[1] |
LI J L, QIN L, YANG K, et al. Materials evolution of bone plates for internal fixation of bone fractures: A review[J]. Journal of Materials Science & Technology,2020,36:190-208.
|
[2] |
ORASSI V, FISCHER H, DUDA G N, et al. In silico biomechanical evaluation of WE43 magnesium plates for mandibular fracture fixation[J]. Frontiers in Bioengineering and Biotechnology,2022,9:803103. doi: 10.3389/fbioe.2021.803103
|
[3] |
LETT J A, SAGADEVAN S, LÉONARD E, et al. Bone tissue engineering potentials of 3D printed magnesium-hydroxyapatite in polylactic acid composite scaffolds[J]. Artificial Organs,2021,45(12):1501-1512. doi: 10.1111/aor.14045
|
[4] |
FAIRAG R, LI L, RAMIREZ-GARCIALUNA J L, et al. A composite lactide-mineral 3D-printed scaffold for bone repair and regeneration[J]. Frontiers in Cell and Developmental Biology,2021,9:654518. doi: 10.3389/fcell.2021.654518
|
[5] |
LIU Y, DU T M, QIAO A K, et al. Zinc-based biodegradable materials for orthopaedic internal fixation[J]. Journal of Functional Biomaterials,2022,13(4):164. doi: 10.3390/jfb13040164
|
[6] |
SUJAN M I, SARKAR S D, ROY C K, et al. Graphene oxide crosslinker for the enhancement of mechanical properties of polylactic acid[J]. Journal of Polymer Science,2021,59(11):1043-1054. doi: 10.1002/pol.20210029
|
[7] |
陈倩, 曾威, 石伊康, 等. 接枝细菌纤维素改性聚乳酸复合材料的制备与性能[J]. 复合材料学报, 2023, 40(3):1430-1437.CHEN Qian, ZENG Wei, SHI Yikang, et al. Preparation and properties of polylactic acid composite modified by bacterial cellulose[J]. Acta Materiae Compositae Sinica,2023,40(3):1430-1437(in Chinese).
|
[8] |
FELFEL R M, AHMED I, PARSONS A J, et al. Bioresorbable screws reinforced with phosphate glass fibre: Manufacturing and mechanical property characterisation[J]. Journal of the Mechanical Behavior of Biomedical Materials,2013,17:76-88. doi: 10.1016/j.jmbbm.2012.08.001
|
[9] |
FELFEL R M, AHMED I, PARSONS A J, et al. Initial mechanical properties of phosphate-glass fibre-reinforced rods for use as resorbable intramedullary nails[J]. Journal of Materials Science,2012,47(12):4884-4894. doi: 10.1007/s10853-012-6355-9
|
[10] |
LEKSAKUL K, PHUENDEE M. Development of hydroxyapatite-polylactic acid composite bone fixation plate[J]. Science and Engineering of Composite Materials,2018,25(5):903-914. doi: 10.1515/secm-2016-0359
|
[11] |
HASAN M, AHMED I, PARSONS A, et al. Cytocompatibility and mechanical properties of short phosphate glass fibre reinforced polylactic acid (PLA) composites: Effect of coupling agent mediated interface[J]. Journal of Functional Biomaterials,2012,3(4):705-725.
|
[12] |
HASAN M S, WALKER G S, SCOTCHFORD C A. The influence of coupling agents on mechanical property retention and long-term cytocompatibility of phosphate glass fibre reinforced PLA composites[J]. Journal of the Mechanical Behavior of Biomedical Materials,2013,28:1-14. doi: 10.1016/j.jmbbm.2013.07.014
|
[13] |
EKINCI A, GLEADALL A, JOHNSON A A, et al. Mechanical and hydrolytic properties of thin polylactic acid films by fused filament fabrication[J]. Journal of the Mechanical Behavior of Biomedical Materials,2020,114:104217.
|
[14] |
AHMED I, CRONIN P S, ABOU N E A, et al. Retention of mechanical properties and cytocompatibility of a phosphate-based glass fiber/polylactic acid composite[J]. Journal of Biomedical Materials Research, Part B, Applied Biomaterials,2009,89(1):18-27.
|
[15] |
封端佩, 商元元, 李俊. 三维四向和五向编织复合材料冲击断裂行为的多尺度模拟[J]. 纺织学报, 2020, 41(10):67-73. doi: 10.13475/j.fzxb.20190902007FENG Duanpei, SHANG Yuanyuan, LI Jun. Multi-scale simulation of impact failure behavior for 4-and 5-directional 3D braided composites[J]. Journal of Textile Research,2020,41(10):67-73(in Chinese). doi: 10.13475/j.fzxb.20190902007
|
[16] |
LI X, DENG L G, LI Y, et al. Preparation of microcrystalline cellulose from bagasse bleached pulp reinforced polylactic acid composite films[J]. Sugar Tech,2020,22(6):1138-1147. doi: 10.1007/s12355-020-00827-w
|
[17] |
中华人民共和国医药行业标准. 外科植入物用聚L-丙交酯树脂及制品体外降解试验: YY/T 0474—2004[S]. 北京: 中国标准出版社, 2004.Pharmaceutical Industry Standards of the People's Republic of China. Poly(L-lactide) resins and fabricated forms for surgical implants—In vitro degradation testing: YY/T 0474—2004[S]. Beijing: China Standard Press, 2004(in Chinese).
|
[18] |
中国国家标准化管理委员会. 纤维增强塑料弯曲性能试验方法: GB/T 1449—2005[S]. 北京: 中国标准出版社, 2005.Standardization Administration of the People's Republic of China. Fiber-reinforced plastic composites—Determination of flexural properties: GB/T 1449—2005[S]. Beijing: China Standard Press, 2005(in Chinese).
|
[19] |
American Society for Testing Materials. Standard test method for short beam shear strength of polymer matrix composites and their laminates: ASTM/D 2344—2016[S]. West Conshohocken: American Society for Testing Materials, 2016.
|
[20] |
SUN Y F, WANG Y P, MU W L, et al. Mechanical properties of 3D printed micro-nano rice husk/polylactic acid filaments[J]. Journal of Applied Polymer Science,2022,139(28):e52619.
|
[21] |
KING F L, ARUL JEYA KUMAR A, VIJAYARAGAHAVAN S. Mechanical characterization of polylactic acid reinforced bagasse/basalt hybrid fiber composites[J]. Journal of Composite Materials,2019,53(1):33-43. doi: 10.1177/0021998318780208
|
[22] |
REVATI R, ABDUL M M S, RIDZUAN M J M, et al. In vitro degradation of a 3D porous pennisetum purpureum/PLA biocomposite scaffold[J]. Journal of the Mechanical Behavior of Biomedical Materials,2017,74:383-391. doi: 10.1016/j.jmbbm.2017.06.035
|
[23] |
WENCEL D, KAWOREK A, ABEL T, et al. Optical sensor for real-time pH monitoring in human tissue[J]. Small,2018,14(51):1803627. doi: 10.1002/smll.201803627
|
[24] |
HE L Z, LIU X L, RUDD C. Additive-manufactured gyroid scaffolds of magnesium oxide, phosphate glass fiber and polylactic acid composite for bone tissue engineering[J]. Polymers,2021,13(2):270. doi: 10.3390/polym13020270
|
[25] |
CUI H Z, JIN Z Y, ZHENG D P, et al. Effect of carbon fibers grafted with carbon nanotubes on mechanical properties of cement-based composites[J]. Construction and Building Materials, 2018, 181: 713-720.
|
[26] |
LIAO C G, CHEN K, LI P, et al. Nano-TiO2 modified wheat straw/polylactic acid composites based on synergistic effect between interfacial bridging and heterogeneous nucleation[J]. Journal of Polymers and the Environment,2022,30(7):3021-3030. doi: 10.1007/s10924-022-02414-4
|
[27] |
YANG J T, ZHANG Y F, ZHENG S J, et al. Probing structure-heterogeneous nucleation efficiency relationship of mesoporous particles in polylactic acid microcellular foaming by supercritical carbon dioxide[J]. The Journal of Supercritical Fluids,2014,95:228-235. doi: 10.1016/j.supflu.2014.08.020
|
[28] |
ZHANG D, QI J G, QIAO S F, et al. A strategy for controlling degradation in vitro of carbon fiber-reinforced polylactic acid composites (by combining fiber modification and pulsed electromagnetic fields)[J]. Journal of Biomaterials Science, Polymer Edition,2018,29(16):1964-1977. doi: 10.1080/09205063.2018.1495798
|