留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预制UHPC-RAC组合梁受弯性能试验与理论计算

秦朝刚 吴涛 刘伯权 王博 李寓

秦朝刚, 吴涛, 刘伯权, 等. 预制UHPC-RAC组合梁受弯性能试验与理论计算[J]. 复合材料学报, 2024, 41(3): 1420-1435. doi: 10.13801/j.cnki.fhclxb.20230704.001
引用本文: 秦朝刚, 吴涛, 刘伯权, 等. 预制UHPC-RAC组合梁受弯性能试验与理论计算[J]. 复合材料学报, 2024, 41(3): 1420-1435. doi: 10.13801/j.cnki.fhclxb.20230704.001
QIN Chaogang, WU Tao, LIU Boquan, et al. Experimental and theoretical study on flexural behavior of precast UHPC-RAC composite beams[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1420-1435. doi: 10.13801/j.cnki.fhclxb.20230704.001
Citation: QIN Chaogang, WU Tao, LIU Boquan, et al. Experimental and theoretical study on flexural behavior of precast UHPC-RAC composite beams[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1420-1435. doi: 10.13801/j.cnki.fhclxb.20230704.001

预制UHPC-RAC组合梁受弯性能试验与理论计算

doi: 10.13801/j.cnki.fhclxb.20230704.001
基金项目: 中国博士后科学基金资助项目(2021T140587;2019M660051XB);陕西省自然科学基础研究计划项目(2023-JC-YB-326);长安大学中央高校基本科研业务费高新技术项目(300102282208)
详细信息
    通讯作者:

    秦朝刚,博士研究生,副教授,硕士生导师,研究方向为新型装配式混凝土结构 E-mail:qinchaogang@chd.edu.cn

  • 中图分类号: TU375.1;TB333

Experimental and theoretical study on flexural behavior of precast UHPC-RAC composite beams

Funds: China Postdoctoral Science Foundation (2021T140587; 2019M660051XB); Natural Science Foundation of Shaanxi Province (2023-JC-YB-326); Fundamental Research Funds for the Central Universities, CHD (300102282208)
  • 摘要: 超高性能混凝土(Ultra-high performance concrete,UHPC)和再生混凝土(Recycled aggregate concrete,RAC),碳足迹低,属于“低碳混凝土”。将再生混凝土梁受拉侧或侧壁的部分RAC用UHPC替换,形成“绿色低碳”UHPC-RAC组合截面,以提高力学性能。采用工厂预制工艺,制作了预制UHPC-RAC组合梁。通过四分点抗弯性能试验,分析了受拉UHPC厚度、UHPC-RAC结合面粗糙度和侧壁UHPC高度,对预制UHPC-RAC组合梁破坏机制、承载力、变形和初始刚度的影响规律,提出了承载力计算公式。研究表明:与RAC梁相比,预制UHPC-RAC组合梁随受拉UHPC厚度的增加,形成的UHPC-RAC穿筋结合面,限制了开裂后UHPC剥离脱落;增加界面粗糙度,阻滞了水平裂缝的延展,初始刚度可提高16.6%;随受拉UHPC钢纤维拔出,荷载-位移曲线下降明显,待再生混凝土压溃后,仍有较高的残余强度。预制UHPC-RAC组合梁的开裂荷载和极限荷载,分别增加63.1%和22.9%,截面抗弯刚度、初始刚度均得到明显改善。组合截面内钢筋、UHPC和RAC协同受力,应变沿截面高度线性变化,符合平截面假定;将截面应力等效分布后,推导了预制UHPC-RAC组合梁的受弯承载力计算公式,计算结果与试验值吻合较好。

     

  • 图  1  预制组合梁的设计图

    Figure  1.  Design drawing of the precast composite beams

    图  2  UHPC与RAC结合面设计

    Figure  2.  Surface design between UHPC and RAC

    图  3  预制组合梁的加载设计

    Figure  3.  Loading design of the precast composite beams

    图  4  预制组合梁侧面和底面裂缝形态

    Figure  4.  Crack morphologies on the side and bottom of the precast composite beams

    图  5  预制组合梁的表面应变云图

    Figure  5.  Surface strain cloud map of the precast composite beams

    The left fulcrum of the prefabricated composite beam is the starting point and the coordinate is 0 mm; and the right fulcrum is the end point and the coordinate is 2000 mm; The coordinates 500 mm to 1500 mm are pure curved areas

    图  6  预制组合梁纯弯区的典型破坏形态

    Figure  6.  Typical failure patterns in the pure bending zone of the precast composite beams

    图  7  预制组合梁的荷载-位移曲线

    Figure  7.  Load-displacement curves of the precast composite beams

    图  8  不同因素影响下预制组合梁的初始刚度

    Figure  8.  Initial stiffness of the precast composite beam effecting by different factors

    图  9  不同因素影响下预制组合梁跨中纯弯区的竖向变形

    Figure  9.  Vertical deformation of the pure bending zone in the span of precast composite beam effecting by different factors

    图  10  预制组合梁表面RAC/UHPC的应变

    Figure  10.  Strain of RAC/UHPC on the precast composite beam surface

    图  11  沿截面高度RAC/UHPC的应变对比

    Figure  11.  Comparison of RAC/UHPC strain along section height

    图  12  预制组合梁的受拉钢筋应变

    Figure  12.  Tensile reinforcement strain of the precast composite beams

    图  13  预制组合梁的延性系数

    Figure  13.  Ductility factor of the precast composite beams

    图  14  不同受拉UHPC厚度预制组合梁的应力-应变分布:(a) 截面;(b) 截面应变;(c) 截面应力

    Figure  14.  Stress-strain distribution of prefabricated composite beams with different tensile UHPC thicknesses: (a) Section; (b) Strain distribution of section; (c) Stress distribution of section

    h—Cross section height; b—Cross section width; ht—Height of tensile zone; h0—Section effective height; hu—Thickness of UHPC on tensile side; xn—Actual height of compression zone; as—Distance from resultant force point of tensile reinforcement to edge of tensile zone; Ast—Section area of tensile reinforcement; εcu—Ultimate compressive strain of RAC; εut—Tensile strain of UHPC; εs—Tensile strain of tensile reinforcement; αc1 and βc1—Characteristic parameters of equivalent rectangular stress pattern about RAC; fcc—Axial compressive strength of RAC; fy—Yield strength of the reinforcement; fut—Tensile strength of UHPC; Ccc—Pressure of RAC; Tst—Tensile force of the reinforcement; Tu1—Tensile force of the UHPC on the tensile side; Mu—Ultimate bending moment of the combined section

    图  15  U型预制组合梁的应力-应变分布:(a) 截面;(b) 截面应变;(c) RAC截面应力;(d) UHPC截面应力

    Figure  15.  Stress-strain distribution of U-shaped precast composite beams: (a) Section; (b) Strain distribution of section; (c) Stress distribution of section of RAC; (d) Stress distribution of section of UHPC

    bf—Width of side wall UHPC; εut,0—Peak tensile strain of UHPC; εu0—Peak compressive strain of UHPC; εc0—Peak compressive strain of RAC; εut,p—Ultimate tensile strain of UHPC; σut,p—Ultimate Stress of UHPC; λ—Ratio of εut,p to εcu; fuc—Axial compressive strength of UHPC; Cuc—Pressure of UHPC; Tu2—Tensile force of the side wall UHPC as plastic state; Tu3—Tensile force of the side wall UHPC as elastic state; Mcu—Ultimate bending moment obtaining from RAC and reinforcements; Muu—Ultimate bending moment obtaining from tensile UHPC and compressive UHPC; λxn—Height of the elastic phase of concrete; εcu—Ultimate compressive strain of RAC; αu1—Ratio of the stress value of the UHPC rectangular stress diagram in the compression zone to the design value of the UHPC axial compressive strength; βu1—Influence coefficient of UHPC strength.

    图  16  浅U型预制组合梁的应力-应变分布:(a) 截面;(b) 截面应变;(c) RAC截面应力;(d) UHPC截面应力

    Figure  16.  Stress-strain distribution of shallow U-shaped prefabricated composite beams: (a) Section; (b) Strain distribution of section; (c) Stress distribution of section about RAC; (d) Stress distribution of section about UHPC

    hu1—Height of the side wall UHPC as plastic state

    表  1  再生混凝土(RAC)的配合比

    Table  1.   Mixture ratio of recycled aggregate concrete (RAC) kg/m3

    Recycled coarse aggregate
    replacement ratio
    Water cement ratioCementCoarse aggregateSandWater
    NaturalRegeneration
    50%0.42488.1570.99570.99614.92227.84
    下载: 导出CSV

    表  2  RAC、超高性能混凝土(UHPC)和受拉钢筋力学性能

    Table  2.   Mechanical properties of RAC, ultra-high performance concrete (UHPC) and tensile reinforcements MPa

    Material categoriesCompressive strengthTensile strengthMaterial categoriesYield strengthUltimate strength
    RAC37.9Tensile
    reinforcement
    473.4603.4
    UHPC1139.70
    下载: 导出CSV

    表  3  预制组合梁的设计参数

    Table  3.   Design parameters of the precast composite beams

    Specimen numberUHPCLongitudinal barStirrupRoughness/mm
    Tensile thickness/mmSide wall height/mm
    RAC-B13C14C8@100
    UHPC13-RAC/S/T-B2133C14
    UHPC21/S-RAC/T-B3213C14
    UHPC35/S/T-RAC-B4353C14
    UHPC35/S/T-I2-RAC-B5353C142.0
    UHPC35/S/T-I4-RAC-B6353C144.0
    UHPC35/S/T-RAC-B7351603C14
    UHPC35/S/T-RAC-B8353003C14
    Notes: S—Stirrups; T—Tensile reinforcements; / —S or T locates in RAC or UHPC; I—UHPC-RAC interface.
    下载: 导出CSV

    表  4  预制组合梁的受弯性能参数

    Table  4.   Flexural performance parameters of the precast composite beams

    Specimen numberFcr/kNδcr/mmFy/kNδy/mmFu/kNδu/mmK/(kN·mm-1)μ$ F_{\text{u}}^{\text{c}} $/kNFu/$ F_{\text{u}}^{\text{c}} $
    RAC-B146.63.2230.199.78270.424.7322.442.53273.910.99
    UHPC13-RAC/S/T-B273.24.2262.2210.34316.227.3323.512.64296.621.07
    UHPC21/S-RAC/T-B376.83.6264.4410.67300.227.6825.052.59311.070.97
    UHPC35/S/T-RAC-B472.24.8287.3611.18335.824.9725.282.23330.891.01
    UHPC35/S/T-I2-RAC-B575.64.4238.449.39318.420.1325.492.14330.890.96
    UHPC35/S/T-I4-RAC-B678.83.0280.799.45326.820.8226.172.21330.890.99
    UHPC35/S/T-RAC-B775.24.8290.6210.95361.228.2426.512.57353.841.02
    UHPC35/S/T-RAC-B880.24.0288.6210.73366.829.8126.822.78394.580.93
    Notes: Fcr—Cracking load; Fy—Yielding load; Fu—Ultimate load; δcr—Cracking displacement; δy—Yielding displacement; δu—Ultimate displacement; K—Initial stiffness; μ—Ductility factor; $ F_{\text{u}}^{\text{c}} $—Calculated value.
    下载: 导出CSV
  • [1] HUNG C C, EL-TAWIL S, CHAO S H. A review of developments and challenges for UHPC in structural engineering: Behavior, analysis, and design[J]. Journal of Structural Engineering,2021,147(9):03121001. doi: 10.1061/(ASCE)ST.1943-541X.0003073
    [2] 丁超, 贾子杰, 王振华, 等. 基于生命周期评价的UHPC碳排放控制潜力评估[J]. 硅酸盐通报, 2023, 42(4):1242-1251. doi: 10.3969/j.issn.1001-1625.2023.4.gsytb202304012

    DING Chao, JIA Zijie, WANG Zhenhua, et al. UHPC carbon emission control potential based on life cycle assessment[J]. Bulletin of the Chinese Ceramic Society,2023,42(4):1242-1251(in Chinese). doi: 10.3969/j.issn.1001-1625.2023.4.gsytb202304012
    [3] HABEL K, DENARIE E, BRUHWILER E. Experimental investigation of composite ultra-high-performance fiber-reinforced concrete and conventional concrete members[J]. ACI Structural Journal,2007,104:93-101.
    [4] SPYRIDON A P, ANDREAS P L, OURANIA T. Experimental and numerical study of the performance of ultra-high performance fiber reinforced concrete for the flexural strengthening of full scale reinforced concrete members[J]. Construction and Building Materials,2018,186:351-366. doi: 10.1016/j.conbuildmat.2018.07.123
    [5] SPYRIDON A P, ANDREAS P L. Developments in the use of ultra-high performance fiber reinforced concrete as strengthening material[J]. Engineering Structures,2021,233:1-15.
    [6] AL-OSTA M A, ISA M N, BALUCH M H, et al. Flexural behavior of reinforced concrete beams strengthened with ultra-high performance fiber reinforced concrete[J]. Construction and Building Materials,2017,134(3):279-296.
    [7] 梁兴文, 汪萍, 徐明雪, 等. 免拆UHPC模板RC梁受弯性能试验及承载力分析[J]. 工程力学, 2019, 36(9):95-107.

    LIANG Xingwen, WANG Ping, XU Mingxue, et al. Flexural behavior and capacity analysis of RC beams with perma-nent UHPC formwork[J]. Engineering Mechanics,2019,36(9):95-107(in Chinese).
    [8] 李雪峰, 孟帅, 杜晓庆. UHPC加固混凝土梁的抗弯承载力计算[J]. 工程抗震与加固改造, 2022, 44(2):151-157, 171. doi: 10.16226/j.issn.1002-8412.2022.02.019

    LI Xuefeng, MENG Shuai, DU Xiaoqing. Calculation of flexural capacity of reinforced concrete beams with UHPC[J]. Earthquake Resistant Engineering and Retrofitting,2022,44(2):151-157, 171(in Chinese). doi: 10.16226/j.issn.1002-8412.2022.02.019
    [9] 刘超, 孙启鑫, 邹宇罡. 超高性能混凝土-混凝土组合简支梁弯曲性能试验[J]. 同济大学学报(自然科学版), 2020, 48(5):664-672. doi: 10.11908/j.issn.0253-374x.19256

    LIU Chao, SUN Qixin, ZOU Yugang. Experimental study on bending performance of ultra-high performance concrete-normal concrete composite simply supported beam[J]. Journal of Tongji University (Natural Science),2020,48(5):664-672(in Chinese). doi: 10.11908/j.issn.0253-374x.19256
    [10] 白国良, 秦朝刚, 张玉, 等. 再生混凝土梁长期受荷时随变形计算方法研究[J]. 土木工程学报, 2016, 49(12):1-8. doi: 10.15951/j.tmgcxb.2016.12.001

    BAI Guoliang, QIN Chaogang, ZHANG Yu, et al. Time-dependent calculation method for the long-term deformation of recycled aggregate concrete beams[J]. China Civil Engineering Journal,2016,49(12):1-8(in Chinese). doi: 10.15951/j.tmgcxb.2016.12.001
    [11] 曹万林, 肖建庄, 叶涛萍, 等. 钢筋再生混凝土结构研究进展及其工程应用[J]. 建筑结构学报, 2020, 41(12):1-16. doi: 10.14006/j.jzjgxb.2019.0551

    CAO Wanlin, XIAO Jianzhuang, YE Taoping, et al. Research progress and engineering application of reinforced recycled aggregate concrete structure[J]. Journal of Building Structures,2020,41(12):1-16(in Chinese). doi: 10.14006/j.jzjgxb.2019.0551
    [12] 王雅思, 郑建岚, 游帆. 再生骨料强化方法研究进展[J]. 材料导报, 2021, 35(5):5053-5061. doi: 10.11896/cldb.19080080

    WANG Yasi, ZHENG Jianlan, YOU Fan. Review on enhancement methods of recycled aggregate[J]. Materials Reports,2021,35(5):5053-5061(in Chinese). doi: 10.11896/cldb.19080080
    [13] 马昆林, 刘建, 申景涛, 等. 骨料强化方法对再生混凝土多界面过渡区微观结构的影响[J]. 铁道科学与工程学报, 2023, 20(10): 3809-3819.

    MA Kunlin, LIU Jian, SHEN Jingtao, et al. Influence of aggregate enhancement methods on the microstructure of multiple ITZs in recycled concrete[J]. Journal of Railway Science and Engineering, 2023, 20(10): 3809-3819(in Chinese).
    [14] 王佃超, 肖建庄, 夏冰, 等. 再生骨料碳化改性及其减碳贡献分析[J]. 同济大学学报(自然科学版), 2022, 50(11):1610-1619. doi: 10.11908/j.issn.0253-374x.21366

    WANG Dianchao, XIAO Jianzhuang, XIA Bing, et al. Carbonation modification of recycled aggregate and carbon dioxide sequestration analysis[J]. Journal of Tongji University (Natural Science),2022,50(11):1610-1619(in Chinese). doi: 10.11908/j.issn.0253-374x.21366
    [15] 肖建庄, 姜兴汉, 黄一杰, 等. 半预制再生混凝土构件受力性能试验[J]. 土木工程学报, 2013, 46(5):99-104. doi: 10.15951/j.tmgcxb.2013.05.023

    XIAO Jianzhuang, JIANG Xinghan, HUANG Yijie, et al. Test on the mechanical behavior of semi-precast recycled concrete elements[J]. China Civil Engineering Journal,2013,46(5):99-104(in Chinese). doi: 10.15951/j.tmgcxb.2013.05.023
    [16] 肖建庄, 蓝启彬, 张青天, 等. 组合再生混凝土及其衍生结构的应用及展望[J]. 建筑科学与工程学报, 2023, 40(1): 1-13.

    XIAO Jianzhuang, LAN Qibin, ZHANG Qingtian, et al. Application and prospect of composite recycled concrete and its derived structures[J]. Journal of Architecture and Civil Engineering, 2023, 40(1): 1-13(in Chinese).
    [17] 王俊辉, 黄悦, 杨国涛, 等. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(S1):278-286.

    WANG Junhui, HUANG Yue, YANG Guotao, et al. Research progress on compressive properties of recycled aggregate concrete[J]. Materials Reports,2022,36(S1):278-286(in Chinese).
    [18] 中华人民共和国住房和城乡建设部. 混凝土用再生粗骨料: GB/T 25177—2010[S]. 北京: 中国标准出版社, 2010.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Recycled coarse aggregate for concrete: GB/T 25177—2010[S]. Beijing: China Standards Press, 2010(in Chinese).
    [19] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2010.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of concrete structures: GB 50010—2010[S]. Beijing: China Architecture & Industry Press, 2010(in Chinese).
    [20] ZHANG P, SHANG J Q, LIU Y, et al. Flexural behavior of GFRP bar-reinforced concrete beams with U-shaped UHPC stay-in-place formworks[J]. Journal of Building Engineering,2022,45:103403. doi: 10.1016/j.jobe.2021.103403
    [21] 何肖云峰. UHPC-NSC圆形截面组合短柱轴压力学性能试验研究[D]. 成都: 西南交通大学, 2021.

    HE Xiaoyunfeng. Experimental study on axial compressive performance of UHPC-NSC circular section composite short column[D]. Chengdu: Southwest Jiaotong University, 2021(in Chinese).
    [22] 熊二刚, 巩忠文, 罗佳明, 等. 基于数字图像相关技术的钢筋混凝土梁裂缝试验[J]. 吉林大学学报(工学版), 2023, 53(4):1094-1104. doi: 10.13229/j.cnki.jdxbgxb.20210849

    XIONG Ergang, GONG Zhongwen, LUO Jiaming, et al. Experiment on cracks in reinforced concrete beams based on digital correlation technology[J]. Journal of Jilin University (Engineering and Technology Edition),2023,53(4):1094-1104(in Chinese). doi: 10.13229/j.cnki.jdxbgxb.20210849
    [23] 景明龙. 基于遗传优化BP网络的再生混凝土正截面计算模式研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.

    JING Minglong. The study of normal section calculation models of recycled concrete based on GA optimizing BP neural network[D]. Harbin: Harbin Institute of Technology, 2011(in Chinese).
    [24] SINGH M, SHEIKH A H, ALI M, et al. Experimental and numerical study of the flexural behaviour of ultra-high performance fibre reinforced concrete beams[J]. Construction & Building Materials,2017,138(5):12-25.
    [25] 赵继之, 辛公锋, 陶慕轩, 等. 超高性能混凝土单轴拉、压循环作用下力学性能及其本构模型研究[J/OL]. 工程力学: 1-13[2023-06-25]. http://kns.cnki.net/kcms/detail/11.2595.o3.20221024.1437.108.html.

    ZHAO Jizhi, XIN Gongfeng, TAO Muxuan, et al. Mechanical properties and constitutive model of ultra-high performance concrete material under uniaxial tension and compression cycles [J/OL]. Engineering Mechanics, 1-13. [2023-06-25]. http://kns.cnki.net/kcms/detail/11.2595.o3.20221024.1437.108.html(in Chinese).
    [26] KHALIL W, AL-HASSANI H, DANHA L S. Prediction of the nominal bending moment capacity for plain and singly reinforced rectangular RPC beam sections[J]. Engineering & Technology Journal, Part (A),2015,33(5):1113-1130.
    [27] ABRISHAMBAF A, PIMENTEL M, NUNES S. Influence of fibre orientation on the tensile behaviour of ultra-high performance fibre reinforced cementitious composites[J]. Cement and Concrete Research,2017,97:28-40. doi: 10.1016/j.cemconres.2017.03.007
    [28] 胡琼, 严佳川, 邹超英. 再生混凝土梁正截面受弯承载力计算模式研究[J]. 四川大学学报(工程科学版), 2009, 41(3):195-201. doi: 10.15961/j.jsuese.2009.03.033

    HU Qiong, YAN Jiachuan, ZOU Chaoying. Calculation model of flexural capacity of normal section of the recycled concrete beams[J]. Journal of Sichuan University (Engineering Science edition),2009,41(3):195-201(in Chinese). doi: 10.15961/j.jsuese.2009.03.033
    [29] 徐明雪, 梁兴文, 汪萍, 等. 超高性能混凝土梁正截面受弯承载力理论研究[J]. 工程力学, 2019, 36(8):70-78. doi: 10.6052/j.issn.1000-4750.2018.06.0307

    XU Mingxue, LIANG Xingwen, WANG Ping, et al. Theoreti-cal investigation on normal section flexural capacity of UHPC beams[J]. Engineering Mechanics,2019,36(8):70-78(in Chinese). doi: 10.6052/j.issn.1000-4750.2018.06.0307
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  365
  • HTML全文浏览量:  279
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-08
  • 修回日期:  2023-06-15
  • 录用日期:  2023-06-23
  • 网络出版日期:  2023-07-05
  • 刊出日期:  2024-03-01

目录

    /

    返回文章
    返回