留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含有特种纤维夹层的乒乓球拍底板动特性与机制

阴甜甜 郝莉菱 赵莘量 付志强 刘持栋 何山

阴甜甜, 郝莉菱, 赵莘量, 等. 含有特种纤维夹层的乒乓球拍底板动特性与机制[J]. 复合材料学报, 2024, 41(3): 1626-1632. doi: 10.13801/j.cnki.fhclxb.20230703.002
引用本文: 阴甜甜, 郝莉菱, 赵莘量, 等. 含有特种纤维夹层的乒乓球拍底板动特性与机制[J]. 复合材料学报, 2024, 41(3): 1626-1632. doi: 10.13801/j.cnki.fhclxb.20230703.002
YIN Tiantian, HAO Liling, ZHAO Xinliang, et al. Dynamic characteristics and mechanisms of table tennis blades with the inclusion of special fiber laminates[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1626-1632. doi: 10.13801/j.cnki.fhclxb.20230703.002
Citation: YIN Tiantian, HAO Liling, ZHAO Xinliang, et al. Dynamic characteristics and mechanisms of table tennis blades with the inclusion of special fiber laminates[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1626-1632. doi: 10.13801/j.cnki.fhclxb.20230703.002

含有特种纤维夹层的乒乓球拍底板动特性与机制

doi: 10.13801/j.cnki.fhclxb.20230703.002
基金项目: 国家自然科学基金(52172100)
详细信息
    通讯作者:

    刘持栋,博士,副研究员,硕士生导师,研究方向为陶瓷基复合材料与工程应用技术 E-mail: liuchidong@nwpu.edu.cn

  • 中图分类号: TB332;TS952.3

Dynamic characteristics and mechanisms of table tennis blades with the inclusion of special fiber laminates

Funds: Natural Science Foundation of China (52172100)
  • 摘要: 采用化学气相工艺技术,在碳纤维布表面原位生成具有特殊性能的微观涂层,进而将这种纤维布引入到乒乓球拍底板的夹层结构中,实现了底板动特性的调节。采用有限元仿真技术和非接触式模态测试技术,对引入特种纤维夹层的乒乓球拍底板开展了模态分析和测试。对应不同的纤维夹层,底板的一阶和二阶固有频率分别可以在115~127 Hz范围内和179~198 Hz范围内调节。揭示了特种纤维夹层对底板动特性的影响,证明了有限元仿真技术和非接触式模态测试技术在底板动特性研究中的可行性,为更科学、更全面地设计乒乓球拍底板提供了新的思路。

     

  • 图  1  乒乓球拍底板结构示意图

    Figure  1.  Schematic structure of a table tennis blade

    图  2  纤维表面涂层微观形貌:(a) 低织构碳涂层;(b) 氮化物涂层

    Figure  2.  Micromorphology of the coatings on carbon fibers: (a) Low texture carbon coating; (b) Nitrogen ceramic coating

    图  3  乒乓球拍底板的有限元模型

    Figure  3.  Finite element model of a table tennis blade

    图  4  非接触式模态测试设备

    Figure  4.  Non-contact mode measurement equipment

    图  5  通过有限元仿真得到的底板典型模态图:(a) 一阶模态;(b) 二阶模态;(c) 三阶模态

    Figure  5.  Typical vibration modes of a blade acquired by finite element method: (a) First order mode; (b) Second order mode; (c) Third order mode

    图  6  实验测得的S1底板一阶和二阶模态:(a) 一阶模态;(b) 二阶模态

    Figure  6.  First and second order modes of S1 blade acquired by non-contact mode measurement: (a) First order mode; (b) Second order mode

    图  7  实验测得的VISCARIA底板一阶和二阶模态:(a) 一阶模态;(b) 二阶模态

    Figure  7.  First and second order modes of the VISCARIA blade acquired by non-contact mode measurement: (a) First order mode; (b) Second order mode

    图  8  实验测得的林高远ALC型号底板一阶和二阶模态:(a) 一阶模态;(b) 二阶模态

    Figure  8.  First and second order modes of the Lin Gaoyuan ALC blade acquired by non-contact mode measurement: (a) First order mode; (b) Second order mode

    图  9  实验测得的赛博6型号底板一阶和二阶模态:(a) 一阶模态;(b)二阶模态

    Figure  9.  First and second order modes of the Cyber Shape Carbon blade acquired by non-contact mode measurement: (a) First order mode; (b) Second order mode

    图  10  S1 (a)、S2 (b)和S3 (c)底板所用纤维表面涂层的微观形貌

    Figure  10.  Microstructure morphologies of the coatings on the fibers in sample: (a) S1; (b) S2; (c) S3

    表  1  乒乓球拍底板编号及特种纤维夹层结构参数

    Table  1.   Fiber lamination parameters of blade samples

    SampleFiber coatingThickness of fiber
    lamination/mm
    S0None0.18-0.19
    S1Low texture carbon0.18-0.20
    S2High texture carbon0.19-0.22
    S3Nitrogen ceramic0.20-0.22
    下载: 导出CSV

    表  2  底板有限元分析所用材料性能

    Table  2.   Material parameters of blades for finite element analysis

    MaterialsDensity/(g·cm−3)Elastic modulus/GPaPoisson's ratioShear modulus/GPa
    E1E2E3ν12ν13ν23G12G13G23
    Koto 0.59 1.12 0.67 1.17 0.33 0.39 0.23 0.71 0.89 0.23
    Ayous 0.224 6.27 0.13 0.29 0.39 0.23 0.36 0.20 0.31 0.03
    Fiber in S0 1.69 107 107 20 0.33 0.33 0.33 25 25 5
    Fiber in S1 1.58 92 92 14 0.31 0.31 0.28 23 23 4
    Fiber in S2 1.55 85 107 12 0.30 0.30 0.25 18 18 3
    Fiber in S3 1.67 97 97 18 0.23 0.23 0.21 21 21 4
    下载: 导出CSV

    表  3  不同底板的一阶和二阶频率

    Table  3.   First and second order frequency of various blades

    No.SampleFirst-order frequency/HzSecond-order frequency/Hz
    CalculationExperimentCalculationExperiment
    1S0129.1127.3195.2187.0
    2S1123.0121.7188.0179.8
    3S2118.3115.5185.3179.1
    4S3125.4123.3205.6198.0
    5VISCARIA123.8183.3
    6Lin Gaoyuan ALC122.1179.7
    7Offensive Wood NCT104.8182.0
    8Cyber Shape Carbon112.8179.5
    下载: 导出CSV
  • [1] 胡海涛, 李荣芝. 论乒乓球拍的形制[J]. 中国学校体育, 2016, 3(2):23-26.

    HU Haitao, LI Rongzhi. Research on the shape of table tennis rackets[J]. China School Physical Education,2016,3(2):23-26(in Chinese).
    [2] 高娟娟. 乒乓球拍底板与击球技术分析[J]. 当代体育科技, 2016, 6(16):151-152. doi: 10.16655/j.cnki.2095-2813.2016.16.151

    GAO Juanjuan. Table tennis racquet backplane and technical analysis[J]. Contemporary Sports Technology,2016,6(16):151-152(in Chinese). doi: 10.16655/j.cnki.2095-2813.2016.16.151
    [3] 孙瑞, 李春, 任杰, 等. 乒乓球底板结构对底板性能影响研究[J]. 天津体育学院学报, 2016, 31(6):519-523.

    SUN Rui, LI Chun, REN Jie, et al. The effect of table tennis racket paddle fiber layer on racket performance[J]. Jour-nal of TUS,2016,31(6):519-523(in Chinese).
    [4] 刘娜. 碳纤维复合材料乒乓球拍性能优劣分析[J]. 合成纤维, 2021, 50(8):49-52. doi: 10.16090/j.cnki.hcxw.2021.08.014

    LIU Na. Analysis of the advantages and disadvantages of the performance of carbon fiber composite table tennis racket[J]. Synthetic Fibers,2021,50(8):49-52(in Chinese). doi: 10.16090/j.cnki.hcxw.2021.08.014
    [5] 孙晋媛. 复合材料用作乒乓球拍底板的动力学特性研究[J]. 合成材料老化与应用, 2020, 49(6):121-123. doi: 10.16584/j.cnki.issn1671-5381.2020.06.035

    SUN Jinyuan. Research on the dynamic characteristics of composite used as the base plate of table tennis racket[J]. Synthetic Materials Aging and Application,2020,49(6):121-123(in Chinese). doi: 10.16584/j.cnki.issn1671-5381.2020.06.035
    [6] 宋潇. 乒乓球拍用碳纤维板的制备与力学性能研究[J]. 合成材料老化与应用, 2019, 48(5):64-66. doi: 10.16584/j.cnki.issn1671-5381.2019.05.016

    SONG Xiao. Study on preparation and mechanical properties of carbon fiber board for table tennis racket[J]. Synthetic Materials Aging and Application,2019,48(5):64-66(in Chinese). doi: 10.16584/j.cnki.issn1671-5381.2019.05.016
    [7] 吉丽, 陈国文. 碳纤维乒乓球拍底板材料的力学性能分析[J]. 合成材料老化与应用, 2019, 48(5):87-90. doi: 10.16584/j.cnki.issn1671-5381.2019.05.022

    JI Li, CHEN Guowen. Mechanical property analysis of carbon fiber baseboard material for table tennis racket[J]. Synthetic Materials Aging and Application,2019,48(5):87-90(in Chinese). doi: 10.16584/j.cnki.issn1671-5381.2019.05.022
    [8] LIONEL M, MARC P, NICOLAS H. Vibrations of table tennis racket composite wood blades: Modeling and experiments[J]. Procedia Engineering,2012,34(4):694-699.
    [9] LIONEL M, FLORIAN G, MARC P, et al. Vibro-acoustic of table tennis rackets at ball impact: Influence of the blade plywood composition[J]. Procedia Engineering,2012,34(4):604-609.
    [10] SAHAR S, TABRIZI S P, VAJIHEH J. Data acquired by a single object sensor for the detection and quality evaluation of table tennis forehand strokes[J]. Data in Brief,2020,33:1-9.
    [11] DENG J C, WEI X, ZHOU H Y, et al. Inspiration from table tennis racket: Preparation of rubber-wood-bamboo lami-nated composite (RWBLC) and its response characteristics to cyclic perpendicular compressive load[J]. Composite Structures,2020,241:1-12.
    [12] RINALDI R G, MANIN L, BONNARD C, et al. Non linearity of the ball/rubber impact in table tennis: Experiments and modeling[J]. Procedia Engineering,2016,147:348-353. doi: 10.1016/j.proeng.2016.06.307
    [13] LIONEL M, MARC P, CYRIL B, et al. Vibro-acoustic of table tennis rackets. Influence of the plywood design parame-ters. Experimental and sensory analyses[J]. Procedia Engineering,2014,72:374-379. doi: 10.1016/j.proeng.2014.06.068
    [14] 李江, 李春, 谢用民. 复合材料乒乓球拍击球特性研究[J]. 当代体育科技, 2020, 10(15):243-248.

    LI Jiang, LI Chun, XIE Yongmin. Research on the collision characteristics of table tennis rackets based on composite material[J]. Contemporary Sports Technology,2020,10(15):243-248(in Chinese).
    [15] 张平, 桂良进, 范子杰. 三向编织玻璃/环氧复合材料刚度性能[J]. 复合材料学报, 2008, 25(2):31-34.

    ZHANG Ping, GUI Liangjin, FAN Zijie. Stiffness properties of triaxially braided glass/epoxy composites[J]. Acta Materiae Compositae Sinica,2008,25(2):31-34(in Chinese).
    [16] 贾宝惠, 张刚, 蔺越国, 等. 湿热环境下含分层平面编织玻璃纤维/环氧树脂基复合材料层合板振动特性[J]. 复合材料学报, 2019, 36(4):892-904.

    JIA Baohui, ZHANG Gang, LIN Yueguo, et al. Vibration characteristic of delaminated plain woven fabric glass fiber/epoxy composite laminate under hygrothermal envi-ronment[J]. Acta Materiae Compositae Sinica,2019,36(4):892-904(in Chinese).
    [17] XU S J, HE S, LI J Y, et al. A progressive damage model for quasi-static tension of 2D woven composites and FEM implementation[J]. Composite Structures,2023,320:117168. doi: 10.1016/j.compstruct.2023.117168
    [18] AYRANCI C, CAREY J. 2D braided composites: A review for stiffness critical applications[J]. Composite Structures,2008,85(1):43-58. doi: 10.1016/j.compstruct.2007.10.004
    [19] SHOKRIEH M M, MAZLOOMI M S. An analytical method for calculating stiffness of two-dimensional tri-axial braided composites[J]. Composite Structures,2010,92(12):2901-2905. doi: 10.1016/j.compstruct.2010.04.016
    [20] ZAKO M, UETSUJI Y, KURASHIKI T. Finite element analy-sis of damaged woven fabric composite materials[J]. Composites Science and Technology,2003,63(3-4):507-516. doi: 10.1016/S0266-3538(02)00211-7
    [21] 寇钢. 碳纳米管增强热解碳基复合材料的微观结构和性能研究[D]. 西安: 西北工业大学, 2019.

    KOU Gang. Microstrusture and properties of pyrocarbon matrix composites strengthened by carbon nanotubes[D]. Xi'an: Northwestern Polytechnical University, 2019(in Chinese).
    [22] LI W, LI H J, WANG J, et al. Preparation and mechani-cal properties of carbon/carbon composites with high textured pyrolytic carbon matrix[J]. Transaction of Nonferrous Metals Society of China,2013,23:2129-2134. doi: 10.1016/S1003-6326(13)62707-7
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  655
  • HTML全文浏览量:  370
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-17
  • 修回日期:  2023-06-15
  • 录用日期:  2023-06-21
  • 网络出版日期:  2023-07-04
  • 刊出日期:  2024-03-01

目录

    /

    返回文章
    返回