留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稀土氧化铈增强的钴基电解水催化材料及其性能

邱文婕 胡珍 周其洪 陈建 漆小鹏

邱文婕, 胡珍, 周其洪, 等. 稀土氧化铈增强的钴基电解水催化材料及其性能[J]. 复合材料学报, 2024, 41(2): 804-815. doi: 10.13801/j.cnki.fhclxb.20230703.003
引用本文: 邱文婕, 胡珍, 周其洪, 等. 稀土氧化铈增强的钴基电解水催化材料及其性能[J]. 复合材料学报, 2024, 41(2): 804-815. doi: 10.13801/j.cnki.fhclxb.20230703.003
QIU Wenjie, HU Zhen, ZHOU Qihong, et al. Rare earth cerium oxide reinforced cobalt based catalysts for electrolysed water and their properties[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 804-815. doi: 10.13801/j.cnki.fhclxb.20230703.003
Citation: QIU Wenjie, HU Zhen, ZHOU Qihong, et al. Rare earth cerium oxide reinforced cobalt based catalysts for electrolysed water and their properties[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 804-815. doi: 10.13801/j.cnki.fhclxb.20230703.003

稀土氧化铈增强的钴基电解水催化材料及其性能

doi: 10.13801/j.cnki.fhclxb.20230703.003
基金项目: 国家自然科学基金(22065015)
详细信息
    通讯作者:

    漆小鹏,博士,副教授,硕士生导师,研究方向为电解水催化材料 E-mail: qxpai@163.com

  • 中图分类号: TB331;TQ426

Rare earth cerium oxide reinforced cobalt based catalysts for electrolysed water and their properties

Funds: National Natural Science Foundation of China (22065015)
  • 摘要: 探索和开发高效且低成本的析氢反应(HER)和析氧反应(OER)电催化剂,对于解决能源危机和环境污染至关重要但仍具有挑战性。本文在三维的泡沫镍基底上设计并制备了一种由超薄的氧化铈和磷化钴纳米片组成的自支撑电极(CeO2-CoP/NF)。当电流密度为10 mA·cm−2时,CeO2-CoP/NF在1 mol/L KOH和0.5 mol/L H2SO4中的析氢过电位分别为124 mV和142 mV;CeO2-CoP/NF也能呈现优越的OER活性,电流密度为100 mA·cm−2时,在1 mol/L KOH中呈现的析氧过电位为328 mV,并且具有更优越的循环稳定性。实验结果表明:CeO2的引入能够减少电解液的侵蚀和提升CoP材料的电解水催化性能。这项工作为高性能的水裂解电催化剂的发展提供了新的见解。

     

  • 图  1  实验方案流程图

    NF—Nickel foam

    Figure  1.  Flow chart of experimental protocol

    图  2  ((a)~(c)) 氧化铈和磷化钴纳米片(CeO2-CoP/NF)的SEM图像;(d) CeO2-CoP/NF元素分布图:(e) P;(f) Co;(g) O;(h) Ce;(i) Ni

    Figure  2.  ((a)-(c)) SEM images of cerium oxide and cobalt phosphide nanosheets (CeO2-CoP/NF); (d) CeO2-CoP/NF elemental mappings: (e) P; (f) Co; (g) O ; (h) Ce ; (i) Ni

    图  3  CeO2/NF、CeO2-CoP/NF和CoP/NF的XRD图谱

    Figure  3.  XRD patterns of CeO2/NF, CeO2-CoP/NF and CoP/NF

    图  4  CeO2-CoP/NF的TEM图像 (a)、SAED图像(b)和HRTEM图像((c), (d))

    Figure  4.  TEM (a), SAED (b)和HRTEM ((c), (d)) images of CeO2-CoP/NF

    图  5  CoP/NF和CeO2-CoP/NF的XPS图谱:(a) Ce3d;(b) O1s;(c) Co2p;(d) P2p

    O1—Lattice O; O2—O defect; O3—Surface OH/O2

    Figure  5.  XPS spectra of CoP/NF and CeO2-CoP/NF: (a) Ce3d; (b) O1s; (c) Co2p; (d) P2p

    图  6  CeO2-CoP/NF、CoP/NF、CeO2/NF、Ce-Co precursor和NF的LSV曲线(a)及相对应的Tafel曲线(b)

    RHE—Reversible hydrogen electrode; j—Current density

    Figure  6.  LSV curves (a) and Tafel curves (b) of CeO2-CoP/NF, CoP/NF, CeO2/NF, Ce-Co precursor and NF

    图  7  (a) 在1 mol/L KOH的双电层电容(Cdl)曲线;(b)在1 mol/L中性磷酸盐缓冲盐水(PBS)的CV曲线;(c)在1 mol/L KOH 的转换频率(TOF)曲线;(d)循环稳定性测试

    Figure  7.  (a) Double layer capacitor (Cdl) curves at 1 mol/L KOH; (b) CV curve at 1 mol/L phosphate buffer saline (PBS); (c) Conversion frequency (TOF) curves at 1 mol/L KOH; (d) Cycle stability test

    图  8  CeO2-CoP/NF、CoP/NF、CeO2/NF、Ce-Co precursor和NF的OER反应的LSV曲线(a)和相对应在100 mA·cm−2下的过电位柱状图(b);(c) Tafel曲线;(d)循环稳定性测试

    Figure  8.  LSV curves (a) and the over-potential at 100 mA·cm−2 (b) of CeO2-CoP/NF, CoP/NF, CeO2/NF, Ce-Co precursor and NF;(c) Tafcl curve; (d) Cycle stability test

    图  9  CeO2-CoP/NF、CoP/NF、CeO2/NF、Ce-Co precursor 和NF的HER反应的LSV曲线(a)和相对应在10 mA·cm−2下的过电位柱状图(b);(c) Tafel曲线;(d)在0.5 mol/L H2SO4中的TOF曲线

    Figure  9.  LSV curves (a) and the over-potential at 10 mA·cm−2 (b) of CeO2-CoP/NF, CoP/NF, CeO2/NF, Ce-Co precursor and NF; (c) Tafel curves;(d) TOF curves at 0.5 mol/L H2SO4

    图  10  CeO2-CoP/NF在0.5 mol/L H2SO4Cdl曲线(a)和循环稳定性测试(b)

    Figure  10.  Cdl curves at 0.5 mol/L H2SO4 (a) and cycle stability test (b) of CeO2-CoP/NF

    图  11  (a) CeO2-CoP/NF在1 mol/L KOH中析氢反应(HER)反应持续48 h后的SEM图像;(b) CeO2-CoP/NF在1 mol/L KOH中析氧反应(OER)反应持续40 h后的SEM图像;(c) CeO2-CoP/NF在0.5 mol/L H2SO4中HER反应持续52 h后的SEM图像

    Figure  11.  (a) SEM image after hydrogen evolutionreaction (HER) of CeO2-CoP/NF in 1 mol/L KOH lasted for 48 h; (b) SEM image after oxygen evolution reaction (OER) of CeO2-CoP/NF in 1 mol/L KOH lasted for 40 h; (c) SEM image after HER reaction of CeO2-CoP/NF in 0.5 mol/L H2SO4 lasted for 52 h

    表  1  CeO2-CoP/NF与最近报道的代表性电催化剂的电化学性能进行对比

    Table  1.   Comparison of electrochemical performance of CeO2-CoP/NF with recently reported representative eletrocatalysts

    CatalyzerElectrolyteHEROERRef.
    Overpotential η10/mVTafel/(mV· dec−1)Overpotential η10/mVTafel/(mV· dec−1)
    CeO2-CoP/NF 1.0 mol/L KOH 124 62.54 328(η100) 50.85 This work
    CoTe2@NCNTFs 1.0 mol/L KOH 208 58.04 330 82.8 [28]
    Co2C-NPs 1.0 mol/L KOH 181 89 [29]
    CoO/Co(OH)2 1.0 mol/L KOH 195 142 340 52 [30]
    Co3N 1.0 mol/L KOH 230 101.6 330 70 [31]
    Co/CoO/CC 1.0 mol/L KOH 158 68.1 [32]
    Notes: η10 and η100—Overpotential at current density of 10 mA·cm−2 and 100 mA·cm−2; NCNTFs—Nitrogen-doped carbon nanotube frameworks; NPs—Nanoparticles; CC—Carbon cloth.
    下载: 导出CSV
  • [1] 徐诗皓. 过渡金属/碳基复合材料的制备及在电催化水分解中的应用[D]. 合肥: 中国科学技术大学, 2020.

    XU Shihao. Preparation of transition metal/carbon matrix composites and their application in electrocatalytic water splitting[D]. Hefei: University of Science and Technology of China, 2020(in Chinese).
    [2] 周赟, 王琼燕, 席生岐, 等. CoP3和CoSP3自支撑纳米线阵列的电催化析氢性能[J]. 中国科技论文, 2019, 14(4):353-357.

    ZHOU Yun, WANG Qiongyan, XI Shengqi, et al. Electrocatalytic hydrogen evolution performance of CoP3 and CoSP3 self supported nanowire arrays[J]. China Science Paper,2019,14(4):353-357(in Chinese).
    [3] DONG S, LI Y, ZHAO Z, et al. A review of the application of heterostructure catalysts in hydrogen evolution reaction[J]. ChemistrySelect,2022,7(14):2104041.
    [4] DU Y X, ZHOU Y T, ZHU M Z. Co-based MOF derived metal catalysts: From nano-level to atom-level[J]. Tungsten,2023,5(2):201-216. doi: 10.1007/s42864-022-00197-8
    [5] YUAN H, MEI J H, GONG Y N, et al. Cobalt-based heterogeneous catalysts for photocatalytic carbon dioxide reduction[J]. Tungsten, 2023(5): 201-216.
    [6] KIBSGAARD J, TSAI C, CHAN K, et al. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends[J]. Energy & Environmental Science,2015,8(10):3022-3029.
    [7] THIYAGARAJAN D, GAO M, SUN L, et al. Nanoarchitectured porous Cu-CoP nanoplates as electrocatalysts for efficient oxygen evolution reaction[J]. Chemical Engineering Journal,2022,432:134303. doi: 10.1016/j.cej.2021.134303
    [8] ALSABBAN M M, ESWARAN M K, PERAMAIAH K, et al. Unusual activity of rationally designed cobalt phosphide/oxide heterostructure composite for hydrogen production in alkaline medium[J]. ACS Nano,2022,16(3):3906-3916. doi: 10.1021/acsnano.1c09254
    [9] ZHANG X, SONG L, TONG L, et al. Surface bonding of CoP to biomass derived carbon microtube: Site-specific growth and high-efficiency catalysis[J]. Chemical Engineering Journal,2022,440:135884. doi: 10.1016/j.cej.2022.135884
    [10] ZHANG B, SHAN J, WANG W, et al. Oxygen vacancy and core-shell heterojunction engineering of anemone-like CoP@CoOOH bifunctional electrocatalyst for efficient overall water splitting[J]. Small,2022,18(12):2106012. doi: 10.1002/smll.202106012
    [11] WANG Z, XU L, HUANG F, et al. Copper-nickel nitride nanosheets as efficient bifunctional catalysts for hydrazine-assisted electrolytic hydrogen production[J]. Advanced Energy Materials,2019,9(21):1900390. doi: 10.1002/aenm.201900390
    [12] YU F, ZHOU H, HUANG Y, et al. High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting[J]. Nature Communications,2018,9(1):2551. doi: 10.1038/s41467-018-04746-z
    [13] WANG Z C, LIU H L, GE R X, et al. Phosphorus-doped Co3O4 nanowire array: A highly efficient bifunctional electrocatalyst for overall water splitting[J]. ACS Catalysis,2018,8(3):2236-2241. doi: 10.1021/acscatal.7b03594
    [14] YAO J, ZHANG M, MA X, et al. Interfacial electronic modulation of CoP-CoO p-p type heterojunction for enhancing oxygen evolution reaction[J]. Journal of Colloid and Interface Science,2022,607:1343-1352. doi: 10.1016/j.jcis.2021.09.097
    [15] CHEN J, QI X P, LIU C, et al. Interfacial engineering of a MoO2-CeF3 heterostructure as a highperformance hydrogen evolution reaction catalyst in both alkaline and acidic solutions[J]. ACS Applied Materials & Interfaces, 2020, 12(46): 51418-51427
    [16] 代迷迷, 王健, 李麟阁, 等. 界面增强的CeO2/FeNi MOF高效析氧催化剂[J]. 化学学报, 2020, 78(4):355-362. doi: 10.6023/A20010017

    DAI Mimi, WANG Jian, LI Linge, et al. Interface enhanced CeO2/FeNi MOF efficient oxygen evolution catalyst[J]. Acta Chimica Sinica,2020,78(4):355-362(in Chinese). doi: 10.6023/A20010017
    [17] LI J, XIA Z, XUE Q, et al. Insights into the interfacial Lewis acid-base pairs in CeO2-loaded CoS2 electrocatalysts for alkaline hydrogen evolution[J]. Small,2021,17(39):2103018. doi: 10.1002/smll.202103018
    [18] HUANG X, ZHENG H, LU G, et al. Enhanced water splitting electrocatalysis over MnCo2O4 via introduction of suitable Ce content[J]. ACS Sustainable Chemistry & Engineering,2019,7(1):1169-1177.
    [19] GAO W, MA F, WANG C, et al. Ce dopant significantly promotes the catalytic activity of Ni foam-supported Ni3S2 electrocatalyst for alkaline oxygen evolution reaction[J]. Journal of Power Sources,2020,450:227654. doi: 10.1016/j.jpowsour.2019.227654
    [20] ZAI S F, GAO X Y, YANG C C, et al. Ce-modified Ni(OH)2 nanoflowers supported on NiSe2 octahedra nanoparticles as high-efficient oxygen evolution electrocatalyst[J]. Advanced Energy Materials,2021,11(28):2101266. doi: 10.1002/aenm.202101266
    [21] RONG M, MO Y, ZHOU S, et al. Ce and MoS2 dual-doped cobalt aluminum layered double hydroxides for enhanced oxygen evolution reaction[J]. International Journal of Hydrogen Energy,2022,47(3):1644-1655. doi: 10.1016/j.ijhydene.2021.10.222
    [22] YANG X, TAO Z, WU Y, et al. Electrochemical deposition of CeO2 nanocrystals on Co3O4 nanoneedle arrays for efficient oxygen evolution[J]. Journal of Alloys and Compounds,2020,828:154394. doi: 10.1016/j.jallcom.2020.154394
    [23] 黄麟竣, 曹鑫鑫, 郑智鹤, 等. MOF衍生CoP/C的制备、表征及电化学析氢性能[J]. 粉末冶金材料科学与工程, 2019, 24(5):467-473.

    HUANG Linjun, CAO Xinxin, ZHENG Zhihe, et al. Preparation, characterization and electrochemical hydrogen evolution performance of MOF derived CoP/C[J]. Materials Science and Engineering of Powder Metallurgy,2019,24(5):467-473(in Chinese).
    [24] ZHANG H, WU Y, WANG X, et al. The construction of defect-rich CoP@CoP@(Co/Ni)2P triple-shell hollow nanospheres with boosted electrocatalytic hydrogen evolution performances over a wide pH range[J]. Chemical Engi-neering Journal,2023,463:142448. doi: 10.1016/j.cej.2023.142448
    [25] DENG W, DAI Q G, LAO Y J, et al. Low temperature catalytic combustion of 1, 2-dichlorobenzene over CeO2-TiO2 mixed oxide catalysts[J]. Applied Catalysis B: Environmental,2016,181:848-861. doi: 10.1016/j.apcatb.2015.07.053
    [26] ZANG C J, ZHANG X S, HU S Y, et al. The role of exposed facets in the Fenton-like reactivity of CeO2 nanocrystal to the orange II[J]. Applied Catalysis B: Environmental,2017,216:106-113. doi: 10.1016/j.apcatb.2017.05.068
    [27] CAI H, XIONG L, WANG B, et al. N-doped CNT as electron transport promoter by bridging CoP and carbon cloth toward enhanced alkaline hydrogen evolution[J]. Chemical Engineering Journal,2022,430:132824. doi: 10.1016/j.cej.2021.132824
    [28] WANG X, HUANG X, GAO W, et al. Metal-organic framework derived CoTe2 encapsulated in nitrogen-doped carbon nanotube frameworks: A high-efficiency bifunctional electrocatalyst for overall water splitting[J]. Journal of Materials Chemistry A,2018,6(8):3684-3691. doi: 10.1039/C7TA10728E
    [29] LI S, YANG C, YIN Z, et al. Wet-chemistry synthesis of cobalt carbide nanoparticles as highly active and stable electrocatalyst for hydrogen evolution reaction[J]. Nano Research,2017,10:1322-1328. doi: 10.1007/s12274-017-1425-6
    [30] KORDEK K, YIN H, RUTKOWSKI P, et al. Cobalt-based composite films on electrochemically activated carbon cloth as high performance overall water splitting electrodes[J]. International Journal of Hydrogen Energy,2019,44(1):23-33. doi: 10.1016/j.ijhydene.2018.02.095
    [31] XU Z, LI W, YAN Y, et al. In-situ formed hydroxide accelerating water dissociation kinetics on Co3N for hydrogen production in alkaline solution[J]. ACS Applied Materials & Interfaces,2018,10(26):22102-22109.
    [32] CAO J, CHEN X, LI H, et al. A Co/CoO hybrid rooted on carbon cloth as an efficient electrocatalyst for the hydrogen evolution reaction in alkaline solution[J]. Sustainable Energy Fuels,2020,4(4):1924-1932. doi: 10.1039/C9SE01128E
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  476
  • HTML全文浏览量:  260
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-21
  • 修回日期:  2023-05-28
  • 录用日期:  2023-06-21
  • 网络出版日期:  2023-07-04
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回