Piezo-photocatalytic property of PbTi0.85Ni0.15O3/TiO2 nanorod array composite materials
-
摘要: 压电材料诱导的内建电场是调节电荷转移途径和抑制载流子复合的最有效策略之一。采用水热和溶胶凝胶两步法制备了PbTi0.85Ni0.15O3/TiO2纳米棒阵列复合材料。通过降解有机染料,复合材料展现了优异的压电光催化性能。经30 min, PbTi0.85Ni0.15O3/TiO2对亚甲基蓝(MB)的压电光催化降解率达到97.3%,降解反应速率为0.1215 min–1,是光催化降解速率(0.0372 min–1)的3.3倍,是压电催化降解速率(0.0211 min–1)的5.7倍。掺杂Ni后,带隙降低,载流子浓度增大,晶格畸变增大,压电光催化性能增强。添加牺牲剂实验和电子自旋共振波谱(ESR)实验结果表明,压电光催化降解中,•O2−和•OH是最主要的活性物质。此外, PbTi0.85Ni0.15O3/TiO2对不同染料的降解和循环5次后的降解率表明复合材料对多种染料具有良好的压电光催化降解性能和良好的稳定性。根据能带排列,提出压电极化导致的能带倾斜和弯曲可以促进光生载流子分离,从而使 PbTi0.85Ni0.15O3/TiO2具有优异的压电光催化染料降解性能。
-
关键词:
- PbTi0.85Ni0.15O3/TiO2 /
- 复合材料 /
- 压电光催化 /
- 降解 /
- 能带倾斜
Abstract: The built-in electric field induced by piezoelectric materials has been proven to be one of the most effective strategies for regulating charge transfer pathways and suppressing carrier recombination. PbTi0.85Ni0.15O3/TiO2 nanorod arrays compsite were fabricated via a two-step process comprising hydrothermal and sol-gel methods. By degrading organic dyes, composite materials exhibit excellent piezo-photocatalytic performance. After 30 minutes, the piezo-photocatalytic degradation rate of methylene blue (MB) by PbTi0.85Ni0.15O3/TiO2 reached 97.3%, with a degradation reaction rate of 0.1215 min–1, which is 3.3 times of the photocatalytic degradation rate (0.0372 min–1) and 5.7 times of the piezoelectric catalytic degradation rate (0.0211 min–1). After doping Ni, the band gap decreases, the carrier concentration increases, the lattice distortion increases, and the piezo-photocatalytic performance enhances. The results of sacrificial agent addition experiments and electron spin resonance spectroscopy (ESR) experiments indicate that •O2− and •OH are the main active spices in piezo-photocatalytic degradation. After doping Ni, the band gap decreases, the carrier concentration increases, and the lattice distortion increases, resulting in superior piezo-photocatalytic performance of PbTi0.85Ni0.15O3/TiO2 compared to PbTiO3/TiO2. In addition, the degradation of different dyes by PbTi0.85Ni0.15O3/TiO2 and the degradation rate after 5 cycles indicate that the composite material has good piezo-photocatalytic degradation property for various dyes and good stability. According to the energy band arrangement, it is proposed that the tilting and bending of the energy band caused by piezoelectric polarization can promote the separation of photogenerated carriers, so that dye degradation has excellent piezoelectric photocatalytic performance.-
Key words:
- PbTi0.85Ni0.15O3/TiO2 /
- composite material /
- piezo-photocatalysis /
- degradation /
- band tilting
-
图 2 TiO2、PbTiO3/TiO2和 PbTi0.85Ni0.15O3/TiO2的SEM图像和EDS能谱图;(a) TiO2纳米棒阵列的表面图像;(b) TiO2纳米棒阵列的截面图像;(c) PbTiO3/TiO2表面图像;(d) PbTi0.85Ni0.15O3/TiO2表面图像;(e) EDS能谱图
Figure 2. SEM images and EDS patterns of TiO2, PbTiO3/TiO2 and PbTi0.85Ni0.15O3/TiO2 samples: (a) Surface of TiO2 nanorods arrays; (b) Cross-section image of TiO2 nanorods arrays; (c) Surface of PbTiO3/TiO2; (d) Surface of PbTi0.85Ni0.15O3/TiO2; (e) EDS mapping
图 5 PbTi0.85Ni0.15O3/TiO2复合材料对亚甲基蓝的光催化、压电催化和压电-光催化降解图: (a)降解效率;(b)降解速率k
C0—Initial concentration; Ct—Concentration after degradation
Figure 5. Degradation profiles of methylene blue of photocatalysis, piezocatalysis and piezo-photocatalysis for PbTi0.85Ni0.15O3/TiO2 composite: (a) Degradation efficiency; (b) Degradation rate k
图 7 PbTi0.85Ni0.15O3/TiO2压电光催化降解亚甲基蓝(MB)的稳定性: (a) PbTi0.85Ni0.15O3/TiO2的重复催化活性;(b)催化降解前和降解5次后PbTi0.85Ni0.15O3/TiO2的XRD图谱和SEM图像
Figure 7. Stability of PbTi0.85Ni0.15O3/TiO2 for methylene blue (MB) degradation under ultrasound and light: (a) Repeated piezo-phtocatalytic activity of PbTi0.85Ni0.15O3/TiO2; (b) XRD patterns of original PbTi0.85Ni0.15O3/TiO2 and after five recycles degradation (Inset is SEM image)
图 8 (a)压电和光协同作用时 PbTi0.85Ni0.15O3/TiO2对不同起始浓度MB的降解活性;(b)压电和光协同作用时 PbTi0.85Ni0.15O3/TiO2对不同有机污染物的降解活性(插图为PbTi0.85Ni0.15O3/TiO2的降解反应速率常数k)
MB—Methylene blue; MO—Methyl orange; RhB—Rhodamine B; AO7—Acid orange 7
Figure 8. (a) Different-concentration MB piezophotocatalysis degradation activity; (b) Piezophotocatalysis degradation activity of different organic pollutants in PbTi0.85Ni0.15O3/TiO2 (Inset shows reaction rate constant k for PbTi0.85Ni0.15O3/TiO2 under ultrasound and light)
图 9 (a)添加牺牲剂时PbTi0.85Ni0.15O3/TiO2压电光催化降解MB的效率;(b)相应的反应速率常数k;(c) •OH的ESR图谱;(d) •O2−的ESR图谱
BQ—Benzoquinone; TBA—Tert-butyl alcohol; EDTA-2Na—Ethylenediaminetetraacetic acid disodiu-msodium salt; DMPO—5, 5-dimethyl-1-pyrrolidine nitrogen oxide
Figure 9. (a) Piezo-photocatalytic MB degradation activity with and without scavengers for PbTi0.85Ni0.15O3/TiO2; (b) Corresponding degradation reactive rate k; (c) ESR spectra of •OH; (d) ESR spectra of •O2−
-
[1] FU B, LI J J, JIANG H D, et al. Modulation of electric dipoles inside electrospun BaTiO3@TiO2 core-shell nanofibers for enhanced piezo-photocatalytic degradation of organic pollutants[J]. Nano Energy,2022,93:106841. doi: 10.1016/j.nanoen.2021.106841 [2] TU S C, GUO Y X, ZHANG Y H, et al. Piezocatalysis and piezo-photocatalysis: Catalysts classification and modification strategy, reaction mechanism, and practical application[J]. Advanced Functional Materials,2020,30(48):2005158. doi: 10.1002/adfm.202005158 [3] 张鹏, 王欣, 李智. 钛酸钡基纳米材料的压电催化性能研究进展[J]. 复合材料学报, 2023, 40(3):1285-1299. doi: 10.13801/j.cnki.fhclxb.20220629.002ZHANG Peng, WANG Xin, LI Zhi. Research progress in piezoelectric catalysis of barium titanate nanomaterials[J]. Acta Materiae Compositae Sinica,2023,40(3):1285-1299(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220629.002 [4] JIANG X Y, WANG H R, WANG X, et al. Synergetic effect of piezoelectricity and Ag deposition on photocatalytic performance of barium titanate perovskite[J]. Solar Energy,2021,224:455-461. doi: 10.1016/j.solener.2021.06.032 [5] CHEN F, HUANG H W, GUO L, et al. The role of polarization in photocatalysis[J]. Angewandte Chemie International Edition,2019,58(30):10061-10073. doi: 10.1002/anie.201901361 [6] TU C Y, WU J M. Localized surface plasmon resonance coupling with piezophototronic effect for enhancing hydrogen evolution reaction with Au@MoS2 nanoflowers[J]. Nano Energy,2021,87:106131. doi: 10.1016/j.nanoen.2021.106131 [7] TANG Q, WU J, CHEN X Z, et al. Tuning oxygen vacancies in Bi4Ti3O12 nanosheets to boost piezo-photocatalytic activity[J]. Nano Energy,2023,108:108202. doi: 10.1016/j.nanoen.2023.108202 [8] CHEN T, ZHU Z J, CHEN F, et al. Low-valence B-site cation substitution triggering polarization and oxygen vacancy enhancement for elevating piezocatalytic activity on Bi2MoO6[J]. Applied Surface Science,2023,616:156467. doi: 10.1016/j.apsusc.2023.156467 [9] LIU Y, YE S, XIE H C, et al. Internal-field-enhanced charge separation in a single-domain ferroelectric PbTiO3 photocatalyst[J]. Advanced Materials,2020,32(7):1906513. doi: 10.1002/adma.201906513 [10] QIU C R, WANG B, ZHANG N, et al. Transparent ferroelectric crystals with ultrahigh piezoelectricity[J]. Nature,2020,577(7790):350-354. doi: 10.1038/s41586-019-1891-y [11] XIE Z S, TANG X L, SHI J F, et al. Excellent piezo-photocatalytic performance of Bi4Ti3O12 nanoplates synthesized by molten-salt method[J]. Nano Energy,2022,98:107247. doi: 10.1016/j.nanoen.2022.107247 [12] HUANG X Y, LEI R, YUAN J, et al. Insight into the piezo-photo coupling effect of PbTiO3/CdS composites for piezo-photocatalytic hydrogen production[J]. Applied Catalysis B: Environmental,2021,282:119586. doi: 10.1016/j.apcatb.2020.119586 [13] YANG W G, YU Y H, STARR M B, et al. Ferroelectric polarization-enhanced photoelectrochemical water splitting in TiO2-BaTiO3 core-shell nanowire photoanodes[J]. Nano Letters,2015,15(11):7574-7580. doi: 10.1021/acs.nanolett.5b03988 [14] LIU Y L, WU J M. Synergistically catalytic activities of BiFeO3/TiO2 core-shell nanocomposites for degradation of organic dye molecule through piezophototronic effect[J]. Nano Energy,2019,56:74-81. doi: 10.1016/j.nanoen.2018.11.028 [15] ZHAO W, ZHANG Q, WANG H G, et al. Enhanced catalytic performance of Ag2O/BaTiO3 heterostructure microspheres by the piezo/pyro-phototronic synergistic effect[J]. Nano Energy,2020,73:104783. doi: 10.1016/j.nanoen.2020.104783 [16] ZHENG Y Q, JIA Y M, LI H M, et al. Enhanced piezo-electro-chemical coupling of BaTiO3/g-C3N4 nanocomposite for vibration-catalysis[J]. Journal of Materials Science,2020,55(30):14787-14797. doi: 10.1007/s10853-020-05001-x [17] KUMAR S, SINGH A P, BERA C, et al. Visible-light-driven photoelectrochemical and photocatalytic performance of NaNbO3/Ag2S core-shell heterostructures[J]. ChemSusChem,2016,9(14):1850-1858. doi: 10.1002/cssc.201600397 [18] BAI Y, ZHAO J Z, LI Y Y, et al. Preparation and photocatalytic performance of TiO2/PbTiO3 fiber composite enhanced by external force induced piezoelectric field[J]. Journal of the American Ceramic Society,2019,102(9):5415-5423. doi: 10.1111/jace.16430 [19] LIU Z Y, REN Z H, XIAO Z, et al. Size-controlled single-crystal perovskite PbTiO3 nanofibers from edge-shared TiO6 octahedron columns[J]. Small,2012,8(19):2959-2963. doi: 10.1002/smll.201200795 [20] YU Y F, REN Z H, LI M, et al. Facile synthesis and visible photocatalytic activity of single-crystal TiO2/PbTiO3 heterostructured nanofiber composites[J]. CrystEngComm,2015,17(5):1024-1029. doi: 10.1039/C4CE01864H [21] WAN G D, YANG Y Q, ZHU H Z, et al. Selectively constructing sandwich-like heterostructure of CdS/PbTiO3/TiO2 to improve visible-light photocatalytic H2 evolution[J]. Science China Materials,2022,65(12):3428-3434. doi: 10.1007/s40843-022-2067-5 [22] ZHENG T, DENG H M, ZHOU W L, et al. Bandgap modulation and magnetic switching in PbTiO3 ferroelectrics by transition elements doping[J]. Ceramics International,2016,42(5):6033-6038. doi: 10.1016/j.ceramint.2015.12.157 [23] ZHAO C W, LUO B C, GUO S J, et al. Enhanced electrical and photocurrent characteristics of sol-gel derived Ni-doped PbTiO3 thin films[J]. Ceramics International,2017,43(10):7861-7865. doi: 10.1016/j.ceramint.2017.03.102 [24] ZHOU W L, DENG H M, YU L, et al. Magnetism switching and band-gap narrowing in Ni-doped PbTiO3 thin films[J]. Journal of Applied Physics,2015,117(19):194102. doi: 10.1063/1.4921459 [25] JIANG B B, IOCOZZIA J, ZHAO L, et al. Barium titanate at the nanoscale: Controlled synthesis and dielectric and ferroelectric properties[J]. Chemical Society Reviews,2019,48(4):1194-1228. doi: 10.1039/C8CS00583D [26] PAN L, SUN S C, CHEN Y, et al. Advances in piezo-phototronic effect enhanced photocatalysis and photoelectrocatalysis[J]. Advanced Energy Materials,2020,10(15):2000214. doi: 10.1002/aenm.202000214 [27] FENG Y W, LI H, LING L L, et al. Enhanced photocatalytic degradation performance by fluid-induced piezoelectric field[J]. Environmental Science & Technology,2018,52(14):7842-7848. [28] LIU D M, SONG Y W, XIN Z J, et al. High-piezocatalytic performance of eco-friendly (Bi1/2Na1/2)TiO3-based nanofibers by electrospinning[J]. Nano Energy,2019,65:104024. doi: 10.1016/j.nanoen.2019.104024 [29] ZHENG Y, WU X Y, ZHANG Y C, et al. Highly efficient harvesting of vibration energy for complex wastewater purification using Bi5Ti3FeO15 with controlled oxygen vacancies[J]. Chemical Engineering Journal,2023,453:139919. doi: 10.1016/j.cej.2022.139919 [30] DI G L, ZHU Z L, ZHANG H, et al. Simultaneous sulfamethazine oxidation and bromate reduction by Pd-mediated Z-scheme Bi2MoO6/g-C3N4 photocatalysts: Synergetic mechanism and degradative pathway[J]. Chemical Engineering Journal,2020,401:126061. doi: 10.1016/j.cej.2020.126061 [31] LIU Q, ZHAI D, XIAO Z D, et al. Piezo-photoelectronic coupling effect of BaTiO3@TiO2 nanowires for highly concentrated dye degradation[J]. Nano Energy,2022,92:106702. doi: 10.1016/j.nanoen.2021.106702