留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Co(CO3)0.5(OH)·0.11H2O/WO3纳米材料制备及H2S气敏性能

桂阳海 吴锦涛 田宽 郭会师 张心华

桂阳海, 吴锦涛, 田宽, 等. Co(CO3)0.5(OH)·0.11H2O/WO3纳米材料制备及H2S气敏性能[J]. 复合材料学报, 2024, 41(2): 816-826. doi: 10.13801/j.cnki.fhclxb.20230703.001
引用本文: 桂阳海, 吴锦涛, 田宽, 等. Co(CO3)0.5(OH)·0.11H2O/WO3纳米材料制备及H2S气敏性能[J]. 复合材料学报, 2024, 41(2): 816-826. doi: 10.13801/j.cnki.fhclxb.20230703.001
GUI Yanghai, WU Jintao, TIAN Kuan, et al. Preparation and H2S sensing performance of Co(CO3)0.5(OH)·0.11H2O/WO3 nanomaterials[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 816-826. doi: 10.13801/j.cnki.fhclxb.20230703.001
Citation: GUI Yanghai, WU Jintao, TIAN Kuan, et al. Preparation and H2S sensing performance of Co(CO3)0.5(OH)·0.11H2O/WO3 nanomaterials[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 816-826. doi: 10.13801/j.cnki.fhclxb.20230703.001

Co(CO3)0.5(OH)·0.11H2O/WO3纳米材料制备及H2S气敏性能

doi: 10.13801/j.cnki.fhclxb.20230703.001
基金项目: 国家自然科学基金(U1904213;U20041102);河南省2023年科技发展计划(232102230128)
详细信息
    通讯作者:

    桂阳海,博士,教授,研究方向为纳米及功能材料 E-mail: yhgui@zzuli.edu.cn

  • 中图分类号: TB332

Preparation and H2S sensing performance of Co(CO3)0.5(OH)·0.11H2O/WO3 nanomaterials

Funds: National Natural Science Foundation of China (U1904213; U20041102); 2023 Science and Technology Development Plan of Henan Province (232102230128)
  • 摘要: 近年来,H2S作为哮喘和慢阻肺的新型生物标志物对人体健康监测具有重要意义,因此人们对低功耗、高选择性、低检出限和高稳定性H2S传感器的研究显得十分迫切。通过两步原位生长的方式合成了Co(CO3)0.5(OH)·0.11H2O/WO3纳米材料。以原位水热法合成的WO3纳米片为基底,通过调控水浴反应时间,在WO3纳米片上原位生长了不同的Co(CO3)0.5(OH)·0.11H2O/WO3纳米材料。利用FE-SEM、FTIR、XRD和TG等方法对复合材料进行表征和气敏性能测试。结果表明:反应20 min所制得的Co(CO3)0.5(OH)·0.11H2O/WO3复合材料具有最优异的气敏性能,在最佳工作温度(90℃)下对浓度为50×10−6 H2S气体的响应值高达109,响应和恢复时间分别为130 s和182 s,对H2S气体表现出优异的选择性。该复合材料在低浓度H2S (3×10−6) 氛围中,仍具有良好的响应恢复曲线。在一个月内进行的3次重复测试中,表现出较好的重复性和长期稳定性。Co(CO3)0.5(OH)·0.11H2O/WO3气敏材料的原位制备及气敏性能研究为气敏传感器器件的制备提供了新思路,为气敏材料的多样性提供了新途径。在环境检测和智能医疗方面有着潜在的应用价值。

     

  • 图  1  Co(CO3)0.5(OH)·0.11H2O/WO3复合材料的制备过程示意图

    Figure  1.  Schematic diagram of the preparation process for Co(CO3)0.5(OH)·0.11H2O/WO3 composites

    图  2  WO3和Co(CO3)0.5(OH)·0.11H2O/WO3复合材料的FE-SEM图像

    Figure  2.  FE-SEM images of WO3 and Co(CO3)0.5(OH)·0.11H2O/WO3 composites

    图  3  WO3、Co(CO3)0.5(OH)·0.11H2O/WO3和Co(CO3)0.5(OH)·0.11H2O的FTIR图谱

    Figure  3.  FTIR spectra of WO3, Co(CO3)0.5(OH)·0.11H2O/WO3 and Co(CO3)0.5(OH)·0.11H2O

    图  4  Al2O3基底、WO3、Co(CO3)0.5(OH)·0.11H2O/WO3-20和Co(CO3)0.5(OH)·0.11H2O的XRD图谱

    Figure  4.  XRD patterns of Al2O3 substrate, WO3, Co(CO3)0.5(OH)·0.11H2O/WO3-20 and Co(CO3)0.5(OH)·0.11H2O

    图  5  Co(CO3)0.5(OH)·0.11H2O的热重曲线

    Figure  5.  TGA curve of Co(CO3)0.5(OH)·0.11H2O

    图  6  WO3和Co(CO3)0.5(OH)·0.11H2O/WO3复合材料的气敏性能:(a) 对H2S气体的温度-灵敏度曲线;(b) 对多种气体的选择性

    Ra—Resistance in air atmosphere; Rg—Resistance in the target gas atmosphere

    Figure  6.  Gas sensing performance of WO3 and Co(CO3)0.5(OH)·0.11H2O/WO3 composites: (a) Temperature-sensitivity curves to H2S; (b) Response to various gases

    图  7  (a) Co(CO3)0.5(OH)·0.11H2O/WO3-20元件对50×10−6 H2S气体的响应恢复曲线;(b) 长期稳定性曲线

    Tres—Response time; Trec—Recovery time

    Figure  7.  (a) Response recovery curve of Co(CO3)0.5(OH)·0.11H2O/WO3-20 sensor to 50×10−6 H2S; (b) Long-term stability curves

    图  8  (a) Co(CO3)0.5(OH)·0.11H2O/WO3-20元件对不同浓度H2S气体的灵敏度曲线;(b) 体积分数3×10−6~50×10−6的响应线性关系

    R2—Coefficient of determination

    Figure  8.  (a) Sensitivity curve of Co(CO3)0.5(OH)·0.11H2O/WO3-20 sensor to different concentrations of H2S gas; (b) Linear relation of volume fraction 3×10−6-50×10−6

    图  9  WO3和Co(CO3)0.5(OH)·0.11H2O/WO3元件在气敏测试过程中的电阻变化曲线

    Figure  9.  Resistance change curves of WO3 and Co(CO3)0.5(OH)·0.11H2O/WO3 sensors during gas sensing test

    图  10  Co(CO3)0.5(OH)·0.11H2O/WO3-20元件在90℃对50×10−6 H2S的湿度稳定性曲线

    Figure  10.  Humidity stability curve of Co(CO3)0.5(OH)·0.11H2O/WO3-20 sensor at 90℃ to 50×10−6 H2S

    图  11  Co(CO3)0.5(OH)·0.11H2O/WO3在空气(a)和H2S (b)中的传感机制图

    Eg—Energy gap

    Figure  11.  Sensing mechanism of Co(CO3)0.5(OH)·0.11H2O/WO3 in air (a) and H2S (b)

    表  1  不同复合材料的命名

    Table  1.   Naming of different composites

    SampleReaction time/min
    Co(CO3)0.5(OH)·0.11H2O/WO3-1010
    Co(CO3)0.5(OH)·0.11H2O/WO3-2020
    Co(CO3)0.5(OH)·0.11H2O/WO3-3030
    下载: 导出CSV

    表  2  不同H2S气敏传感器的气敏性能对比

    Table  2.   Comparison of gas sensing performance of different H2S gas sensors

    MaterialVolume fraction/10−6Response (Ra/Rg)Temperature/℃Ref.
    In2O3/ZnO 50 67.5 200 [32]
    Ag/ZnO 100 100 240 [33]
    Nb2O5/SnO2 20 4 275 [34]
    ZnCo2O4 10 6.5 90 [35]
    SnO2@Al 20 17.38 350 [36]
    ZnO@Ni 100 45.3 200 [37]
    Co(CO3)0.5(OH)·0.11H2O/WO3 50 109 90 This work
    下载: 导出CSV
  • [1] NAKATE U T, BHUYAN P, YU Y T, et al. Synthesis and characterizations of highly responsive H2S sensor using p-type Co3O4 nanoparticles/nanorods mixed nanostructures[J]. International Journal of Hydrogen Energy,2022,47(12):8145-8154. doi: 10.1016/j.ijhydene.2021.12.115
    [2] WANG Y, ZHANG S, XIAO D, et al. CuO/WO3 hollow microsphere p-n heterojunction sensor for continuous cycle detection of H2S gas[J]. Sensors and Actuators B: Chemical,2023,374:132823. doi: 10.1016/j.snb.2022.132823
    [3] ALIANNEZHADI M, ABBASPOOR M, SHARIATMADAR TEHRANI F, et al. High photocatalytic WO3 nanoparticles synthesized using sol-gel method at different stirring times[J]. Optical and Quantum Electronics,2023,55(3):250. doi: 10.1007/s11082-022-04540-8
    [4] ICIEK M, BILSKA WILKOSZ A, KOZDROWICKI M, et al. Reactive sulfur species and their significance in health and disease[J]. Bioscience Reports,2022,42(9):BSR20221006. doi: 10.1042/BSR20221006
    [5] MOBTAKERI, HABASHYANI S, ÇOBAN Ö, et al. Effect of growth pressure on sulfur content of RF-magnetron sputtered WS2 films and thermal oxidation properties of them toward using Pd decorated WO3 based H2 gas sensor[J]. Sensors and Actuators B: Chemical,2023,381:133485. doi: 10.1016/j.snb.2023.133485
    [6] TAN Y, ZHANG J. Highly sensitive ethanol gas sensors based on Co-doped SnO2 nanobelts and pure SnO2 nanobelts[J]. Physica E: Low-dimensional Systems and Nanostructures,2023,147:115604. doi: 10.1016/j.physe.2022.115604
    [7] TSENG S F, CHEN P S, HSU S H, et al. Investigation of fiber laser-induced porous graphene electrodes in controlled atmospheres for ZnO nanorod-based NO2 gas sensors[J]. Applied Surface Science,2023,620:156847. doi: 10.1016/j.apsusc.2023.156847
    [8] YIN J, LYU D, ZHAO J, et al. ZnO-MEMS sensor-cell prepared by inkjet printing for low concentration acetone detection[J]. Materials Letters,2023,340:134152. doi: 10.1016/j.matlet.2023.134152
    [9] MATHANKUMAR G, HARISH S, MOHAN M K, et al. Enhanced selectivity and ultra-fast detection of NO2 gas sensor via Ag modified WO3 nanostructures for gas sensing applications[J]. Sensors and Actuators B: Chemical,2023,381:133374. doi: 10.1016/j.snb.2023.133374
    [10] INABA M, ODA T, KONO M, et al. Effect of mixing ratio on NO2 gas sensor response with SnO2-decorated carbon nanotube channels fabricated by one-step dielectrophoretic assembly[J]. Sensors and Actuators B: Chemical,2021,344:130257. doi: 10.1016/j.snb.2021.130257
    [11] LIU S, WANG M, GE C, et al. Enhanced room-temperature NO2 sensing performance of SnO2/Ti3C2 composite with double heterojunctions by controlling co-exposed {221} and {110} facets of SnO2[J]. Sensors and Actuators B: Chemical,2022,365:131919. doi: 10.1016/j.snb.2022.131919
    [12] CHUMAKOVA V, MARIKUTSA A, PLATONOV V, et al. Distinct roles of additives in the improved sensitivity to CO of Ag-and Pd-modified nanosized LaFeO3[J]. Chemosensors,2023,11(1):60. doi: 10.3390/chemosensors11010060
    [13] GUO X, DING Y, LIANG C, et al. Humidity-activated H2S sensor based on SnSe2/WO3 composite for evaluating the spoilage of eggs at room temperature[J]. Sensors and Actuators B: Chemical,2022,357:131424. doi: 10.1016/j.snb.2022.131424
    [14] ZHU S, TIAN Q, WU G, et al. Highly sensitive and stable H2 gas sensor based on p-PdO-n-WO3-heterostructure-homogeneously-dispersing thin film[J]. International Journal of Hydrogen Energy,2022,47(40):17821-17834. doi: 10.1016/j.ijhydene.2022.03.237
    [15] HE B, LIU H, LIN Z, et al. A new photocatalyst based on Co(CO3)0.5(OH)·0.11H2O/Bi2WO6 nanocomposites for high-efficiency cocatalyst-free O2 evolution[J]. Chemical Engi-neering Journal,2019,359:924-932. doi: 10.1016/j.cej.2018.11.094
    [16] WANG C, WANG H, ZHAO D, et al. Simple synthesis of cobalt carbonate hydroxide hydrate and reduced graphene oxide hybrid structure for high-performance room temperature NH3 sensor[J]. Sensors,2019,19(3):615. doi: 10.3390/s19030615
    [17] WANG Y, CHEN Y, LIU Y, et al. Urchin-like Ni1/3Co2/3(CO3)0.5OH·0.11H2O anchoring on polypyrrole nanotubes for supercapacitor electrodes[J]. Electrochimica Acta,2019,295:989-996. doi: 10.1016/j.electacta.2018.11.116
    [18] LIU Q, CHEN Y, MA J, et al. Novel electrochemical deposition of Co(CO3)0.5(OH)∙0.11H2O nano-needles with folded umbrella-like architecture onto nickel foam for supercapacitors[J]. Surface and Coatings Technology,2021,421:127452. doi: 10.1016/j.surfcoat.2021.127452
    [19] HAN Y, LI H, ZHANG M, et al. Self-supported Co(CO3)0.5(OH)∙0.11H2O nanoneedles coated with CoSe2-Ni3Se2 nanoparticles as highly active bifunctional electrocatalyst for overall water splitting[J]. Applied Surface Science,2019,495:143606. doi: 10.1016/j.apsusc.2019.143606
    [20] LIU H F, WANG Y D, LIN M, et al. Cobalt sulfide nanoparticles decorated on TiO2 nanotubes via thermal vapor sulfurization of conformal TiO2-coated Co(CO3)0.5(OH)∙0.11H2O core-shell nanowires for energy storage applications[J]. RSC Advances,2015,5(60):48647-48653. doi: 10.1039/C5RA07444D
    [21] GUI Y, QIAN L, TIAN K, et al. In situ growth of oxygen defect-rich ultrathin WO3 nanosheets for ultrafast recovery NO2 sensors[J]. IEEE Sensors Journal,2023,23(1):119-126. doi: 10.1109/JSEN.2022.3219614
    [22] LINCY H, JOSHUA GNANAMUYHU S, JOBE PRABAKAR P C, et al. Improved room temperature gas sensing performances of pristine WO3 nano particles[J]. Materials Today: Proceedings, 2023, 80: 1656-1664.
    [23] ZHOU T, LU P, ZHANG Z, et al. Perforated Co3O4 nanoneedles assembled in chrysanthemum-like Co3O4 structures for ultra-high sensitive hydrazine chemical sensor[J]. Sensors and Actuators B: Chemical,2016,235:457-465. doi: 10.1016/j.snb.2016.05.075
    [24] TRIPATHI S, TRIPATHI D, RAWAT R K, et al. Room temperature operable solid-state sensors for selective methanol vapour detection from orthorhombic WO3 nanoplates[J]. Materials Letters,2023,335:133840. doi: 10.1016/j.matlet.2023.133840
    [25] HUANG J, HU Q, GUO X, et al. Rethinking Co(CO3)0.5(OH)∙0.11H2O: A new property for highly selective electrochemical reduction of carbon dioxide to methanol in aqueous solution[J]. Green Chemistry,2018,20(13):2967-2972. doi: 10.1039/C7GC03744A
    [26] WEN Z, ZHU L, LI Y, et al. Mesoporous Co3O4 nanoneedle arrays for high-performance gas sensor[J]. Sensors and Actuators B: Chemical,2014,203:873-879. doi: 10.1016/j.snb.2014.06.124
    [27] BAI S, LIU H, SUN J, et al. Mechanism of enhancing the formaldehyde sensing properties of Co3O4 via Ag modification[J]. RSC Advances,2015,5(60):48619-48625. doi: 10.1039/C5RA05772H
    [28] HOSSEINI Z S, MORTEZAALI A. Room temperature H2S gas sensor based on rather aligned ZnO nanorods with flower-like structures[J]. Sensors and Actuators B: Chemical,2015,207:865-871. doi: 10.1016/j.snb.2014.10.085
    [29] ZHU L Y, YUAN K P, YANG J H, et al. Hierarchical highly ordered SnO2 nanobowl branched ZnO nanowires for ultrasensitive and selective hydrogen sulfide gas sensing[J]. Microsystems & Nanoengineering,2020,6(1):30.
    [30] YAN R, LIANG D T, TSEN L, et al. Kinetics and mechanisms of H2S adsorption by alkaline activated carbon[J]. Environmental Science & Technology,2002,36(20):4460-4466.
    [31] JANG J S, KOO W T, CHOI S J, et al. Metal organic framework-templated chemiresistor: Sensing type transition from P-to-N using hollow metal oxide polyhedron via galvanic replacement[J]. Journal of the American Chemical Society,2017,139(34):11868-11876. doi: 10.1021/jacs.7b05246
    [32] AMU-DARKO J N O, HUSSAIN S, ZHANG X, et al. Metal-organic frameworks-derived In2O3/ZnO porous hollow nanocages for highly sensitive H2S gas sensor[J]. Chemosphere,2023,314:137670. doi: 10.1016/j.chemosphere.2022.137670
    [33] XING X, XIAO X, WANG L, et al. Highly sensitive formaldehyde gas sensor based on hierarchically porous Ag-loaded ZnO heterojunction nanocomposites[J]. Sensors and Actuators B: Chemical,2017,247:797-806. doi: 10.1016/j.snb.2017.03.077
    [34] MAO L W, ZHU L Y, WU T T, et al. Excellent long-term stable H2S gas sensor based on Nb2O5/SnO2 core-shell heterostructure nanorods[J]. Applied Surface Science,2022,602:154339. doi: 10.1016/j.apsusc.2022.154339
    [35] XU T, ZHANG M, ZHAO F, et al. Highly sensitive detection of H2S gas at low temperature based on ZnCo2O4 microtube sensors[J]. Journal of Hazardous Materials,2022,440:129753. doi: 10.1016/j.jhazmat.2022.129753
    [36] SIK CHOI M, AHN J, YOUNG KIM M, et al. Changes in the crystal structure of SnO2 nanoparticles and improved H2S gas-sensing characteristics by Al doping[J]. Applied Surface Science,2021,565:150493. doi: 10.1016/j.apsusc.2021.150493
    [37] MODABERI M R, ROOYDELL R, BRAHMA S, et al. Enhanced response and selectivity of H2S sensing through controlled Ni doping into ZnO nanorods by using single metal organic precursors[J]. Sensors and Actuators B: Chemical,2018,273:1278-1290. doi: 10.1016/j.snb.2018.06.117
    [38] AKBARI-SAATLU M, PROCEK M, MATTSSON C, et al. Nanometer-thick ZnO/SnO2 heterostructures grown on alumina for H2S sensing[J]. ACS Applied Nano Materials,2022,5(5):6954-6963. doi: 10.1021/acsanm.2c00940
    [39] PATHAK A K, SWARGIARY K, KONGSAWANG N, et al. Recent advances in sensing materials targeting clinical volatile organic compound (VOC) biomarkers: A review[J]. Biosensors,2023,13(1):114. doi: 10.3390/bios13010114
    [40] PUNGINSANG M, ZAPPA D, COMINI E, et al. Selective H2S gas sensors based on ohmic hetero-interface of Au-functionalized WO3 nanowires[J]. Applied Surface Science,2022,571:151262. doi: 10.1016/j.apsusc.2021.151262
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  599
  • HTML全文浏览量:  213
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-03
  • 修回日期:  2023-06-08
  • 录用日期:  2023-06-24
  • 网络出版日期:  2023-07-03
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回