Preparation and H2S sensing performance of Co(CO3)0.5(OH)·0.11H2O/WO3 nanomaterials
-
摘要: 近年来,H2S作为哮喘和慢阻肺的新型生物标志物对人体健康监测具有重要意义,因此人们对低功耗、高选择性、低检出限和高稳定性H2S传感器的研究显得十分迫切。通过两步原位生长的方式合成了Co(CO3)0.5(OH)·0.11H2O/WO3纳米材料。以原位水热法合成的WO3纳米片为基底,通过调控水浴反应时间,在WO3纳米片上原位生长了不同的Co(CO3)0.5(OH)·0.11H2O/WO3纳米材料。利用FE-SEM、FTIR、XRD和TG等方法对复合材料进行表征和气敏性能测试。结果表明:反应20 min所制得的Co(CO3)0.5(OH)·0.11H2O/WO3复合材料具有最优异的气敏性能,在最佳工作温度(90℃)下对浓度为50×10−6 H2S气体的响应值高达109,响应和恢复时间分别为130 s和182 s,对H2S气体表现出优异的选择性。该复合材料在低浓度H2S (3×10−6) 氛围中,仍具有良好的响应恢复曲线。在一个月内进行的3次重复测试中,表现出较好的重复性和长期稳定性。Co(CO3)0.5(OH)·0.11H2O/WO3气敏材料的原位制备及气敏性能研究为气敏传感器器件的制备提供了新思路,为气敏材料的多样性提供了新途径。在环境检测和智能医疗方面有着潜在的应用价值。Abstract: In recent years, H2S as a novel biomarker for asthma and chronic obstructive pulmonary disease is of great significance to human health monitoring, so it is urgent to study H2S sensors with low power consumption, high selectivity, low detection limit and high stability. Co(CO3)0.5(OH)·0.11H2O/WO3 nanomaterials were synthesized by a two-step in situ growth method. Different Co(CO3)0.5(OH)·0.11H2O/WO3 nanomaterials were grown in situ on WO3 nanosheets by regulating the water bath reaction time using WO3 nanosheets as a substrate synthesized by in situ hydrothermal method. The composites were characterized by FE-SEM, FTIR, XRD and TG, and then tested for gas sensing performance. The results show that the Co(CO3)0.5(OH)·0.11H2O/WO3 composite prepared after 20 min reaction has the best gas-sensitive property, and the response value to 50×10−6 H2S gas at the optimal working temperature (90℃) is as high as 109. The response and recovery time are 130 s and 182 s respectively, showing excellent selectivity for H2S gas. The composite still has a good response/recovery curve in low concentration H2S (3×10−6) atmosphere. In three repeated tests conducted in one month, it showed good repeatability and long-term stability. The in-situ preparation of Co(CO3)0.5(OH)·0.11H2O/WO3 gas sensing materials and the study of gas sensing properties provide a new idea for the preparation of gas sensing devices and a new way for the diversity of gas sensing materials. It has potential application value in environmental detection and intelligent medical treatment.
-
Key words:
- nanomaterials /
- WO3 /
- Co(CO3)0.5(OH)·0.11H2O /
- H2S /
- composites /
- in situ /
- gas sensing
-
图 6 WO3和Co(CO3)0.5(OH)·0.11H2O/WO3复合材料的气敏性能:(a) 对H2S气体的温度-灵敏度曲线;(b) 对多种气体的选择性
Ra—Resistance in air atmosphere; Rg—Resistance in the target gas atmosphere
Figure 6. Gas sensing performance of WO3 and Co(CO3)0.5(OH)·0.11H2O/WO3 composites: (a) Temperature-sensitivity curves to H2S; (b) Response to various gases
表 1 不同复合材料的命名
Table 1. Naming of different composites
Sample Reaction time/min Co(CO3)0.5(OH)·0.11H2O/WO3-10 10 Co(CO3)0.5(OH)·0.11H2O/WO3-20 20 Co(CO3)0.5(OH)·0.11H2O/WO3-30 30 表 2 不同H2S气敏传感器的气敏性能对比
Table 2. Comparison of gas sensing performance of different H2S gas sensors
-
[1] NAKATE U T, BHUYAN P, YU Y T, et al. Synthesis and characterizations of highly responsive H2S sensor using p-type Co3O4 nanoparticles/nanorods mixed nanostructures[J]. International Journal of Hydrogen Energy,2022,47(12):8145-8154. doi: 10.1016/j.ijhydene.2021.12.115 [2] WANG Y, ZHANG S, XIAO D, et al. CuO/WO3 hollow microsphere p-n heterojunction sensor for continuous cycle detection of H2S gas[J]. Sensors and Actuators B: Chemical,2023,374:132823. doi: 10.1016/j.snb.2022.132823 [3] ALIANNEZHADI M, ABBASPOOR M, SHARIATMADAR TEHRANI F, et al. High photocatalytic WO3 nanoparticles synthesized using sol-gel method at different stirring times[J]. Optical and Quantum Electronics,2023,55(3):250. doi: 10.1007/s11082-022-04540-8 [4] ICIEK M, BILSKA WILKOSZ A, KOZDROWICKI M, et al. Reactive sulfur species and their significance in health and disease[J]. Bioscience Reports,2022,42(9):BSR20221006. doi: 10.1042/BSR20221006 [5] MOBTAKERI, HABASHYANI S, ÇOBAN Ö, et al. Effect of growth pressure on sulfur content of RF-magnetron sputtered WS2 films and thermal oxidation properties of them toward using Pd decorated WO3 based H2 gas sensor[J]. Sensors and Actuators B: Chemical,2023,381:133485. doi: 10.1016/j.snb.2023.133485 [6] TAN Y, ZHANG J. Highly sensitive ethanol gas sensors based on Co-doped SnO2 nanobelts and pure SnO2 nanobelts[J]. Physica E: Low-dimensional Systems and Nanostructures,2023,147:115604. doi: 10.1016/j.physe.2022.115604 [7] TSENG S F, CHEN P S, HSU S H, et al. Investigation of fiber laser-induced porous graphene electrodes in controlled atmospheres for ZnO nanorod-based NO2 gas sensors[J]. Applied Surface Science,2023,620:156847. doi: 10.1016/j.apsusc.2023.156847 [8] YIN J, LYU D, ZHAO J, et al. ZnO-MEMS sensor-cell prepared by inkjet printing for low concentration acetone detection[J]. Materials Letters,2023,340:134152. doi: 10.1016/j.matlet.2023.134152 [9] MATHANKUMAR G, HARISH S, MOHAN M K, et al. Enhanced selectivity and ultra-fast detection of NO2 gas sensor via Ag modified WO3 nanostructures for gas sensing applications[J]. Sensors and Actuators B: Chemical,2023,381:133374. doi: 10.1016/j.snb.2023.133374 [10] INABA M, ODA T, KONO M, et al. Effect of mixing ratio on NO2 gas sensor response with SnO2-decorated carbon nanotube channels fabricated by one-step dielectrophoretic assembly[J]. Sensors and Actuators B: Chemical,2021,344:130257. doi: 10.1016/j.snb.2021.130257 [11] LIU S, WANG M, GE C, et al. Enhanced room-temperature NO2 sensing performance of SnO2/Ti3C2 composite with double heterojunctions by controlling co-exposed {221} and {110} facets of SnO2[J]. Sensors and Actuators B: Chemical,2022,365:131919. doi: 10.1016/j.snb.2022.131919 [12] CHUMAKOVA V, MARIKUTSA A, PLATONOV V, et al. Distinct roles of additives in the improved sensitivity to CO of Ag-and Pd-modified nanosized LaFeO3[J]. Chemosensors,2023,11(1):60. doi: 10.3390/chemosensors11010060 [13] GUO X, DING Y, LIANG C, et al. Humidity-activated H2S sensor based on SnSe2/WO3 composite for evaluating the spoilage of eggs at room temperature[J]. Sensors and Actuators B: Chemical,2022,357:131424. doi: 10.1016/j.snb.2022.131424 [14] ZHU S, TIAN Q, WU G, et al. Highly sensitive and stable H2 gas sensor based on p-PdO-n-WO3-heterostructure-homogeneously-dispersing thin film[J]. International Journal of Hydrogen Energy,2022,47(40):17821-17834. doi: 10.1016/j.ijhydene.2022.03.237 [15] HE B, LIU H, LIN Z, et al. A new photocatalyst based on Co(CO3)0.5(OH)·0.11H2O/Bi2WO6 nanocomposites for high-efficiency cocatalyst-free O2 evolution[J]. Chemical Engi-neering Journal,2019,359:924-932. doi: 10.1016/j.cej.2018.11.094 [16] WANG C, WANG H, ZHAO D, et al. Simple synthesis of cobalt carbonate hydroxide hydrate and reduced graphene oxide hybrid structure for high-performance room temperature NH3 sensor[J]. Sensors,2019,19(3):615. doi: 10.3390/s19030615 [17] WANG Y, CHEN Y, LIU Y, et al. Urchin-like Ni1/3Co2/3(CO3)0.5OH·0.11H2O anchoring on polypyrrole nanotubes for supercapacitor electrodes[J]. Electrochimica Acta,2019,295:989-996. doi: 10.1016/j.electacta.2018.11.116 [18] LIU Q, CHEN Y, MA J, et al. Novel electrochemical deposition of Co(CO3)0.5(OH)∙0.11H2O nano-needles with folded umbrella-like architecture onto nickel foam for supercapacitors[J]. Surface and Coatings Technology,2021,421:127452. doi: 10.1016/j.surfcoat.2021.127452 [19] HAN Y, LI H, ZHANG M, et al. Self-supported Co(CO3)0.5(OH)∙0.11H2O nanoneedles coated with CoSe2-Ni3Se2 nanoparticles as highly active bifunctional electrocatalyst for overall water splitting[J]. Applied Surface Science,2019,495:143606. doi: 10.1016/j.apsusc.2019.143606 [20] LIU H F, WANG Y D, LIN M, et al. Cobalt sulfide nanoparticles decorated on TiO2 nanotubes via thermal vapor sulfurization of conformal TiO2-coated Co(CO3)0.5(OH)∙0.11H2O core-shell nanowires for energy storage applications[J]. RSC Advances,2015,5(60):48647-48653. doi: 10.1039/C5RA07444D [21] GUI Y, QIAN L, TIAN K, et al. In situ growth of oxygen defect-rich ultrathin WO3 nanosheets for ultrafast recovery NO2 sensors[J]. IEEE Sensors Journal,2023,23(1):119-126. doi: 10.1109/JSEN.2022.3219614 [22] LINCY H, JOSHUA GNANAMUYHU S, JOBE PRABAKAR P C, et al. Improved room temperature gas sensing performances of pristine WO3 nano particles[J]. Materials Today: Proceedings, 2023, 80: 1656-1664. [23] ZHOU T, LU P, ZHANG Z, et al. Perforated Co3O4 nanoneedles assembled in chrysanthemum-like Co3O4 structures for ultra-high sensitive hydrazine chemical sensor[J]. Sensors and Actuators B: Chemical,2016,235:457-465. doi: 10.1016/j.snb.2016.05.075 [24] TRIPATHI S, TRIPATHI D, RAWAT R K, et al. Room temperature operable solid-state sensors for selective methanol vapour detection from orthorhombic WO3 nanoplates[J]. Materials Letters,2023,335:133840. doi: 10.1016/j.matlet.2023.133840 [25] HUANG J, HU Q, GUO X, et al. Rethinking Co(CO3)0.5(OH)∙0.11H2O: A new property for highly selective electrochemical reduction of carbon dioxide to methanol in aqueous solution[J]. Green Chemistry,2018,20(13):2967-2972. doi: 10.1039/C7GC03744A [26] WEN Z, ZHU L, LI Y, et al. Mesoporous Co3O4 nanoneedle arrays for high-performance gas sensor[J]. Sensors and Actuators B: Chemical,2014,203:873-879. doi: 10.1016/j.snb.2014.06.124 [27] BAI S, LIU H, SUN J, et al. Mechanism of enhancing the formaldehyde sensing properties of Co3O4 via Ag modification[J]. RSC Advances,2015,5(60):48619-48625. doi: 10.1039/C5RA05772H [28] HOSSEINI Z S, MORTEZAALI A. Room temperature H2S gas sensor based on rather aligned ZnO nanorods with flower-like structures[J]. Sensors and Actuators B: Chemical,2015,207:865-871. doi: 10.1016/j.snb.2014.10.085 [29] ZHU L Y, YUAN K P, YANG J H, et al. Hierarchical highly ordered SnO2 nanobowl branched ZnO nanowires for ultrasensitive and selective hydrogen sulfide gas sensing[J]. Microsystems & Nanoengineering,2020,6(1):30. [30] YAN R, LIANG D T, TSEN L, et al. Kinetics and mechanisms of H2S adsorption by alkaline activated carbon[J]. Environmental Science & Technology,2002,36(20):4460-4466. [31] JANG J S, KOO W T, CHOI S J, et al. Metal organic framework-templated chemiresistor: Sensing type transition from P-to-N using hollow metal oxide polyhedron via galvanic replacement[J]. Journal of the American Chemical Society,2017,139(34):11868-11876. doi: 10.1021/jacs.7b05246 [32] AMU-DARKO J N O, HUSSAIN S, ZHANG X, et al. Metal-organic frameworks-derived In2O3/ZnO porous hollow nanocages for highly sensitive H2S gas sensor[J]. Chemosphere,2023,314:137670. doi: 10.1016/j.chemosphere.2022.137670 [33] XING X, XIAO X, WANG L, et al. Highly sensitive formaldehyde gas sensor based on hierarchically porous Ag-loaded ZnO heterojunction nanocomposites[J]. Sensors and Actuators B: Chemical,2017,247:797-806. doi: 10.1016/j.snb.2017.03.077 [34] MAO L W, ZHU L Y, WU T T, et al. Excellent long-term stable H2S gas sensor based on Nb2O5/SnO2 core-shell heterostructure nanorods[J]. Applied Surface Science,2022,602:154339. doi: 10.1016/j.apsusc.2022.154339 [35] XU T, ZHANG M, ZHAO F, et al. Highly sensitive detection of H2S gas at low temperature based on ZnCo2O4 microtube sensors[J]. Journal of Hazardous Materials,2022,440:129753. doi: 10.1016/j.jhazmat.2022.129753 [36] SIK CHOI M, AHN J, YOUNG KIM M, et al. Changes in the crystal structure of SnO2 nanoparticles and improved H2S gas-sensing characteristics by Al doping[J]. Applied Surface Science,2021,565:150493. doi: 10.1016/j.apsusc.2021.150493 [37] MODABERI M R, ROOYDELL R, BRAHMA S, et al. Enhanced response and selectivity of H2S sensing through controlled Ni doping into ZnO nanorods by using single metal organic precursors[J]. Sensors and Actuators B: Chemical,2018,273:1278-1290. doi: 10.1016/j.snb.2018.06.117 [38] AKBARI-SAATLU M, PROCEK M, MATTSSON C, et al. Nanometer-thick ZnO/SnO2 heterostructures grown on alumina for H2S sensing[J]. ACS Applied Nano Materials,2022,5(5):6954-6963. doi: 10.1021/acsanm.2c00940 [39] PATHAK A K, SWARGIARY K, KONGSAWANG N, et al. Recent advances in sensing materials targeting clinical volatile organic compound (VOC) biomarkers: A review[J]. Biosensors,2023,13(1):114. doi: 10.3390/bios13010114 [40] PUNGINSANG M, ZAPPA D, COMINI E, et al. Selective H2S gas sensors based on ohmic hetero-interface of Au-functionalized WO3 nanowires[J]. Applied Surface Science,2022,571:151262. doi: 10.1016/j.apsusc.2021.151262