留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子掺杂对海藻酸钠/SiO2气凝胶吸波性能的影响

李俊 于名讯 刘峣 林龙 勾雯启 周帅

李俊, 于名讯, 刘峣, 等. 离子掺杂对海藻酸钠/SiO2气凝胶吸波性能的影响[J]. 复合材料学报, 2024, 41(3): 1356-1366. doi: 10.13801/j.cnki.fhclxb.20230629.001
引用本文: 李俊, 于名讯, 刘峣, 等. 离子掺杂对海藻酸钠/SiO2气凝胶吸波性能的影响[J]. 复合材料学报, 2024, 41(3): 1356-1366. doi: 10.13801/j.cnki.fhclxb.20230629.001
LI Jun, YU Mingxun, LIU Yao, et al. Effect of ion doping on microwave absorbing properties of sodium alginate/SiO2 aerogels[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1356-1366. doi: 10.13801/j.cnki.fhclxb.20230629.001
Citation: LI Jun, YU Mingxun, LIU Yao, et al. Effect of ion doping on microwave absorbing properties of sodium alginate/SiO2 aerogels[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1356-1366. doi: 10.13801/j.cnki.fhclxb.20230629.001

离子掺杂对海藻酸钠/SiO2气凝胶吸波性能的影响

doi: 10.13801/j.cnki.fhclxb.20230629.001
基金项目: 河南省大学生创新创业项目(202211517021;202211517009)
详细信息
    通讯作者:

    李俊,博士,讲师,硕士生导师,研究方向为吸波材料、电磁屏蔽、杂化材料、纳米纤维 E-mail: polymerlj@163.com

  • 中图分类号: TB332

Effect of ion doping on microwave absorbing properties of sodium alginate/SiO2 aerogels

Funds: Innovation and Entrepreneurship Project for College Students in Henan Province (202211517021; 202211517009)
  • 摘要: 随着电磁污染的加剧,吸波材料引起了研究者的关注,气凝胶具有轻质、多孔的特性赋予其成为理想吸波材料的潜质。以聚乙烯醇(PVA)和正硅酸乙酯(TEOS)为原料,静电纺丝制得PVA/SiO2纳米纤维,高温碳化得到柔性SiO2纳米纤维;将柔性SiO2纳米纤维均化在海藻酸钠(SA)溶液中,冷冻干燥得到SA/SiO2气凝胶;分别引入铝硼硅(AlBSi)、FeCl3作为掺杂剂得到SA/SiO2/AlBSi、SA/SiO2/FeCl3气凝胶,对比分析3种气凝胶吸波性能。结果表明:SA/SiO2经FeCl3掺杂后,SiO2纳米纤维表面有小晶粒存在,这种块状颗粒结构能够产生多重反射和散射、界面极化,提高了气凝胶的介电损耗性能。并且加入FeCl3后,气凝胶的磁损耗虚部增大,提高了气凝胶的磁损耗性能,使其整体吸波性能提高,当厚度为3 mm时,其最大的吸收峰值–23.85 dB在14.42 GHz处达到,具有1.3 GHz (13.82~15.12 GHz)的有效吸收带宽,是一种质轻、吸波性能良好的材料。

     

  • 图  1  聚乙烯醇(PVA)/SiO2纳米纤维、SiO2纳米纤维和海藻酸钠(SA)/SiO2气凝胶的红外图谱

    Figure  1.  FTIR spectra of polyvinyl alcohol (PVA)/SiO2 nanofibers, SiO2 nanofibers and sodium alginate (SA)/SiO2 aerogel

    图  2  SA/SiO2 ((a)~(c))、SA/SiO2/AlBSi ((d)~(f))、SA/SiO2/FeCl3 ((g)~(i))气凝胶的场发射扫描电镜图像

    Figure  2.  Field emission scanning electron microscopy images of SA/SiO2 ((a)-(c)), SA/SiO2/AlBSi ((d)-(f)), SA/SiO2/FeCl3 ((g)-(i)) aerogels

    图  3  SA/SiO2/FeCl3气凝胶的EDS图像((a)~(d))、实物照片(e)及元素组成(f)

    Figure  3.  EDS photographs ((a)-(d)), physical photograph (e) and element composition (f) of SA/SiO2/FeCl3 aerogel

    图  4  SA/SiO2、SA/SiO2/AlBSi、SA/SiO2/FeCl3气凝胶的介电常数实部ε' (a)、介电常数虚部ε'' (b)、介电损耗正切角ε''/ε' (c)及其磁导率实部μ' (d)、磁导率虚部μ'' (e)、磁损耗正切角μ''/μ' (f)随频率的变化曲线

    Figure  4.  Real part of dielectric constant ε' (a), imaginary part of dielectric constant ε'' (b), dielectric loss tangent angle ε''/ε' (c) and change curves of real part of permeability μ' (d), imaginary part of the permeability μ'' (e), magnetic loss tangent angle μ''/μ' (f) with frequency for SA/SiO2, SA/SiO2/AlBSi, SA/SiO2/FeCl3 aerogel

    图  5  不同气凝胶的反射率曲线((a), (c), (e))及3D示意图((b), (d), (f))

    RL—Reflectivity loss value; d—Thickness

    Figure  5.  Reflectance curves ((a), (c), (e)) and 3D diagrams ((b), (d), (f)) of different aerogels

    图  6  SA/SiO2、SA/SiO2/AlBSi、SA/SiO2/FeCl3气凝胶的衰减系数(a)和SA/SiO2/FeCl3气凝胶阻抗匹配随频率的变化曲线图(b)

    α—Attenuation coefficient; Ζ—Impedance matching value

    Figure  6.  Curves of attenuation coefficient of SA/SiO2, SA/SiO2/AlBSi, SA/SiO2/FeCl3 aerogel (a) and impedance matching of SA/SiO2/FeCl3 aerogel versus frequency (b)

    图  7  SA/SiO2 (a)、SA/SiO2/AlBSi (b)、SA/SiO2/FeCl3 (c) 3种气凝胶的ε'ε''曲线图和涡流损耗C0 (d)变化图

    C0—Eddy current loss factor; R—Kohler-kohler semicircle

    Figure  7.  ε'ε'' curve and eddy current loss C0 (d) change diagram of SA/SiO2 (a), SA/SiO2/AlBSi (b), SA/SiO2/FeCl3 (c) aerogels

    表  1  几种陶瓷基材料的吸波性能对比

    Table  1.   Comparison of wave absorption properties of several ceramic-based materials

    Absorbent materialThickness/mmRL, min/dBFrequency/GHzEffective absorption
    frequency band/GHz
    Material content/wt%Ref.
    SiC 2.4 18.58 15.44 4.56 30 [13]
    SiCN 3.0 54.35 9.62 4.16 30 [11]
    SiC/Cf 1.8 40.66 8.31 1.11 30 [23]
    Fe3O4/SiO2 5.0 37.15 16.90 1.94 30 [24]
    FeSiAl/SiO2 2.0 17.90 14.83 2.90 37.5 [25]
    SA/SiO2/FeCl3 3.0 24.23 14.47 1.30 7 This work
    Note: RL, min—Minimum reflectivity loss.
    下载: 导出CSV
  • [1] DOU L Y, ZHANG X X, SHAN H R, et al. Interweaved cellular structured ceramic nanofibrous aerogels with superior bendability and compressibility[J]. Advanced Functional Materials,2020,30(49):2005928. doi: 10.1002/adfm.202005928
    [2] ABDALLA I, SALIM A, ZHU M M, et al. Light and flexible composite nanofibrous membranes for high-efficiency electromagnetic absorption in a broad frequency[J]. ACS Applied Materials & Interfaces,2018,10(51):44561-44569.
    [3] LI C B, LI Y J, ZHAO Q, et al. Electromagnetic interference shielding of graphene aerogel with layered microstructure fabricated via mechanical compression[J]. ACS Applied Materials & Interfaces,2020,12(27):30686-30694.
    [4] 吕通, 张辰威, 刘甲, 等. 吸波超材料研究进展[J]. 复合材料学报, 2021, 38(1):25-35. doi: 10.13801/j.cnki.fhclxb.20200921.004

    LYU Tong, ZHANG Chenwei, LIU Jia, et al. Research progress in metamaterial absorber[J]. Acta Materiae Compositae Sinica,2021,38(1):25-35(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200921.004
    [5] REN J Q, LYU Y T, LIU Z G, et al. Microwave absorption performance evaluation of carbonized derivatives of Fe3O4@MOF-74 with controllable morphologies[J]. ACS Applied Electronic Materials,2022,4(11):5221-5233. doi: 10.1021/acsaelm.2c00900
    [6] LIU C, WU P F, CHEN S H, et al. Kill two birds with one stone: Multifunctional porous SiOC-Fe2O3 composite for Li ion energy conversion and electromagnetic wave absorption[J]. ACS Applied Electronic Materials,2022,4(12):6177-6188. doi: 10.1021/acsaelm.2c01305
    [7] WANG P, LI Z C, CHENG L F, et al. SiC/rGO core-shell nanowire as a lightweight, highly efficient gigahertz electromagnetic wave absorber[J]. ACS Applied Electronic Materials,2020,2(2):473-482. doi: 10.1021/acsaelm.9b00721
    [8] HAN M K, YIN X W, HANTANASIRISAKUL K, et al. Anisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption[J]. Advanced Optical Materials,2019,7(10):1900267. doi: 10.1002/adom.201900267
    [9] SU L, LI M Z, WANG H J, et al. Resilient Si3N4 nanobelt aerogel as fire-resistant and electromagnetic wave-transparent thermal insulator[J]. ACS Applied Materials & Interfaces,2019,11(17):15795-15803.
    [10] SI Y, FU Q X, WANG X Q, et al. Superelastic and superhydrophobic nanofiber-assembled cellular aerogels for effective separation of oil/water emulsions[J]. ACS Nano,2015,9(4):3791-3799. doi: 10.1021/nn506633b
    [11] 梁军芳. SiCN先驱体陶瓷气凝胶复合材料的构筑及其吸波性能研究[D]. 郑州: 郑州大学, 2020.

    LIANG Junfang. Construction and electromagnetic wave absorption performance of SiCN precursor ceramic aerogel composites[D]. Zhengzhou: Zhengzhou University, 2020.
    [12] 王立杰. 石墨烯复合气凝胶的制备及电磁性能研究[D]. 郑州: 郑州航空工业管理学院, 2020.

    WANG Lijie. Synthesis of graphene composite aerogels and their electromagnetic wave absorption properties study[D]. Zhengzhou: Zhengzhou University of aeronautics, 2020(in Chinese).
    [13] 白力文. SiC气凝胶吸波材料的制备及性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    BAI Liwen. Prepartion and properties of SiC aerogels electromagnetic wave absorbing materials[D]. Harbin: Harbin Institute of Technology, 2020(in Chinese).
    [14] XIE A M, WU F, XU Z H, et al. In situ preparation of ultralight three-dimensional polypyrrole/nano SiO2 composite aerogels with enhanced electromagnetic absorption[J]. Composites Science and Technology,2015,117:32-38. doi: 10.1016/j.compscitech.2015.05.010
    [15] AN Z M, YE C S, ZHANG R B, et al. Multifunctional C/SiO2/SiC-based aerogels and composites for thermal insulators and electromagnetic interference shielding[J]. Journal of Sol-Gel Science and Technology,2019,89(3):623-633. doi: 10.1007/s10971-019-04916-5
    [16] MARTINEZ J R, RUIZ F, VOROBIEV Y V , et al. Infrared spectroscopy analysis of the local atomic structure in silica prepared by sol-gel[J]. Journal of Chemical Physics, 1988, 109(17): 7511-7514.
    [17] SI Y, WANG L H, WANG X Q, et al. Ultrahigh-water-content, superelastic, and shape-memory nanofiber-assembled hydrogels exhibiting pressure-responsive conductivity[J]. Advanced Materials,2017,29(24):1700339.
    [18] 李俊, 齐鲁, 李慧皓. FeCl3/共轭聚席夫碱复合材料及介电性能分析[J]. 无机化学学报, 2016, 32(1):96-102.

    LI Jun, QI Lu, LI Huihao. Synthesis and dielectric properties of FeCl3/conjugated ploy schiff base composite[J]. Chinese Journal of Inorganic Chemistry,2016,32(1):96-102(in Chinese).
    [19] SONG Z M, LIU X F, SUN X, et al. Alginate-templated synthesis of CoFe/carbon fiber composite and the effect of hierarchically porous structure on electromagnetic wave absorption performance[J]. Carbon,2019,151:36-45. doi: 10.1016/j.carbon.2019.05.025
    [20] LIU Y, FENG Y R, GONG H Y, et al. Microwave absorbing performance of polymer-derived SiCN(Ni) ceramics prepared from different nickel sources[J]. Journal of Alloys and Compounds,2018,749:620-627. doi: 10.1016/j.jallcom.2018.03.346
    [21] ADEBAYO L L, SOLEIMANI H, YAHYA N, et al. Recent advances in the development of Fe3O4-based microwave absorbing materials[J]. Ceramics International,2020,46(2):1249-1268. doi: 10.1016/j.ceramint.2019.09.209
    [22] 武志红, 李妤婕, 张聪, 等. 竹炭/SiC复合材料结构及其吸波性能[J]. 硅酸盐学报, 2018, 46(1):150-155. doi: 10.14062/j.issn.0454-5648.2018.01.20

    WU Zhihong, LI Yujie, ZHANG Cong, et al. Structure and microwave absorption properties of bamboo charcoal/SiC composites[J]. Journal of the Chinese Ceramic Society,2018,46(1):150-155(in Chinese). doi: 10.14062/j.issn.0454-5648.2018.01.20
    [23] 武志红, 邓悦, 蒙真真, 等. 含SiC阵列改性涂层的新型 SiC/Cf复合材料吸波性能研究[J]. 无机材料学报, 2021, 36(3):306-312. doi: 10.15541/jim20200364

    WU Zhihong, DENG Yue, MENG Zhenzhen, et al. Microwave absorbing properties of novel SiC/Cf compo-sites containing SiC array modified coating[J]. Journal of Inorganic Materials,2021,36(3):306-312(in Chinese). doi: 10.15541/jim20200364
    [24] 马勖凯. 点击反应制备碳纳米管/金属氧化物/二氧化硅复合材料及吸波性能研究[D]. 淮南: 安徽理工大学, 2020.

    MA Xukai. Click reaction to prepare carbon nanotube/metal oxide/silica composite material and its microwave absorbing properties[D]. Huainan: Anhui University of Science and Technology, 2020(in Chinese).
    [25] 高少华. 片状铁硅铝/二氧化硅复合涂层的电磁波吸收性能研究[D]. 大连, 大连理工大学, 2018.

    GAO Shaohua. Study on the microwave absorption performance of flaky FeSiAl/SiO2 composite coatings[D]. Dalian: Dalian University of Technology, 2018(in Chinese).
    [26] ZHANG X F, CHEN Z Y, FENG Y, et al. Low-temperature transformation of C/SiO2 nanocomposites to β-SiC with high surface area[J]. ACS Sustainable Chemistry & Engi-neering,2018,6(1):1068-1073.
    [27] LAN D, GAO Z G, ZHAO Z H, et al. Application progress of conductive conjugated polymers in electromagnetic wave absorbing composites[J]. Composites Communications,2021,26:100767. doi: 10.1016/j.coco.2021.100767
    [28] JI H M, LI J H, ZHANG J J, et al. Remarkable microwave absorption performance of ultralight graphene-polyethylene glycol composite aerogels with a very low loading ratio of graphene[J]. Composites Part A: Applied Science and Manufacturing,2019,123:158-169. doi: 10.1016/j.compositesa.2019.05.012
    [29] HUANG Y F, XIE Y L, ZHAO J A, et al. Variety of ZIF-8/MXene-based lightweight microwave-absorbing materials: Preparation and performances of ZnO/MXene nanocomposites[J]. Journal of Physical Chemistry C,2022,126(32):13847-13853. doi: 10.1021/acs.jpcc.2c04026
    [30] SUN Y C, CUI W Y, LI J L, et al. In-situ growth strategy to fabrication of MWCNTs/Fe3O4 with controllable interface polarization intensity and wide band electromagnetic absorption performance[J]. Journal of Alloys and Compounds,2019,770:67-75. doi: 10.1016/j.jallcom.2018.08.106
    [31] WEN B, CAO M S, HOU Z L, et al. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites[J]. Carbon,2013,65:124-139. doi: 10.1016/j.carbon.2013.07.110
    [32] KONG L, YIN X W, ZHANG Y J, et al. Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters[J]. Journal of Physical Chemistry C,2013,117(38):19701-19711. doi: 10.1021/jp4058498
    [33] HAN M K, YIN X W, HOU Z X, et al. Flexible and thermostable graphene/SiC nanowire foam composites with tunable electromagnetic wave absorption properties[J]. ACS Applied Materials & Interfaces,2017,9(13):11803-11810.
    [34] 叶喜葱, 欧阳宾, 杨超, 等. 石墨烯-羰基铁粉线材的制备及其吸波性能分析[J]. 复合材料学报, 2022, 39(7):3292-3302. doi: 10.13801/j.cnki.fhclxb.20210819.008

    YE Xicong, OUYANG Bin, YANG Chao, et al. Preparation of graphene-carbonyl iron powder wire and analysis of its wave absorption performance[J]. Acta Materiae Compositae Sinica,2022,39(7):3292-3302(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210819.008
    [35] HU P T, DONG S, LI X T, et al. A low-cost strategy to synthesize MnO nanorods anchored on 3D biomass-derived carbon with superior microwave absorption properties[J]. Journal of Materials Chemistry C,2019,7(30):9219-9228. doi: 10.1039/C9TC02182E
    [36] QIU X, WANG L X, ZHU H L, et al. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon[J]. Nanoscale,2017,9(22):7408-7418. doi: 10.1039/C7NR02628E
    [37] LIU L L, ZHANG S, YAN F, et al. Three-dimensional hierarchical MoS2 nanosheets/ultralong N-doped carbon nanotubes as high-performance electromagnetic wave absorbing material[J]. ACS Applied Materials & Interfaces,2018,10(16):14108-14115.
    [38] ZHAO H Q, CHENG Y, LYU H L, et al. Achieving sustainable ultralight electromagnetic absorber from flour by turning surface morphology of nanoporous carbon[J]. ACS Sustainable Chemistry & Engineering,2018,6(11):15850-15857.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  745
  • HTML全文浏览量:  360
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-10
  • 修回日期:  2023-06-14
  • 录用日期:  2023-06-18
  • 网络出版日期:  2023-06-29
  • 刊出日期:  2024-03-01

目录

    /

    返回文章
    返回