Dynamic characteristics and mechanisms of table tennis blades with the inclusion of special fiber laminates
-
摘要: 采用化学气相工艺技术,在碳纤维布表面原位生成具有特殊性能的微观涂层,进而将这种纤维布引入到乒乓球拍底板的夹层结构中,实现了底板动特性的调节。采用有限元仿真技术和非接触式模态测试技术,对引入特种纤维夹层的乒乓球拍底板开展了模态分析和测试。对应不同的纤维夹层,底板的一阶和二阶固有频率分别可以在115~127 Hz范围内和179~198 Hz范围内调节。揭示了特种纤维夹层对底板动特性的影响,证明了有限元仿真技术和非接触式模态测试技术在底板动特性研究中的可行性,为更科学、更全面地设计乒乓球拍底板提供了新的思路。Abstract: Several series of special fiber laminates with different performance were designed and fabricated by chemical vapor deposition method. The dynamic responses of table tennis blades were found adjustable with the inclusion of different fiber laminates. The dynamic characteristics and mechanisms of the blades were analyzed and measured by finite element method (FEM) and non-contact mode measurement method. The first and second order frequencies of the blades can be adjusted in the range of 115-127 Hz, and 179-198 Hz, respectively, which cover the performances of most popular market products. The FEM and non-contact mode measurement method are both proved to be feasible on designing and studying the characteristics of table tennis blades.
-
表 1 乒乓球拍底板编号及特种纤维夹层结构参数
Table 1. Fiber lamination parameters of blade samples
Sample Fiber coating Thickness of fiber
lamination/mmS0 None 0.18-0.19 S1 Low texture carbon 0.18-0.20 S2 High texture carbon 0.19-0.22 S3 Nitrogen ceramic 0.20-0.22 表 2 底板有限元分析所用材料性能
Table 2. Material parameters of blades for finite element analysis
Materials Density/(g·cm−3) Elastic modulus/GPa Poisson's ratio Shear modulus/GPa E1 E2 E3 ν12 ν13 ν23 G12 G13 G23 Koto 0.59 1.12 0.67 1.17 0.33 0.39 0.23 0.71 0.89 0.23 Ayous 0.224 6.27 0.13 0.29 0.39 0.23 0.36 0.20 0.31 0.03 Fiber in S0 1.69 107 107 20 0.33 0.33 0.33 25 25 5 Fiber in S1 1.58 92 92 14 0.31 0.31 0.28 23 23 4 Fiber in S2 1.55 85 107 12 0.30 0.30 0.25 18 18 3 Fiber in S3 1.67 97 97 18 0.23 0.23 0.21 21 21 4 表 3 不同底板的一阶和二阶频率
Table 3. First and second order frequency of various blades
No. Sample First-order frequency/Hz Second-order frequency/Hz Calculation Experiment Calculation Experiment 1 S0 129.1 127.3 195.2 187.0 2 S1 123.0 121.7 188.0 179.8 3 S2 118.3 115.5 185.3 179.1 4 S3 125.4 123.3 205.6 198.0 5 VISCARIA — 123.8 — 183.3 6 Lin Gaoyuan ALC — 122.1 — 179.7 7 Offensive Wood NCT — 104.8 — 182.0 8 Cyber Shape Carbon — 112.8 — 179.5 -
[1] 胡海涛, 李荣芝. 论乒乓球拍的形制[J]. 中国学校体育, 2016, 3(2):23-26.HU Haitao, LI Rongzhi. Research on the shape of table tennis rackets[J]. China School Physical Education,2016,3(2):23-26(in Chinese). [2] 高娟娟. 乒乓球拍底板与击球技术分析[J]. 当代体育科技, 2016, 6(16):151-152. doi: 10.16655/j.cnki.2095-2813.2016.16.151GAO Juanjuan. Table tennis racquet backplane and technical analysis[J]. Contemporary Sports Technology,2016,6(16):151-152(in Chinese). doi: 10.16655/j.cnki.2095-2813.2016.16.151 [3] 孙瑞, 李春, 任杰, 等. 乒乓球底板结构对底板性能影响研究[J]. 天津体育学院学报, 2016, 31(6):519-523.SUN Rui, LI Chun, REN Jie, et al. The effect of table tennis racket paddle fiber layer on racket performance[J]. Jour-nal of TUS,2016,31(6):519-523(in Chinese). [4] 刘娜. 碳纤维复合材料乒乓球拍性能优劣分析[J]. 合成纤维, 2021, 50(8):49-52. doi: 10.16090/j.cnki.hcxw.2021.08.014LIU Na. Analysis of the advantages and disadvantages of the performance of carbon fiber composite table tennis racket[J]. Synthetic Fibers,2021,50(8):49-52(in Chinese). doi: 10.16090/j.cnki.hcxw.2021.08.014 [5] 孙晋媛. 复合材料用作乒乓球拍底板的动力学特性研究[J]. 合成材料老化与应用, 2020, 49(6):121-123. doi: 10.16584/j.cnki.issn1671-5381.2020.06.035SUN Jinyuan. Research on the dynamic characteristics of composite used as the base plate of table tennis racket[J]. Synthetic Materials Aging and Application,2020,49(6):121-123(in Chinese). doi: 10.16584/j.cnki.issn1671-5381.2020.06.035 [6] 宋潇. 乒乓球拍用碳纤维板的制备与力学性能研究[J]. 合成材料老化与应用, 2019, 48(5):64-66. doi: 10.16584/j.cnki.issn1671-5381.2019.05.016SONG Xiao. Study on preparation and mechanical properties of carbon fiber board for table tennis racket[J]. Synthetic Materials Aging and Application,2019,48(5):64-66(in Chinese). doi: 10.16584/j.cnki.issn1671-5381.2019.05.016 [7] 吉丽, 陈国文. 碳纤维乒乓球拍底板材料的力学性能分析[J]. 合成材料老化与应用, 2019, 48(5):87-90. doi: 10.16584/j.cnki.issn1671-5381.2019.05.022JI Li, CHEN Guowen. Mechanical property analysis of carbon fiber baseboard material for table tennis racket[J]. Synthetic Materials Aging and Application,2019,48(5):87-90(in Chinese). doi: 10.16584/j.cnki.issn1671-5381.2019.05.022 [8] LIONEL M, MARC P, NICOLAS H. Vibrations of table tennis racket composite wood blades: Modeling and experiments[J]. Procedia Engineering,2012,34(4):694-699. [9] LIONEL M, FLORIAN G, MARC P, et al. Vibro-acoustic of table tennis rackets at ball impact: Influence of the blade plywood composition[J]. Procedia Engineering,2012,34(4):604-609. [10] SAHAR S, TABRIZI S P, VAJIHEH J. Data acquired by a single object sensor for the detection and quality evaluation of table tennis forehand strokes[J]. Data in Brief,2020,33:1-9. [11] DENG J C, WEI X, ZHOU H Y, et al. Inspiration from table tennis racket: Preparation of rubber-wood-bamboo lami-nated composite (RWBLC) and its response characteristics to cyclic perpendicular compressive load[J]. Composite Structures,2020,241:1-12. [12] RINALDI R G, MANIN L, BONNARD C, et al. Non linearity of the ball/rubber impact in table tennis: Experiments and modeling[J]. Procedia Engineering,2016,147:348-353. doi: 10.1016/j.proeng.2016.06.307 [13] LIONEL M, MARC P, CYRIL B, et al. Vibro-acoustic of table tennis rackets. Influence of the plywood design parame-ters. Experimental and sensory analyses[J]. Procedia Engineering,2014,72:374-379. doi: 10.1016/j.proeng.2014.06.068 [14] 李江, 李春, 谢用民. 复合材料乒乓球拍击球特性研究[J]. 当代体育科技, 2020, 10(15):243-248.LI Jiang, LI Chun, XIE Yongmin. Research on the collision characteristics of table tennis rackets based on composite material[J]. Contemporary Sports Technology,2020,10(15):243-248(in Chinese). [15] 张平, 桂良进, 范子杰. 三向编织玻璃/环氧复合材料刚度性能[J]. 复合材料学报, 2008, 25(2):31-34.ZHANG Ping, GUI Liangjin, FAN Zijie. Stiffness properties of triaxially braided glass/epoxy composites[J]. Acta Materiae Compositae Sinica,2008,25(2):31-34(in Chinese). [16] 贾宝惠, 张刚, 蔺越国, 等. 湿热环境下含分层平面编织玻璃纤维/环氧树脂基复合材料层合板振动特性[J]. 复合材料学报, 2019, 36(4):892-904.JIA Baohui, ZHANG Gang, LIN Yueguo, et al. Vibration characteristic of delaminated plain woven fabric glass fiber/epoxy composite laminate under hygrothermal envi-ronment[J]. Acta Materiae Compositae Sinica,2019,36(4):892-904(in Chinese). [17] XU S J, HE S, LI J Y, et al. A progressive damage model for quasi-static tension of 2D woven composites and FEM implementation[J]. Composite Structures,2023,320:117168. doi: 10.1016/j.compstruct.2023.117168 [18] AYRANCI C, CAREY J. 2D braided composites: A review for stiffness critical applications[J]. Composite Structures,2008,85(1):43-58. doi: 10.1016/j.compstruct.2007.10.004 [19] SHOKRIEH M M, MAZLOOMI M S. An analytical method for calculating stiffness of two-dimensional tri-axial braided composites[J]. Composite Structures,2010,92(12):2901-2905. doi: 10.1016/j.compstruct.2010.04.016 [20] ZAKO M, UETSUJI Y, KURASHIKI T. Finite element analy-sis of damaged woven fabric composite materials[J]. Composites Science and Technology,2003,63(3-4):507-516. doi: 10.1016/S0266-3538(02)00211-7 [21] 寇钢. 碳纳米管增强热解碳基复合材料的微观结构和性能研究[D]. 西安: 西北工业大学, 2019.KOU Gang. Microstrusture and properties of pyrocarbon matrix composites strengthened by carbon nanotubes[D]. Xi'an: Northwestern Polytechnical University, 2019(in Chinese). [22] LI W, LI H J, WANG J, et al. Preparation and mechani-cal properties of carbon/carbon composites with high textured pyrolytic carbon matrix[J]. Transaction of Nonferrous Metals Society of China,2013,23:2129-2134. doi: 10.1016/S1003-6326(13)62707-7