留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PbTi0.85Ni0.15O3/TiO2纳米棒阵列复合材料的压电光催化性能

周小桔 钱俊 胡正龙 任一鸣

周小桔, 钱俊, 胡正龙, 等. PbTi0.85Ni0.15O3/TiO2纳米棒阵列复合材料的压电光催化性能[J]. 复合材料学报, 2024, 41(3): 1367-1377. doi: 10.13801/j.cnki.fhclxb.20230630.001
引用本文: 周小桔, 钱俊, 胡正龙, 等. PbTi0.85Ni0.15O3/TiO2纳米棒阵列复合材料的压电光催化性能[J]. 复合材料学报, 2024, 41(3): 1367-1377. doi: 10.13801/j.cnki.fhclxb.20230630.001
ZHOU Xiaoju, QIAN Jun, HU Zhenglong, et al. Piezo-photocatalytic property of PbTi0.85Ni0.15O3/TiO2 nanorod array composite materials[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1367-1377. doi: 10.13801/j.cnki.fhclxb.20230630.001
Citation: ZHOU Xiaoju, QIAN Jun, HU Zhenglong, et al. Piezo-photocatalytic property of PbTi0.85Ni0.15O3/TiO2 nanorod array composite materials[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1367-1377. doi: 10.13801/j.cnki.fhclxb.20230630.001

PbTi0.85Ni0.15O3/TiO2纳米棒阵列复合材料的压电光催化性能

doi: 10.13801/j.cnki.fhclxb.20230630.001
基金项目: 国家自然科学基金(5150211);湖北科技学院科研项目(2020-22 GP08);横向项目(2023 HX031)
详细信息
    通讯作者:

    钱俊,硕士,副教授,硕士生导师,研究方向为光电材料合成与应用 E-mail: QJ@gxuwz.edu.cn;

    胡正龙,博士,副教授,硕士生导师,研究方向为功能纳米材料 E-mail: huzhenglong@hbust.edu.cn

  • 中图分类号: O649.4;TB332

Piezo-photocatalytic property of PbTi0.85Ni0.15O3/TiO2 nanorod array composite materials

Funds: National Natural Science Foundation of China (5150211); Scientific Research Project of Hubei University of Science and Technology (2020-22 GP08); Horizontal Research Projects (2023 HX031)
  • 摘要: 压电材料诱导的内建电场是调节电荷转移途径和抑制载流子复合的最有效策略之一。采用水热和溶胶凝胶两步法制备了PbTi0.85Ni0.15O3/TiO2纳米棒阵列复合材料。通过降解有机染料,复合材料展现了优异的压电光催化性能。经30 min, PbTi0.85Ni0.15O3/TiO2对亚甲基蓝(MB)的压电光催化降解率达到97.3%,降解反应速率为0.1215 min–1,是光催化降解速率(0.0372 min–1)的3.3倍,是压电催化降解速率(0.0211 min–1)的5.7倍。掺杂Ni后,带隙降低,载流子浓度增大,晶格畸变增大,压电光催化性能增强。添加牺牲剂实验和电子自旋共振波谱(ESR)实验结果表明,压电光催化降解中,•O2和•OH是最主要的活性物质。此外, PbTi0.85Ni0.15O3/TiO2对不同染料的降解和循环5次后的降解率表明复合材料对多种染料具有良好的压电光催化降解性能和良好的稳定性。根据能带排列,提出压电极化导致的能带倾斜和弯曲可以促进光生载流子分离,从而使 PbTi0.85Ni0.15O3/TiO2具有优异的压电光催化染料降解性能。

     

  • 图  1  (a) TiO2、PbTiO3/TiO2和 PbTi0.85Ni0.15O3/TiO2纳米棒阵列的XRD图谱;(b) 2θ=32°附近的放大XRD图谱

    FTO—Conductive glass

    Figure  1.  (a) XRD patterns of TiO2, PbTiO3/TiO2 and PbTi0.85Ni0.15O3/TiO2 nanorods arrays; (b) Magnified XRD patterns around 2θ=32°

    图  2  TiO2、PbTiO3/TiO2和 PbTi0.85Ni0.15O3/TiO2的SEM图像和EDS能谱图;(a) TiO2纳米棒阵列的表面图像;(b) TiO2纳米棒阵列的截面图像;(c) PbTiO3/TiO2表面图像;(d) PbTi0.85Ni0.15O3/TiO2表面图像;(e) EDS能谱图

    Figure  2.  SEM images and EDS patterns of TiO2, PbTiO3/TiO2 and PbTi0.85Ni0.15O3/TiO2 samples: (a) Surface of TiO2 nanorods arrays; (b) Cross-section image of TiO2 nanorods arrays; (c) Surface of PbTiO3/TiO2; (d) Surface of PbTi0.85Ni0.15O3/TiO2; (e) EDS mapping

    图  3  PbTiO3和PbTi0.85Ni0.15O3的Raman图谱

    A—Symmetric vibrations; B—Asymmectric vibrations; E—Elliptic vibrations; TO—Transverse optical mode; LO—Longitudinal optical mode

    Figure  3.  Raman scattering spectra for the PbTiO3 and PbTi0.85Ni0.15O3 samples

    图  4  TiO2、PbTiO3和 PbTi0.85Ni0.15O3的紫外可见吸收光谱(a)和带隙图(b)

    α—Absorption coefficient; —Photon energy

    Figure  4.  UV-Vis absorption spectra (a) and band gap (b) of TiO2 nanorod arrays, PbTiO3 and PbTi0.85Ni0.15O3 thin films

    图  5  PbTi0.85Ni0.15O3/TiO2复合材料对亚甲基蓝的光催化、压电催化和压电-光催化降解图: (a)降解效率;(b)降解速率k

    C0—Initial concentration; Ct—Concentration after degradation

    Figure  5.  Degradation profiles of methylene blue of photocatalysis, piezocatalysis and piezo-photocatalysis for PbTi0.85Ni0.15O3/TiO2 composite: (a) Degradation efficiency; (b) Degradation rate k

    图  6  TiO2、PbTiO3、PbTiO3/TiO2和 PbTi0.85Ni0.15O3/TiO2的压电-光催化活性比较: (a)压电光催化活性;(b)降解速率k

    Figure  6.  Comparison of piezo-photocatalytic activities for the TiO2, PbTiO3, PbTiO3/TiO2 and PbTi0.85Ni0.15O3/TiO2: (a) Piezo-photocatalytic activity; (b) Degradation rate k

    图  7  PbTi0.85Ni0.15O3/TiO2压电光催化降解亚甲基蓝(MB)的稳定性: (a) PbTi0.85Ni0.15O3/TiO2的重复催化活性;(b)催化降解前和降解5次后PbTi0.85Ni0.15O3/TiO2的XRD图谱和SEM图像

    Figure  7.  Stability of PbTi0.85Ni0.15O3/TiO2 for methylene blue (MB) degradation under ultrasound and light: (a) Repeated piezo-phtocatalytic activity of PbTi0.85Ni0.15O3/TiO2; (b) XRD patterns of original PbTi0.85Ni0.15O3/TiO2 and after five recycles degradation (Inset is SEM image)

    图  8  (a)压电和光协同作用时 PbTi0.85Ni0.15O3/TiO2对不同起始浓度MB的降解活性;(b)压电和光协同作用时 PbTi0.85Ni0.15O3/TiO2对不同有机污染物的降解活性(插图为PbTi0.85Ni0.15O3/TiO2的降解反应速率常数k)

    MB—Methylene blue; MO—Methyl orange; RhB—Rhodamine B; AO7—Acid orange 7

    Figure  8.  (a) Different-concentration MB piezophotocatalysis degradation activity; (b) Piezophotocatalysis degradation activity of different organic pollutants in PbTi0.85Ni0.15O3/TiO2 (Inset shows reaction rate constant k for PbTi0.85Ni0.15O3/TiO2 under ultrasound and light)

    图  9  (a)添加牺牲剂时PbTi0.85Ni0.15O3/TiO2压电光催化降解MB的效率;(b)相应的反应速率常数k;(c) •OH的ESR图谱;(d) •O2的ESR图谱

    BQ—Benzoquinone; TBA—Tert-butyl alcohol; EDTA-2Na—Ethylenediaminetetraacetic acid disodiu-msodium salt; DMPO—5, 5-dimethyl-1-pyrrolidine nitrogen oxide

    Figure  9.  (a) Piezo-photocatalytic MB degradation activity with and without scavengers for PbTi0.85Ni0.15O3/TiO2; (b) Corresponding degradation reactive rate k; (c) ESR spectra of •OH; (d) ESR spectra of •O2

    图  10  催化剂的电化学性能:(a) TiO2、PbTiO3/TiO2、PbTi0.85Ni0.15O3/TiO2的电化学阻抗谱;(b) TiO2、PbTiO3和PbTi0.85Ni0.15O3的Mott-Schottky曲线

    C—Capacitance

    Figure  10.  Electrichemical properties of catalyst: (a) EIS of TiO2, PbTiO3/TiO2 and PbTi0.85Ni0.15O3/TiO2; (b) Mott-Schottky plots of TiO2, PbTiO3 and PbTi0.85Ni0.15O3

    图  11  PbTi0.85Ni0.15O3的能带排列和压电光催化原理图:(a)仅光照时;(b)超声和光同时作用时

    NHE—Normal hydrogen electrode; P—Polarization intensity

    Figure  11.  Principle scheme of the piezo-photocatalysis contains band tilting and surface reaction for PbTi0.85Ni0.15O3: (a) Illumination only; (b) Ultrasound and light co-effective

  • [1] FU B, LI J J, JIANG H D, et al. Modulation of electric dipoles inside electrospun BaTiO3@TiO2 core-shell nanofibers for enhanced piezo-photocatalytic degradation of organic pollutants[J]. Nano Energy,2022,93:106841. doi: 10.1016/j.nanoen.2021.106841
    [2] TU S C, GUO Y X, ZHANG Y H, et al. Piezocatalysis and piezo-photocatalysis: Catalysts classification and modification strategy, reaction mechanism, and practical application[J]. Advanced Functional Materials,2020,30(48):2005158. doi: 10.1002/adfm.202005158
    [3] 张鹏, 王欣, 李智. 钛酸钡基纳米材料的压电催化性能研究进展[J]. 复合材料学报, 2023, 40(3):1285-1299. doi: 10.13801/j.cnki.fhclxb.20220629.002

    ZHANG Peng, WANG Xin, LI Zhi. Research progress in piezoelectric catalysis of barium titanate nanomaterials[J]. Acta Materiae Compositae Sinica,2023,40(3):1285-1299(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220629.002
    [4] JIANG X Y, WANG H R, WANG X, et al. Synergetic effect of piezoelectricity and Ag deposition on photocatalytic performance of barium titanate perovskite[J]. Solar Energy,2021,224:455-461. doi: 10.1016/j.solener.2021.06.032
    [5] CHEN F, HUANG H W, GUO L, et al. The role of polarization in photocatalysis[J]. Angewandte Chemie International Edition,2019,58(30):10061-10073. doi: 10.1002/anie.201901361
    [6] TU C Y, WU J M. Localized surface plasmon resonance coupling with piezophototronic effect for enhancing hydrogen evolution reaction with Au@MoS2 nanoflowers[J]. Nano Energy,2021,87:106131. doi: 10.1016/j.nanoen.2021.106131
    [7] TANG Q, WU J, CHEN X Z, et al. Tuning oxygen vacancies in Bi4Ti3O12 nanosheets to boost piezo-photocatalytic activity[J]. Nano Energy,2023,108:108202. doi: 10.1016/j.nanoen.2023.108202
    [8] CHEN T, ZHU Z J, CHEN F, et al. Low-valence B-site cation substitution triggering polarization and oxygen vacancy enhancement for elevating piezocatalytic activity on Bi2MoO6[J]. Applied Surface Science,2023,616:156467. doi: 10.1016/j.apsusc.2023.156467
    [9] LIU Y, YE S, XIE H C, et al. Internal-field-enhanced charge separation in a single-domain ferroelectric PbTiO3 photocatalyst[J]. Advanced Materials,2020,32(7):1906513. doi: 10.1002/adma.201906513
    [10] QIU C R, WANG B, ZHANG N, et al. Transparent ferroelectric crystals with ultrahigh piezoelectricity[J]. Nature,2020,577(7790):350-354. doi: 10.1038/s41586-019-1891-y
    [11] XIE Z S, TANG X L, SHI J F, et al. Excellent piezo-photocatalytic performance of Bi4Ti3O12 nanoplates synthesized by molten-salt method[J]. Nano Energy,2022,98:107247. doi: 10.1016/j.nanoen.2022.107247
    [12] HUANG X Y, LEI R, YUAN J, et al. Insight into the piezo-photo coupling effect of PbTiO3/CdS composites for piezo-photocatalytic hydrogen production[J]. Applied Catalysis B: Environmental,2021,282:119586. doi: 10.1016/j.apcatb.2020.119586
    [13] YANG W G, YU Y H, STARR M B, et al. Ferroelectric polarization-enhanced photoelectrochemical water splitting in TiO2-BaTiO3 core-shell nanowire photoanodes[J]. Nano Letters,2015,15(11):7574-7580. doi: 10.1021/acs.nanolett.5b03988
    [14] LIU Y L, WU J M. Synergistically catalytic activities of BiFeO3/TiO2 core-shell nanocomposites for degradation of organic dye molecule through piezophototronic effect[J]. Nano Energy,2019,56:74-81. doi: 10.1016/j.nanoen.2018.11.028
    [15] ZHAO W, ZHANG Q, WANG H G, et al. Enhanced catalytic performance of Ag2O/BaTiO3 heterostructure microspheres by the piezo/pyro-phototronic synergistic effect[J]. Nano Energy,2020,73:104783. doi: 10.1016/j.nanoen.2020.104783
    [16] ZHENG Y Q, JIA Y M, LI H M, et al. Enhanced piezo-electro-chemical coupling of BaTiO3/g-C3N4 nanocomposite for vibration-catalysis[J]. Journal of Materials Science,2020,55(30):14787-14797. doi: 10.1007/s10853-020-05001-x
    [17] KUMAR S, SINGH A P, BERA C, et al. Visible-light-driven photoelectrochemical and photocatalytic performance of NaNbO3/Ag2S core-shell heterostructures[J]. ChemSusChem,2016,9(14):1850-1858. doi: 10.1002/cssc.201600397
    [18] BAI Y, ZHAO J Z, LI Y Y, et al. Preparation and photocatalytic performance of TiO2/PbTiO3 fiber composite enhanced by external force induced piezoelectric field[J]. Journal of the American Ceramic Society,2019,102(9):5415-5423. doi: 10.1111/jace.16430
    [19] LIU Z Y, REN Z H, XIAO Z, et al. Size-controlled single-crystal perovskite PbTiO3 nanofibers from edge-shared TiO6 octahedron columns[J]. Small,2012,8(19):2959-2963. doi: 10.1002/smll.201200795
    [20] YU Y F, REN Z H, LI M, et al. Facile synthesis and visible photocatalytic activity of single-crystal TiO2/PbTiO3 heterostructured nanofiber composites[J]. CrystEngComm,2015,17(5):1024-1029. doi: 10.1039/C4CE01864H
    [21] WAN G D, YANG Y Q, ZHU H Z, et al. Selectively constructing sandwich-like heterostructure of CdS/PbTiO3/TiO2 to improve visible-light photocatalytic H2 evolution[J]. Science China Materials,2022,65(12):3428-3434. doi: 10.1007/s40843-022-2067-5
    [22] ZHENG T, DENG H M, ZHOU W L, et al. Bandgap modulation and magnetic switching in PbTiO3 ferroelectrics by transition elements doping[J]. Ceramics International,2016,42(5):6033-6038. doi: 10.1016/j.ceramint.2015.12.157
    [23] ZHAO C W, LUO B C, GUO S J, et al. Enhanced electrical and photocurrent characteristics of sol-gel derived Ni-doped PbTiO3 thin films[J]. Ceramics International,2017,43(10):7861-7865. doi: 10.1016/j.ceramint.2017.03.102
    [24] ZHOU W L, DENG H M, YU L, et al. Magnetism switching and band-gap narrowing in Ni-doped PbTiO3 thin films[J]. Journal of Applied Physics,2015,117(19):194102. doi: 10.1063/1.4921459
    [25] JIANG B B, IOCOZZIA J, ZHAO L, et al. Barium titanate at the nanoscale: Controlled synthesis and dielectric and ferroelectric properties[J]. Chemical Society Reviews,2019,48(4):1194-1228. doi: 10.1039/C8CS00583D
    [26] PAN L, SUN S C, CHEN Y, et al. Advances in piezo-phototronic effect enhanced photocatalysis and photoelectrocatalysis[J]. Advanced Energy Materials,2020,10(15):2000214. doi: 10.1002/aenm.202000214
    [27] FENG Y W, LI H, LING L L, et al. Enhanced photocatalytic degradation performance by fluid-induced piezoelectric field[J]. Environmental Science & Technology,2018,52(14):7842-7848.
    [28] LIU D M, SONG Y W, XIN Z J, et al. High-piezocatalytic performance of eco-friendly (Bi1/2Na1/2)TiO3-based nanofibers by electrospinning[J]. Nano Energy,2019,65:104024. doi: 10.1016/j.nanoen.2019.104024
    [29] ZHENG Y, WU X Y, ZHANG Y C, et al. Highly efficient harvesting of vibration energy for complex wastewater purification using Bi5Ti3FeO15 with controlled oxygen vacancies[J]. Chemical Engineering Journal,2023,453:139919. doi: 10.1016/j.cej.2022.139919
    [30] DI G L, ZHU Z L, ZHANG H, et al. Simultaneous sulfamethazine oxidation and bromate reduction by Pd-mediated Z-scheme Bi2MoO6/g-C3N4 photocatalysts: Synergetic mechanism and degradative pathway[J]. Chemical Engineering Journal,2020,401:126061. doi: 10.1016/j.cej.2020.126061
    [31] LIU Q, ZHAI D, XIAO Z D, et al. Piezo-photoelectronic coupling effect of BaTiO3@TiO2 nanowires for highly concentrated dye degradation[J]. Nano Energy,2022,92:106702. doi: 10.1016/j.nanoen.2021.106702
  • 加载中
图(11)
计量
  • 文章访问数:  593
  • HTML全文浏览量:  501
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-28
  • 修回日期:  2023-05-31
  • 录用日期:  2023-06-11
  • 网络出版日期:  2023-07-03
  • 刊出日期:  2024-03-01

目录

    /

    返回文章
    返回