimate Stress of UHPC; λ—Ratio of εut,p to εcu; fuc—Axial compressive strength of UHPC; Cuc—Pressure of UHPC; Tu2—Tensile force of the side wall UHPC as plastic state; Tu3—Tensile force of the side wall UHPC as elastic state; Mcu—Ultimate bending moment obtaining from RAC and reinforcements; Muu—Ultimate bending moment obtaining from tensile UHPC and compressive UHPC; λxn—Height of the elastic phase of concrete; εcu—Ultimate compressive strain of RAC; αu1—Ratio of the stress value of the UHPC rectangular stress diagram in the compression zone to the design value of the UHPC axial compressive strength; βu1—Influence coefficient of UHPC strength.

    图  16   浅U型预制组合梁的应力-应变分布:(a) 截面;(b) 截面应变;(c) RAC截面应力;(d) UHPC截面应力

    Figure  16.   Stress-strain distribution of shallow U-shaped prefabricated composite beams: (a) Section; (b) Strain distribution of section; (c) Stress distribution of section about RAC; (d) Stress distribution of section about UHPC

    hu1—Height of the side wall UHPC as plastic state

    表  1   再生混凝土(RAC)的配合比

    Table  1   Mixture ratio of recycled aggregate concrete (RAC) kg/m3

    Recycled coarse aggregate
    replacement ratio
    Water cement ratioCementCoarse aggregateSandWater
    NaturalRegeneration
    50%0.42488.1570.99570.99614.92227.84
    下载: 导出CSV

    表  2   RAC、超高性能混凝土(UHPC)和受拉钢筋力学性能

    Table  2   Mechanical properties of RAC, ultra-high performance concrete (UHPC) and tensile reinforcements MPa

    Material categoriesCompressive strengthTensile strengthMaterial categoriesYield strengthUltimate strength
    RAC37.9Tensile
    reinforcement
    473.4603.4
    UHPC1139.70
    下载: 导出CSV

    表  3   预制组合梁的设计参数

    Table  3   Design parameters of the precast composite beams

    Specimen numberUHPCLongitudinal barStirrupRoughness/mm
    Tensile thickness/mmSide wall height/mm
    RAC-B13C14C8@100
    UHPC13-RAC/S/T-B2133C14
    UHPC21/S-RAC/T-B3213C14
    UHPC35/S/T-RAC-B4353C14
    UHPC35/S/T-I2-RAC-B5353C142.0
    UHPC35/S/T-I4-RAC-B6353C144.0
    UHPC35/S/T-RAC-B7351603C14
    UHPC35/S/T-RAC-B8353003C14
    Notes: S—Stirrups; T—Tensile reinforcements; / —S or T locates in RAC or UHPC; I—UHPC-RAC interface.
    下载: 导出CSV

    表  4   预制组合梁的受弯性能参数

    Table  4   Flexural performance parameters of the precast composite beams

    Specimen numberFcr/kNδcr/mmFy/kNδy/mmFu/kNδu/mmK/(kN·mm-1)μFcu/kNFu/Fcu
    RAC-B146.63.2230.199.78270.424.7322.442.53273.910.99
    UHPC13-RAC/S/T-B273.24.2262.2210.34316.227.3323.512.64296.621.07
    UHPC21/S-RAC/T-B376.83.6264.4410.67300.227.6825.052.59311.070.97
    UHPC35/S/T-RAC-B472.24.8287.3611.18335.824.9725.282.23330.891.01
    UHPC35/S/T-I2-RAC-B575.64.4238.449.39318.420.1325.492.14330.890.96
    UHPC35/S/T-I4-RAC-B678.83.0280.799.45326.820.8226.172.21330.890.99
    UHPC35/S/T-RAC-B775.24.8290.6210.95361.228.2426.512.57353.841.02
    UHPC35/S/T-RAC-B880.24.0288.6210.73366.829.8126.822.78394.580.93
    Notes: Fcr—Cracking load; Fy—Yielding load; Fu—Ultimate load; δcr—Cracking displacement; δy—Yielding displacement; δu—Ultimate displacement; K—Initial stiffness; μ—Ductility factor; Fcu—Calculated value.
    下载: 导出CSV
  • [1]

    HUNG C C, EL-TAWIL S, CHAO S H. A review of developments and challenges for UHPC in structural engineering: Behavior, analysis, and design[J]. Journal of Structural Engineering,2021,147(9):03121001. DOI: 10.1061/(ASCE)ST.1943-541X.0003073

    [2] 丁超, 贾子杰, 王振华, 等. 基于生命周期评价的UHPC碳排放控制潜力评估[J]. 硅酸盐通报, 2023, 42(4):1242-1251. DOI: 10.3969/j.issn.1001-1625.2023.4.gsytb202304012

    DING Chao, JIA Zijie, WANG Zhenhua, et al. UHPC carbon emission control potential based on life cycle assessment[J]. Bulletin of the Chinese Ceramic Society,2023,42(4):1242-1251(in Chinese). DOI: 10.3969/j.issn.1001-1625.2023.4.gsytb202304012

    [3]

    HABEL K, DENARIE E, BRUHWILER E. Experimental investigation of composite ultra-high-performance fiber-reinforced concrete and conventional concrete members[J]. ACI Structural Journal,2007,104:93-101.

    [4]

    SPYRIDON A P, ANDREAS P L, OURANIA T. Experimental and numerical study of the performance of ultra-high performance fiber reinforced concrete for the flexural strengthening of full scale reinforced concrete members[J]. Construction and Building Materials,2018,186:351-366. DOI: 10.1016/j.conbuildmat.2018.07.123

    [5]

    SPYRIDON A P, ANDREAS P L. Developments in the use of ultra-high performance fiber reinforced concrete as strengthening material[J]. Engineering Structures,2021,233:1-15.

    [6]

    AL-OSTA M A, ISA M N, BALUCH M H, et al. Flexural behavior of reinforced concrete beams strengthened with ultra-high performance fiber reinforced concrete[J]. Construction and Building Materials,2017,134(3):279-296.

    [7] 梁兴文, 汪萍, 徐明雪, 等. 免拆UHPC模板RC梁受弯性能试验及承载力分析[J]. 工程力学, 2019, 36(9):95-107.

    LIANG Xingwen, WANG Ping, XU Mingxue, et al. Flexural behavior and capacity analysis of RC beams with perma-nent UHPC formwork[J]. Engineering Mechanics,2019,36(9):95-107(in Chinese).

    [8] 李雪峰, 孟帅, 杜晓庆. UHPC加固混凝土梁的抗弯承载力计算[J]. 工程抗震与加固改造, 2022, 44(2):151-157, 171. DOI: 10.16226/j.issn.1002-8412.2022.02.019

    LI Xuefeng, MENG Shuai, DU Xiaoqing. Calculation of flexural capacity of reinforced concrete beams with UHPC[J]. Earthquake Resistant Engineering and Retrofitting,2022,44(2):151-157, 171(in Chinese). DOI: 10.16226/j.issn.1002-8412.2022.02.019

    [9] 刘超, 孙启鑫, 邹宇罡. 超高性能混凝土-混凝土组合简支梁弯曲性能试验[J]. 同济大学学报(自然科学版), 2020, 48(5):664-672. DOI: 10.11908/j.issn.0253-374x.19256

    LIU Chao, SUN Qixin, ZOU Yugang. Experimental study on bending performance of ultra-high performance concrete-normal concrete composite simply supported beam[J]. Journal of Tongji University (Natural Science),2020,48(5):664-672(in Chinese). DOI: 10.11908/j.issn.0253-374x.19256

    [10] 白国良, 秦朝刚, 张玉, 等. 再生混凝土梁长期受荷时随变形计算方法研究[J]. 土木工程学报, 2016, 49(12):1-8. DOI: 10.15951/j.tmgcxb.2016.12.001

    BAI Guoliang, QIN Chaogang, ZHANG Yu, et al. Time-dependent calculation method for the long-term deformation of recycled aggregate concrete beams[J]. China Civil Engineering Journal,2016,49(12):1-8(in Chinese). DOI: 10.15951/j.tmgcxb.2016.12.001

    [11] 曹万林, 肖建庄, 叶涛萍, 等. 钢筋再生混凝土结构研究进展及其工程应用[J]. 建筑结构学报, 2020, 41(12):1-16. DOI: 10.14006/j.jzjgxb.2019.0551

    CAO Wanlin, XIAO Jianzhuang, YE Taoping, et al. Research progress and engineering application of reinforced recycled aggregate concrete structure[J]. Journal of Building Structures,2020,41(12):1-16(in Chinese). DOI: 10.14006/j.jzjgxb.2019.0551

    [12] 王雅思, 郑建岚, 游帆. 再生骨料强化方法研究进展[J]. 材料导报, 2021, 35(5):5053-5061. DOI: 10.11896/cldb.19080080

    WANG Yasi, ZHENG Jianlan, YOU Fan. Review on enhancement methods of recycled aggregate[J]. Materials Reports,2021,35(5):5053-5061(in Chinese). DOI: 10.11896/cldb.19080080

    [13] 马昆林, 刘建, 申景涛, 等. 骨料强化方法对再生混凝土多界面过渡区微观结构的影响[J]. 铁道科学与工程学报, 2023, 20(10): 3809-3819.

    MA Kunlin, LIU Jian, SHEN Jingtao, et al. Influence of aggregate enhancement methods on the microstructure of multiple ITZs in recycled concrete[J]. Journal of Railway Science and Engineering, 2023, 20(10): 3809-3819(in Chinese).

    [14] 王佃超, 肖建庄, 夏冰, 等. 再生骨料碳化改性及其减碳贡献分析[J]. 同济大学学报(自然科学版), 2022, 50(11):1610-1619. DOI: 10.11908/j.issn.0253-374x.21366

    WANG Dianchao, XIAO Jianzhuang, XIA Bing, et al. Carbonation modification of recycled aggregate and carbon dioxide sequestration analysis[J]. Journal of Tongji University (Natural Science),2022,50(11):1610-1619(in Chinese). DOI: 10.11908/j.issn.0253-374x.21366

    [15] 肖建庄, 姜兴汉, 黄一杰, 等. 半预制再生混凝土构件受力性能试验[J]. 土木工程学报, 2013, 46(5):99-104. DOI: 10.15951/j.tmgcxb.2013.05.023

    XIAO Jianzhuang, JIANG Xinghan, HUANG Yijie, et al. Test on the mechanical behavior of semi-precast recycled concrete elements[J]. China Civil Engineering Journal,2013,46(5):99-104(in Chinese). DOI: 10.15951/j.tmgcxb.2013.05.023

    [16] 肖建庄, 蓝启彬, 张青天, 等. 组合再生混凝土及其衍生结构的应用及展望[J]. 建筑科学与工程学报, 2023, 40(1): 1-13.

    XIAO Jianzhuang, LAN Qibin, ZHANG Qingtian, et al. Application and prospect of composite recycled concrete and its derived structures[J]. Journal of Architecture and Civil Engineering, 2023, 40(1): 1-13(in Chinese).

    [17] 王俊辉, 黄悦, 杨国涛, 等. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(S1):278-286.

    WANG Junhui, HUANG Yue, YANG Guotao, et al. Research progress on compressive properties of recycled aggregate concrete[J]. Materials Reports,2022,36(S1):278-286(in Chinese).

    [18] 中华人民共和国住房和城乡建设部. 混凝土用再生粗骨料: GB/T 25177—2010[S]. 北京: 中国标准出版社, 2010.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Recycled coarse aggregate for concrete: GB/T 25177—2010[S]. Beijing: China Standards Press, 2010(in Chinese).

    [19] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2010.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of concrete structures: GB 50010—2010[S]. Beijing: China Architecture & Industry Press, 2010(in Chinese).

    [20]

    ZHANG P, SHANG J Q, LIU Y, et al. Flexural behavior of GFRP bar-reinforced concrete beams with U-shaped UHPC stay-in-place formworks[J]. Journal of Building Engineering,2022,45:103403. DOI: 10.1016/j.jobe.2021.103403

    [21] 何肖云峰. UHPC-NSC圆形截面组合短柱轴压力学性能试验研究[D]. 成都: 西南交通大学, 2021.

    HE Xiaoyunfeng. Experimental study on axial compressive performance of UHPC-NSC circular section composite short column[D]. Chengdu: Southwest Jiaotong University, 2021(in Chinese).

    [22] 熊二刚, 巩忠文, 罗佳明, 等. 基于数字图像相关技术的钢筋混凝土梁裂缝试验[J]. 吉林大学学报(工学版), 2023, 53(4):1094-1104. DOI: 10.13229/j.cnki.jdxbgxb.20210849

    XIONG Ergang, GONG Zhongwen, LUO Jiaming, et al. Experiment on cracks in reinforced concrete beams based on digital correlation technology[J]. Journal of Jilin University (Engineering and Technology Edition),2023,53(4):1094-1104(in Chinese). DOI: 10.13229/j.cnki.jdxbgxb.20210849

    [23] 景明龙. 基于遗传优化BP网络的再生混凝土正截面计算模式研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.

    JING Minglong. The study of normal section calculation models of recycled concrete based on GA optimizing BP neural network[D]. Harbin: Harbin Institute of Technology, 2011(in Chinese).

    [24]

    SINGH M, SHEIKH A H, ALI M, et al. Experimental and numerical study of the flexural behaviour of ultra-high performance fibre reinforced concrete beams[J]. Construction & Building Materials,2017,138(5):12-25.

    [25] 赵继之, 辛公锋, 陶慕轩, 等. 超高性能混凝土单轴拉、压循环作用下力学性能及其本构模型研究[J/OL]. 工程力学: 1-13[2023-06-25]. .

    ZHAO Jizhi, XIN Gongfeng, TAO Muxuan, et al. Mechanical properties and constitutive model of ultra-high performance concrete material under uniaxial tension and compression cycles [J/OL]. Engineering Mechanics, 1-13. [2023-06-25]. (in Chinese).

    [26]

    KHALIL W, AL-HASSANI H, DANHA L S. Prediction of the nominal bending moment capacity for plain and singly reinforced rectangular RPC beam sections[J]. Engineering & Technology Journal, Part (A),2015,33(5):1113-1130.

    [27]

    ABRISHAMBAF A, PIMENTEL M, NUNES S. Influence of fibre orientation on the tensile behaviour of ultra-high performance fibre reinforced cementitious composites[J]. Cement and Concrete Research,2017,97:28-40. DOI: 10.1016/j.cemconres.2017.03.007

    [28] 胡琼, 严佳川, 邹超英. 再生混凝土梁正截面受弯承载力计算模式研究[J]. 四川大学学报(工程科学版), 2009, 41(3):195-201. DOI: 10.15961/j.jsuese.2009.03.033

    HU Qiong, YAN Jiachuan, ZOU Chaoying. Calculation model of flexural capacity of normal section of the recycled concrete beams[J]. Journal of Sichuan University (Engineering Science edition),2009,41(3):195-201(in Chinese). DOI: 10.15961/j.jsuese.2009.03.033

    [29] 徐明雪, 梁兴文, 汪萍, 等. 超高性能混凝土梁正截面受弯承载力理论研究[J]. 工程力学, 2019, 36(8):70-78. DOI: 10.6052/j.issn.1000-4750.2018.06.0307

    XU Mingxue, LIANG Xingwen, WANG Ping, et al. Theoreti-cal investigation on normal section flexural capacity of UHPC beams[J]. Engineering Mechanics,2019,36(8):70-78(in Chinese). DOI: 10.6052/j.issn.1000-4750.2018.06.0307

  • 目的 

    超高性能混凝土(Ultra-high Performance Concrete,UHPC)和再生混凝土(Recycled Aggregate Concrete,RAC),碳足迹低,属于“低碳混凝土”,合理的优化设计,可以实现工程固碳。在装配式混凝土结构领域,用预制工艺,将再生混凝土梁受拉侧或侧壁的部分RAC用UHPC替换,形成“绿色低碳”的UHPC-RAC组合截面,以提高承载力、延性和耐久性。本文创新设计了预制UHPC-RAC组合梁,通过四分点抗弯性能试验,研究了预制组合梁的受弯性能退化规律,并推导了受弯承载力计算公式。

    方法 

    在RAC梁中,用UHPC替换截面内受拉侧或侧壁的部分RAC后,考虑受拉UHPC厚度、UHPC-RAC结合面粗糙度和侧壁UHPC高度三个变量,采用预制工艺,制作了1根RAC梁和7根预制UHPC-RAC组合梁,采用200T微机控制电液伺服压力试验机,完成了预制UHPC-RAC组合梁的四分点抗弯性能试验。加载全过程中,通过钢筋应变片、混凝土应变片,分析了组合截面各部分材料的应力应变,采用电子位移计记录了跨中和梁端的竖向变形,并通过DIC技术追踪了试件表面裂缝的发生及延展规律。根据测试数据,研究了预制UHPC-RAC组合梁的破坏形态,承载力、变形、初始刚度和延性系数等抗弯性能的变化规律;通过合理假定,基于组合截面平衡条件,推导了预制UHPC-RAC组合梁的受弯承载力计算公式。

    结果 

    采用预制工艺,UHPC与RAC可以形成组合截面,改善了RAC梁的正截面受弯性能。与RAC梁相比,除纯弯区竖向弯曲裂缝外,预制UHPC-RAC组合梁受拉侧的UHPC与RAC结合面形成典型水平裂缝,但箍筋几何尺寸保持不变,随受拉UHPC厚度的增加,在UHPC与RAC粘结部位形成穿筋结合面,限制了开裂后受拉UHPC的剥离脱落;而增加结合面的粗糙度,能进一步阻滞水平裂缝的延展,初始刚度可提高16.6%。预制组合截面中受拉UHPC厚度和侧壁UHPC高度,可以显著提高RAC梁的特征点荷载值,其中开裂荷载和极限荷载,分别增加63.1%和22.9%;随受拉UHPC钢纤维拔出失效,极限荷载后,预制UHPC-RAC组合梁的荷载-位移曲线下降明显,待再生混凝土压溃后,仍有较高的残余强度。此外,组合截面的抗弯刚度、初始刚度均得到明显改善,而构件的延性系数变化较小。预制UHPC-RAC组合梁内钢筋、UHPC和RAC的应变沿截面高度线性变化,基本符合平截面假定;各部分材料共同受力,协同变形,尤其是受拉钢筋与UHPC粘结可靠,与内部钢纤维共同承担拉应力;基于试验研究及合理假定,依据材料的本构模型,将截面内拉、压区的应力分布等效分布后,按照截面内力平衡条件,推导了预制UHPC-RAC组合梁的受弯承载力计算公式,计算结果与试验值吻合较好。

    结论 

    在装配式混凝土结构领域,“绿色低碳”的UHPC与RAC能有效结合,组成的预制UHPC-RAC组合梁,具有良好的承载力和变形性能。本文揭示了预制UHPC-RAC组合梁的受弯破坏机理,分析了承载力、变形、初始刚度和延性系数等受弯性能参数,建立了预制UHPC-RAC组合梁的受弯承载力计算公式。基于此,进一步探索预制UHPC-RAC组合柱、预制UHPC-RAC组合节点的性能研究,为实现工程固碳提供新思路。

  • 超高性能混凝土(UHPC)与再生混凝土(RAC)碳足迹低,属于“低碳混凝土”,同时RAC中再生粗骨料的CO2强化反应,可以实现工程固碳。因此,提出用预制工艺,将性能相似、优势互补的UHPC与RAC组合设计,形成性能良好的预制构件,以创新构型设计技术,实现装配式结构固碳。

    本文以受拉UHPC厚度、UHPC-RAC结合面粗糙度和侧壁UHPC高度为参数,设计了预制UHPC-RAC组合梁,通过四分点抗弯性能试验,分析了预制组合梁的破坏机理、承载力与变形,提出了承载力计算公式。研究表明:UHPC与RAC可以有效组合,成型的组合截面内UHPC、RAC和钢筋协同工作,提高了开裂荷载、屈服荷载和极限荷载及相应的变形,初始刚度得到提高。其次,UHPC与RAC结合面产生的水平裂缝,降低了构件力学性能,但UHPC厚度增加,箍筋贯穿结合面,加之结合面矩形键槽,阻滞了裂缝发展和UHPC剥离,提高了组合截面的整体性。最后,组合截面内UHPC、RAC和钢筋的应变线性变化,符合平截面假定,建立了预制组合梁的受弯承载力理论计算公式,计算结果与试验值吻合较好。因此,适应预制工艺的UHPC与RAC组合构造技术,保证了预制UHPC-RAC组合梁的受力性能,建立的理论计算公式,可用于静力设计。

    Load-displacement curve of the precast composite beams

    Tensile reinforcement strain of the precast composite beams

图(16)  /  表(4)
计量
  • 文章访问数:  695
  • HTML全文浏览量:  501
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-07
  • 修回日期:  2023-06-14
  • 录用日期:  2023-06-22
  • 网络出版日期:  2023-07-04
  • 刊出日期:  2024-02-29

目录

    /

    返回文章
    返回