Preparation and characterization of Basil essential oil nanoparticles/polyvinylpyrrolidone-polyvinyl alcohol hydrogel wound dressing
-
摘要: 罗勒精油(Basil essential oil,BEO)是一种绿色、安全的抑菌剂。然而,BEO的强挥发性限制了其在抑菌伤口敷料领域的应用。本文采用纳米沉淀法制备了纳米罗勒精油(BEO@Zein(玉米醇溶蛋白)),然后将其负载在以聚乙烯吡咯烷酮(PVP)和聚乙烯醇(PVA)为基材的水凝胶上,通过冻融循环形成了BEO@Zein/PVP-PVA水凝胶伤口敷料,对BEO@Zein和水凝胶的微观形貌和结构进行表征,对水凝胶的抑菌性能、力学性能、溶胀保湿性、降解性、血液相容性进行研究。结果表明:BEO@Zein形成了以BEO为核、Zein为壳的纳米球形结构(平均粒径为56.3 nm),显著降低了BEO挥发性。BEO@Zein/PVP-PVA水凝胶可以缓慢释放BEO,从而表现出优异的缓释抑菌性能。因此,BEO@Zein/PVP-PVA水凝胶具有良好的抑菌持久性(超过72 h)。此外,水凝胶还表现出显著的抗细菌生物膜性能。BEO@Zein/PVP-PVA水凝胶的力学性能、溶胀保湿性、降解性和血液相容性均表现良好。研究表明:BEO@Zein/PVP-PVA水凝胶是一种良好的伤口敷料材料。Abstract: Basil essential oil (BEO) is a green and safe antibacterial agent. However, the high volatility of BEO has limited its application in the field of antibacterial wound dressings. BEO nanoparticles (BEO@Zein) were prepared by nanoprecipitation method. They were then loaded on the hydrogel based on polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) to form BEO@Zein/PVP-PVA hydrogel wound dressing by freeze-thaw cycle. The microscopic morphology and structure of BEO@Zein and hydrogel were characterized. The antibacterial property, mechanical property, swelling and moisturizing, degradability and blood compatibility of hydrogel were studied. The results show that BEO@Zein forms a nano-spherical structure with BEO as core and Zein as shell (mean particle size is 56.3 nm), which significantly reduces the volatility of BEO. BEO@Zein/PVP-PVA hydrogel can release BEO slowly, thus exhibiting excellent slow-release antibacterial property. Therefore, BEO@Zein/PVP-PVA hydrogel has excellent antimicrobial persistence (over 72 h). In addition, the hydrogel shows remarkable antibacterial biofilm property. BEO@Zein/PVP-PVA hydrogel has good mechanical property, swelling and moisturizing, degradability, and blood compatibility. Studies have shown that BEO@Zein/PVP-PVA hydrogel can be used as a good wound dressing material.
-
图 4 纳米Zein的TEM (a)和SEM图像(c);BEO@Zein的TEM (b)和SEM图像(d);PVA水凝胶(e)、PVP-PVA水凝胶(f)、BEO@Zein/PVP-PVA水凝胶((g), (h))的SEM图像
Figure 4. SEM (a) and TEM (c) images of Zein nanoparticles; SEM (b) and TEM (d) images of BEO@Zein nanoparticles; SEM images of PVA hydrogel (e), PVP-PVA hydrogel (f) and BEO@Zein/PVP-PVA hydrogel ((g), (h))
图 6 (a) BEO和BEO@Zein在37℃空气中的挥发率;(b) BEO@Zein/PVP-PVA水凝胶在磷酸盐缓冲溶液(PBS)中对BEO的释放;(c) BEO (以滤纸为载体)和BEO@Zein/PVP-PVA水凝胶在37℃空气中挥发36 h和72 h后对E. coli的抑菌性;(d) BEO@Zein/PVP-PVA水凝胶在模拟体液中释放BEO对E. coli和S. aureus的抑菌性
***—Significant difference (p<0.001, n =3); CFU—Colony forming units
Figure 6. (a) Volatilization ratio of BEO and BEO@Zein in 37℃ air; (b) BEO release of BEO@Zein/PVP-PVA hydrogel in phosphate buffer saline (PBS); (c) Antibacterial activity of BEO (filter paper as carrier) and BEO@Zein/PVP-PVA hydrogel on E. coli after volatilization in 37℃ air for 36 h and 72 h; (d) Bacteriostasis of BEO@Zein/PVP-PVA hydrogel releasing BEO in simulated body fluids on E. coli and S. aureus
图 7 PVP-PVA水凝胶和BEO@Zein/PVP-PVA水凝胶对E. coli (a)和S. aureus (b)持续抑菌24 h和72 h后的抑菌性;BEO@Zein/PVP-PVA水凝胶抗E. coli生物膜(c)和S. aureus生物膜(d)性能
Figure 7. Antibacterial activity of PVP-PVA hydrogel and BEO@Zein/PVP-PVA hydrogel against E. coli (a) and S. aureus (b) after 24 h and 72 h of sustained bacteriostasis; BEO@Zein/PVP-PVA hydrogel against E. coli biofilms (c) and S. aureus biofilms (d)
图 9 (a) PVA水凝胶、8.5wt%PVA水凝胶、PVP-PVA水凝胶、PVP-8.5wt%PVA水凝胶、BEO@Zein/PVP-PVA水凝胶的应力-应变曲线;(b) PVA水凝胶、PVP-PVA水凝胶、BEO@Zein/PVP-PVA水凝胶在PBS溶液中的溶胀率曲线;(c) BEO@Zein/PVP-PVA水凝胶在37℃和25℃下的失水率曲线;(d) PVP-PVA水凝胶和BEO@Zein/PVP-PVA水凝胶在土壤和PBS溶液中的降解率曲线
Figure 9. (a) Stress-strain curves of PVA hydrogel, 8.5wt%PVA hydrogel, PVP-PVA hydrogel, PVP-8.5wt%PVA hydrogel, and BEO@Zein/PVP-PVA hydrogel; (b) Swelling ratio curves of PVA hydrogel, PVP-PVA hydrogel, and BEO@Zein/PVP-PVA hydrogel in PBS solution; (c) Water loss ratio curves of BEO@Zein/PVP-PVA hydrogel at 37℃ and 25℃; (d) Degradation ratio curves of PVP-PVA hydrogel and BEO@Zein/PVP-PVA hydrogel in soil and PBS solution
图 10 水、PBS和BEO@Zein/PVP-PVA水凝胶处理的红细胞的溶血率(a)和图像(b);PBS (c)和BEO@Zein/PVP-PVA水凝胶(d)处理的红细胞的光学图像
*—Significant difference (** p<0.01, *** p<0.001, n = 3)
Figure 10. Hemolysis ratio (a) and pictures (b) of red blood cells treated with water, PBS and BEO@Zein/PVP-PVA hydrogel; Optical images of red blood cells treated with PBS (c) and BEO@Zein/PVP-PVA hydrogel (d)
-
[1] XIONG S, LI R, YE S, et al. Vanillin enhances the antibacterial and antioxidant properties of polyvinyl alcohol-chitosan hydrogel dressings[J]. International Journal of Biological Macromolecules,2022,220:109-116. doi: 10.1016/j.ijbiomac.2022.08.052 [2] ZHANG Y, JIANG M, ZHANG Y, et al. Novel lignin-chitosan-PVA composite hydrogel for wound dressing[J]. Materials Science and Engineering: C,2019,104:110002. doi: 10.1016/j.msec.2019.110002 [3] TAO G, WANG Y, CAI R, et al. Design and performance of sericin/poly(vinyl alcohol) hydrogel as a drug delivery carrier for potential wound dressing application[J]. Materials Science and Engineering: C,2019,101:341-351. [4] BAKADIA B M, ZHONG A, LI X, et al. Biodegradable and injectable poly(vinyl alcohol) microspheres in silk sericin-based hydrogel for the controlled release of antimicrobials: Application to deep full-thickness burn wound healing[J]. Advanced Composites and Hybrid Materials,2022,5(4):2847-2872. doi: 10.1007/s42114-022-00467-6 [5] KALANTARI K, MOSTAFAVI E, SALEH B, et al. Chitosan/PVA hydrogels incorporated with green synthesized cerium oxide nanoparticles for wound healing applications[J]. European Polymer Journal,2020,134:109853. doi: 10.1016/j.eurpolymj.2020.109853 [6] SONG S, LIU Z, ABUBAKER M A, et al. Antibacterial polyvinyl alcohol/bacterial cellulose/nano-silver hydrogels that effectively promote wound healing[J]. Materials Science and Engineering: C,2021,126:112171. [7] WANG Z, WANG Y, PENG X, et al. Photocatalytic antibacterial agent incorporated double-network hydrogel for wound healing[J]. Colloids and Surfaces B: Biointerfaces,2019,180:237-244. doi: 10.1016/j.colsurfb.2019.04.043 [8] DEDE S, SADAK O, DIDIN M, et al. Basil oil-loaded electrospun biofibers: Edible food packaging material[J]. Journal of Food Engineering,2022,319:110914. doi: 10.1016/j.jfoodeng.2021.110914 [9] SUN R, SONG G S, ZHANG H, et al. Effect of basil essential oil and beeswax incorporation on the physical, structural, and antibacterial properties of chitosan emulsion based coating for eggs preservation[J]. LWT,2021,150:112020. doi: 10.1016/j.lwt.2021.112020 [10] MARQUES C S, CARVALHO S G, BERTOLI L D, et al. beta-cyclodextrin inclusion complexes with essential oils: Obtention, characterization, antimicrobial activity and potential application for food preservative sachets[J]. Food Research International,2019,119:499-509. doi: 10.1016/j.foodres.2019.01.016 [11] LI C Z, BAI M, CHEN X C, et al. Controlled release and antibacterial activity of nanofibers loaded with basil essential oil-encapsulated cationic liposomes against Listeria monocytogenes[J]. Food Bioscience,2022,46:101578. doi: 10.1016/j.fbio.2022.101578 [12] WEISANY W, YOUSEFI S, TAHIR N A, et al. Targeted delivery and controlled released of essential oils using nanoencapsulation: A review[J]. Advances in Colloid and Interface Science,2022,303:102655. doi: 10.1016/j.cis.2022.102655 [13] LAMMARI N, LOUAER O, MENIAI A H, et al. Encapsulation of essential oils via nanoprecipitation process: Overview, progress, challenges and prospects[J]. Pharmaceutics,2020,12(5):431. doi: 10.3390/pharmaceutics12050431 [14] GHORBANI M, HASSANI N, RAEISI M. Development of gelatin thin film reinforced by modified gellan gum and naringenin-loaded Zein nanoparticle as a wound dressing[J]. Macromolecular Research,2022,30(6):397-405. doi: 10.1007/s13233-022-0049-1 [15] SANKARGANESH P, PARTHASARATHY V, KUMAR A G, et al. Preparation of cellulose-PVA blended hydrogels for wound healing applications with controlled release of the antibacterial drug: An in vitro anticancer activity[J]. Biomass Conversion and Biorefinery, 2022, 4: 1-11. [16] YU Y, YANG Z, REN S, et al. Multifunctional hydrogel based on ionic liquid with antibacterial performance[J]. Journal of Molecular Liquids,2020,299:112185. doi: 10.1016/j.molliq.2019.112185 [17] QING X, HE G, LIU Z, et al. Preparation and properties of polyvinyl alcohol/N-succinyl chitosan/lincomycin composite antibacterial hydrogels for wound dressing[J]. Carbohydrate Polymers,2021,261:117875. doi: 10.1016/j.carbpol.2021.117875 [18] YU H, KIM J S, KIM D W, et al. Novel composite double-layered dressing with improved mechanical properties and wound recovery for thermosensitive drug, lactobacillus brevis[J]. Composites Part B: Engineering,2021,225:109276. doi: 10.1016/j.compositesb.2021.109276 [19] GUO Y Q, AN X L, FAN Z J. Aramid nanofibers reinforced polyvinyl alcohol/tannic acid hydrogel with improved mechanical and antibacterial properties for potential application as wound dressing[J]. Journal of the Mechanical Behavior of Biomedical Materials,2021,118:104452. doi: 10.1016/j.jmbbm.2021.104452 [20] THONGSUKSAENGCHAROEN S, SAMOSORN S, SONGSRIROTE K. A facile synthesis of self-catalytic hydrogel films and their application as a wound dressing material coupled with natural active compounds[J]. ACS Omega,2020,5(40):25973-25983. doi: 10.1021/acsomega.0c03414 [21] GHEORGHITA D, GROSU E, ROBU A, et al. Essential oils as antimicrobial active substances in wound dressings[J]. Materials,2022,15(19):6923. doi: 10.3390/ma15196923 [22] TEODORESCU M, BERCEA M, MORARIU S. Biomaterials of PVA and PVP in medical and pharmaceutical applications: Perspectives and challenges[J]. Biotechnology Advances,2019,37(1):109-131. doi: 10.1016/j.biotechadv.2018.11.008 [23] ZHANG H, TANG N, YU X, et al. Natural glycyrrhizic acid-tailored hydrogel with in-situ gradient reduction of AgNPs layer as high-performance, multi-functional, sustainable flexible sensors[J]. Chemical Engineering Journal,2022,430:132779. doi: 10.1016/j.cej.2021.132779 [24] HE Q, ZHANG L G, SONG L Y, et al. Inactivation of Staphylococcus aureus using ultrasound in combination with thyme essential oil nanoemulsions and its synergistic mechanism[J]. LWT,2021,147:111574. doi: 10.1016/j.lwt.2021.111574 [25] SHAREEF S N, MADHURI W. Structural, morphological, dielectric and tensile properties of BaTiO3-doped PVA/PVP polymer blend nanocomposites[J]. Polymer Bulletin,2022,80(3):2389-2412. [26] EL-KADER M F H A, ELABBASY M T, ADEBOYE A A, et al. Nanocomposite of PVA/PVP blend incorporated by copper oxide nanoparticles via nanosecond laser ablation for antibacterial activity enhancement[J]. Polymer Bulletin,2021,79(11):9779-9795.