留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZnO-石墨烯-TPU/PLA复合材料的制备及吸波性能

吴海华 傅文鑫 刘少康 晁彬 鲍云天

吴海华, 傅文鑫, 刘少康, 等. ZnO-石墨烯-TPU/PLA复合材料的制备及吸波性能[J]. 复合材料学报, 2024, 41(3): 1316-1326. doi: 10.13801/j.cnki.fhclxb.20230627.003
引用本文: 吴海华, 傅文鑫, 刘少康, 等. ZnO-石墨烯-TPU/PLA复合材料的制备及吸波性能[J]. 复合材料学报, 2024, 41(3): 1316-1326. doi: 10.13801/j.cnki.fhclxb.20230627.003
WU Haihua, FU Wenxin, LIU Shaokang, et al. Study on preparation and absorption properties of ZnO-graphene-TPU/PLA composites[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1316-1326. doi: 10.13801/j.cnki.fhclxb.20230627.003
Citation: WU Haihua, FU Wenxin, LIU Shaokang, et al. Study on preparation and absorption properties of ZnO-graphene-TPU/PLA composites[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1316-1326. doi: 10.13801/j.cnki.fhclxb.20230627.003

ZnO-石墨烯-TPU/PLA复合材料的制备及吸波性能

doi: 10.13801/j.cnki.fhclxb.20230627.003
基金项目: 国家自然科学基金 (51575313)
详细信息
    通讯作者:

    吴海华,博士,教授,博士生导师,研究方向为3D打印吸波材料及其工程应用技术 E-mail: wuhaihua@ctgu.edu.cn

  • 中图分类号: TB333

Study on preparation and absorption properties of ZnO-graphene-TPU/PLA composites

Funds: National Natural Science Foundation of China (51575313)
  • 摘要: 开发轻质、高效的吸波复合材料是解决电磁污染问题的重要途径之一。本文采用两步法制备ZnO-石墨烯-热塑性聚氨酯弹性体橡胶 (TPU)/聚乳酸 (PLA)吸波复合材料,通过XRD、拉曼光谱、SEM和矢量网络分析仪分别对复合材料的物相结构、微观形貌和电磁特性进行表征,并研究不同ZnO/石墨烯吸波剂组合对复合材料吸波性能的影响,揭示ZnO和石墨烯协同吸波机制。研究结果表明:随着ZnO含量的增加,吸波效果先增强后减弱。适量的ZnO分散在基体中,使复合材料的缺陷程度增加,这丰富了异质界面,增强了界面极化和偶极极化,进而改善了复合材料的吸波性能。当ZnO添加量仅为2wt%时吸波效果最佳,在5.6 mm厚度下,其最小反射损耗为−49.2 dB,有效吸收带宽为2.0 GHz。优异的吸波效果源于良好的阻抗匹配和界面极化损耗、偶极极化损耗、电导损耗之间的协同作用。此外相比化学法制备的吸波材料,ZnO-石墨烯-TPU/PLA复合材料的制备过程简单环保,吸波剂组分可调,轻质高效可规模化生产,有望用于复杂吸波结构制造。

     

  • 图  1  石墨烯(GR) (a)和ZnO (b)的SEM图像

    Figure  1.  SEM images of graphene (GR) (a) and ZnO (b)

    图  2  (a) ZnO-GR-TPU/PLA复合线材;(b) 同轴环

    Figure  2.  (a) ZnO-GR-TPU/PLA composite filaments; (b) Coaxial rings

    图  3  ZnO-GR-TPU/PLA复合材料XRD图谱(a)和拉曼光谱(b)

    Figure  3.  XRD patterns (a) and Raman spectra (b) of the ZnO-GR-TPU/PLA composites

    ID/IG—Intensity ratio of peak D to peak G

    图  4  ZnO-GR-TPU/PLA复合粉末的SEM图像:(a) ZN0;(b) ZN2;(c) ZN4;(d) ZN6;(e) ZN8

    Figure  4.  SEM images of ZnO-GR-TPU/PLA composite powder: (a) ZN0; (b) ZN2; (c) ZN4; (d) ZN6; (e) ZN8

    图  5  ZnO-GR-TPU/PLA复合材料的电磁参数:(a) 复介电常数实部ε';(b) 复介电常数虚部ε'';(c) 介电损耗角正切tanδe

    Figure  5.  Electromagnetic parameters of ZnO-GR-TPU/PLA composites: (a) Real part of complex permittivity ε'; (b) Imaginary part of complex permittivity ε''; (c) Dielectric loss tangent tanδe

    图  6  ZnO-GR-TPU/PLA复合材料的Colo-Colo曲线:(a) ZN0;(b) ZN2;(c) ZN4;(d) ZN6;(e) ZN8

    Figure  6.  Colo-Colo curves of ZnO-GR-TPU/PLA composites: (a) ZN0; (b) ZN2; (c) ZN4; (d) ZN6; (e) ZN8

    图  7  ZnO-GR-TPU/PLA复合材料的衰减常数及阻抗匹配

    Figure  7.  Attenuation constant and impedance matching of ZnO-GR-TPU/PLA composites

    图  8  ZnO-GR-TPU/PLA复合材料的反射损耗图与3D映射图:((a), (b)) ZN0;((c), (d)) ZN2;((e), (f)) ZN4;((g), (h)) ZN6;((i), (j)) ZN8

    Figure  8.  Reflection loss diagram and 3D mapping diagram of ZnO-GR-TPU/PLA composite materials: ((a), (b)) ZN0; ((c), (d)) ZN2; ((e), (f)) ZN4; ((g), (h)) ZN6; ((i), (j)) ZN8

    RLmin—Minimal reflection loss; d—Depth; EAB—Effectively absorb bandwidth

    表  1  ZnO-GR-热塑性聚氨酯弹性体橡胶(TPU)/聚乳酸(PLA)复合材料成分

    Table  1.   Ingredients of ZnO-GR-thermoplasticpolyurethane (TPU)/polylactic acid (PLA) composites

    SampleMass fraction/wt%
    ZnOGRPLATPU
    ZN00585.59.5
    ZN22583.79.3
    ZN44581.99.1
    ZN66580.18.9
    ZN88578.38.7
    下载: 导出CSV

    表  2  近期文献报道ZnO/石墨烯复合材料的吸波性能

    Table  2.   Recent literature reports on the absorption properties of ZnO/graphene composites

    MaterialsLoading/wt%MatrixRLmin (Thickness)Ref.
    Starlike ZnO/RGO75Paraffin−77.50 dB (4.5 mm)[9]
    ZnO@RGO75Paraffin−44.50 dB (4.5 mm)[15]
    RGO@NiO/ZnO70PS−42.50 dB (2.15 mm)[41]
    GR/ZnO hollow sphere50Paraffin−45.05 dB (2.2 mm)[42]
    3D-ZFO/GNs50Paraffin−34.56 dB (1.3 mm)[43]
    ZnO/ZnO nanocrystal@RGO foam25Paraffin−38.00 dB (3.2 mm)[26]
    RGO/ZnO-mrs15Paraffin−38.50 dB (2.0 mm)[44]
    MF/ZnO@Reduced graphene oxide 5Paraffin−63.20 dB (4.1 mm)[33]
    5wt%GR+2wt%ZnO 7PLA−49.20 dB (5.6 mm)This work
    Notes: RGO—Reduced graphene oxide; ZFO—ZnFe2O4; GNs—Graphene nanosheets; mrs—Microrods; MF—Carbonized melamine foame; PS—Polystyrene.
    下载: 导出CSV
  • [1] SONG M, WANG C, ZHU C, et al. An effective fabrication and highly tunable microwave absorption of nitrogen-doped graphene[J]. Diamond and Related Materials,2022,129:109348. doi: 10.1016/j.diamond.2022.109348
    [2] WANG S M, HUANG X G, ZHANG W L. Preparation of graphene/flaky carbonyl iron/polyurethane foam composites and research on their microwave absorption properties[J]. Applied Physics A,2021,127(10):742. doi: 10.1007/s00339-021-04894-y
    [3] SHANG T, LU Q S, ZHAO J J, et al. Novel three-dimensional graphene-like networks loaded with Fe3O4 nanoparticles for efficient microwave absorption[J]. Nanomaterials,2021,11(6):1444. doi: 10.3390/nano11061444
    [4] LYU H L, YANG Z H, PAN H G, et al. Electromagnetic absorption materials: Current progress and new frontiers[J]. Progress in Materials Science, 2022, 127: 100946.
    [5] MENG F B, WANG H G, HUANG F, et al. Graphene-based microwave absorbing composites: A review and prospective[J]. Composites Part B: Engineering,2018,137:260-277. doi: 10.1016/j.compositesb.2017.11.023
    [6] QU B, ZHU C L, LI C Y, et al. Coupling hollow Fe3O4-Fe nanoparticles with graphene sheets for high-performance electromagnetic wave absorbing material[J]. ACS Applied Materials & Interfaces,2016,8(6):3730-3735.
    [7] WANG S S, ZHAO Y, XUE H L, et al. Preparation of flower-like CoFe2O4@graphene composites and their microwave absorbing properties[J]. Materials Letters,2018,223:186-189. doi: 10.1016/j.matlet.2018.04.050
    [8] YIN P F, DENG Y, ZHANG L M, et al. One-step hydrothermal synthesis and enhanced microwave absorption properties of Ni0.5Co0.5Fe2O4/graphene composites in low frequency band[J]. Ceramics International,2018,44(17):20896-20905.
    [9] FENG W, WANG Y M, CHEN J C, et al. Microwave absorbing property optimization of starlike ZnO/reduced graphene oxide doped by ZnO nanocrystal composites[J]. Physical Chemistry Chemical Physics,2017,19(22):14596-14605. doi: 10.1039/C7CP02039B
    [10] WANG Q A, CHE J B, WU W F, et al. Contributing factors of dielectric properties for polymer matrix composites[J]. Polymers,2023,15(3):590. doi: 10.3390/polym15030590
    [11] QUAN B, LIANG X H, XU G Y, et al. A permittivity regulating strategy to achieve high-performance electromagnetic wave absorbers with compatibility of impedance matching and energy conservation[J]. New Journal of Chemistry,2017,41(3):1259-1266. doi: 10.1039/C6NJ03052A
    [12] 杜宗波, 时双强, 陈宇滨, 等. 介电型石墨烯吸波复合材料研究进展[J]. 材料工程, 2022, 50(4):74-84. doi: 10.11868/j.issn.1001-4381.2020.000914

    DU Zongbo, SHI Shuangqiang, CHEN Yubin, et al. Research progress in dielectric graphene microwave absorbing composites[J]. Journal of Materials Engineering,2022,50(4):74-84(in Chinese). doi: 10.11868/j.issn.1001-4381.2020.000914
    [13] VENKIDUSAMY V, NALLUSAMY S, NAMMALVAR G, et al. ZnO/graphene composite from solvent-exfoliated few-layer graphene nanosheets for photocatalytic dye degradation under sunlight irradiation[J]. Micromachines,2023,14(1):189. doi: 10.3390/mi14010189
    [14] HSUEH T J, DING R Y. A room temperature ZnO-NPs/MEMS ammonia gas sensor[J]. Nanomaterials,2022,12(19):3287. doi: 10.3390/nano12193287
    [15] SUN X D, MA G Y, LYU X L, et al. Controllable fabrication of Fe3O4/ZnO core-shell nanocomposites and their electromagnetic wave absorption performance in the 2-18 GHz frequency range[J]. Materials,2018,11(5):780. doi: 10.3390/ma11050780
    [16] 熊自明, 吴凡, 张中威, 等. ZnO@ RGO复合材料的制备及其吸波性能[J]. 复合材料学报, 2022, 39(3):1152-1162.

    XIONG Ziming, WU Fan, ZHANG Zhongwei, et al. Preparation and wave absorption properties of ZnO@RGO composites[J]. Acta Materiae Compositae Sinica,2022,39(3):1152-1162(in Chinese).
    [17] WANG J W, WANG B B, WANG Z, et al. Synthesis of 3D flower-like ZnO/ZnCo2O4 composites with the heterogeneous interface for excellent electromagnetic wave absorption properties[J]. Journal of Colloid and Interface Science,2021,586:479-490. doi: 10.1016/j.jcis.2020.10.111
    [18] 吴海华, 胡正浪, 李雨恬, 等. 铁镍合金/聚乳酸复合材料的熔融沉积成形制备及其电磁吸收性能和力学性能[J]. 复合材料学报, 2022, 39(1):158-168. doi: 10.13801/j.cnki.fhclxb.20210311.003

    WU Haihua, HU Zhenglang, LI Yutian, et al. Electromagnetic absorption properties and mechanical properties of Fe-Ni alloy/polylactic acid composites fabricated by fused deposition modeling[J]. Acta Materiae Compositae Sinica,2022,39(1):158-168(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210311.003
    [19] 叶喜葱, 欧阳宾, 杨超, 等. 石墨烯-羰基铁粉线材的制备及其吸波性能分析[J]. 复合材料学报, 2022, 39(7):3292-3302. doi: 10.13801/j.cnki.fhclxb.20210819.008

    YE Xicong, OUYANG Bin, YANG Chao, et al. Preparation of graphene-carbonyl iron powder wire and analysis of its wave absorption performance[J]. Acta Materiae Compositae Sinica,2022,39(7):3292-3302(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210819.008
    [20] 胡正浪, 吴海华, 杨增辉, 等. 石墨烯-铁镍合金-聚乳酸复合材料的制备及其吸波性能[J]. 复合材料学报, 2022, 39(7): 3303-3316.

    HU Zhenglang, WU Haihua, YANG Zenghui, et al. Preparation of graphene-iron-nickel alloy-polylactic acid composites and their microwave absorption properties[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3303-3316(in Chinese).
    [21] YU F, HUANG H X. Simultaneously toughening and reinforcing poly (lactic acid)/thermoplastic polyurethane blend via enhancing interfacial adhesion by hydrophobic silica nanoparticles[J]. Polymer Testing,2015,45:107-113. doi: 10.1016/j.polymertesting.2015.06.001
    [22] ELMAHAISHI M F, AZIS R S, ISMAIL I, et al. A review on electromagnetic microwave absorption properties: Their materials and performance[J]. Journal of Materials Research and Technology, 2022, 20: 2188-2220.
    [23] BULDU-AKTURK M, TOUFANI M, TUFANI A, et al. ZnO and reduced graphene oxide electrodes for all-in-one supercapacitor devices[J]. Nanoscale,2022,14(8):3269-3278. doi: 10.1039/D2NR00018K
    [24] DUTTA A, MISHRA S, SAHA S K, et al. Boosting the supercapacitive performance of ZnO by 3-dimensional conductive wrapping with graphene sheet[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32(1): 180-190.
    [25] GUO G L, HUANG L, CHANG Q H, et al. Sandwiched nanoarchitecture of reduced graphene oxide/ZnO nanorods/reduced graphene oxide on flexible PET substrate for supercapacitor[J]. Applied Physics Letters,2011,99(8):083111. doi: 10.1063/1.3629789
    [26] LIU X, LU X L, GUAN H J, et al. Rational design of ZnO/ZnO nanocrystal-modified rGO foam composites with wide-frequency microwave absorption properties[J]. Ceramics International,2021,47(23):33584-33595. doi: 10.1016/j.ceramint.2021.08.268
    [27] DI X C, WANG Y, LU Z, et al. Heterostructure design of Ni/C/porous carbon nanosheet composite for enhancing the electromagnetic wave absorption[J]. Carbon,2021,179:566-578. doi: 10.1016/j.carbon.2021.04.050
    [28] QIN M, ZHANG L M, WU H J. Dielectric loss mechanism in electromagnetic wave absorbing materials[J]. Advanced Science,2022,9(10):2105553. doi: 10.1002/advs.202105553
    [29] ZHOU C, GENG S, XU X W, et al. Lightweight hollow carbon nanospheres with tunable sizes towards enhancement in microwave absorption[J]. Carbon,2016,108:234-241. doi: 10.1016/j.carbon.2016.07.015
    [30] LI J, WANG L, ZHANG D, et al. Reduced graphene oxide modified mesoporous FeNi alloy/carbon microspheres for enhanced broadband electromagnetic wave absorbers[J]. Materials Chemistry Frontiers,2017,1(9):1786-1794. doi: 10.1039/C7QM00067G
    [31] YANG Y N, XIA L, ZHANG T, et al. Fe3O4@LAS/RGO composites with a multiple transmission-absorption mechanism and enhanced electromagnetic wave absorption performance[J]. Chemical Engineering Journal,2018,352:510-518. doi: 10.1016/j.cej.2018.07.064
    [32] LI F, ZHUANG L, ZHAN W W, et al. Desirable microwave absorption performance of ZnFe2O4@ZnO@rGO nanocomposites based on controllable permittivity and permeability[J]. Ceramics International,2020,46(13):21744-21751. doi: 10.1016/j.ceramint.2020.05.283
    [33] ZHANG Q C, DU Z J, GUO T, et al. Three-dimensional carbon foam modified with starlike-ZnO@ reduced graphene oxide for microwave absorption with low filler content[J]. Journal of Alloys and Compounds,2022,897:163200. doi: 10.1016/j.jallcom.2021.163200
    [34] TAO J Q, ZHOU J T, YAO Z J, et al. Multi-shell hollow porous carbon nanoparticles with excellent microwave absorption properties[J]. Carbon,2021,172:542-555. doi: 10.1016/j.carbon.2020.10.062
    [35] SHU X F, REN H D, JIANG Y, et al. Enhanced electromagnetic wave absorption performance of silane coupling agent KH550@Fe3O4 hollow nanospheres/graphene composites[J]. Journal of Materials Chemistry C,2020,8(8):2913-2926. doi: 10.1039/C9TC05658K
    [36] ZHANG W D, ZHANG X, ZHU Q, et al. High-efficiency and wide-bandwidth microwave absorbers based on MoS2-coated carbon fiber[J]. Journal of Colloid and Interface Science,2021,586:457-468. doi: 10.1016/j.jcis.2020.10.109
    [37] MA Z, ZHANG Y, CAO C T, et al. Attractive microwave absorption and the impedance match effect in zinc oxide and carbonyl iron composite[J]. Physica B: Condensed Matter,2011,406(24):4620-4624. doi: 10.1016/j.physb.2011.09.039
    [38] LIAN Y L, HAN B H, LIU D W, et al. Solvent-free synthesis of ultrafine tungsten carbide nanoparticles-decorated carbon nanosheets for microwave absorption[J]. Nano-Micro Letters,2020,12(1):153. doi: 10.1007/s40820-019-0337-2
    [39] LU B, DONG X L, HUANG H, et al. Microwave absorption properties of the core/shell-type iron and nickel nanoparticles[J]. Journal of Magnetism and Magnetic Materials,2008,320(6):1106-1111. doi: 10.1016/j.jmmm.2007.10.030
    [40] WEI B, ZHOU J T, YAO Z J, et al. Excellent microwave absorption property of nano-Ni coated hollow silicon carbide core-shell spheres[J]. Applied Surface Science,2020,508:145261. doi: 10.1016/j.apsusc.2020.145261
    [41] THI Q V, PARK S J, JEONG J, et al. A nanostructure of reduced graphene oxide and NiO/ZnO hollow spheres toward attenuation of electromagnetic waves[J]. Materials Chemistry and Physics,2021,266:124530. doi: 10.1016/j.matchemphys.2021.124530
    [42] HAN M K, YIN X W, KONG L, et al. Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties[J]. Journal of Materials Chemistry A,2014,2(39):16403-16409. doi: 10.1039/C4TA03033H
    [43] ZHOU J T, WEI B, WANG M Q, et al. Three dimensional flower like ZnFe2O4 ferrite loaded graphene: Enhancing microwave absorption performance by constructing microcircuits[J]. Journal of Alloys and Compounds,2021,889:161734. doi: 10.1016/j.jallcom.2021.161734
    [44] LIU Y, DU X M, WU C Y, et al. Reduced graphene oxide decorated with ZnO microrods for efficient electromagnetic wave absorption performance[J]. Journal of Materials Science: Materials in Electronics,2020,31(11):8637-8648. doi: 10.1007/s10854-020-03399-3
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  713
  • HTML全文浏览量:  313
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-27
  • 修回日期:  2023-05-24
  • 录用日期:  2023-06-11
  • 网络出版日期:  2023-06-28
  • 刊出日期:  2024-03-01

目录

    /

    返回文章
    返回