留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玻璃纤维及偶联剂对聚乳酸降解性能的影响

吕东阳 陈利 王静

吕东阳, 陈利, 王静. 玻璃纤维及偶联剂对聚乳酸降解性能的影响[J]. 复合材料学报, 2024, 41(2): 694-701. doi: 10.13801/j.cnki.fhclxb.20230627.002
引用本文: 吕东阳, 陈利, 王静. 玻璃纤维及偶联剂对聚乳酸降解性能的影响[J]. 复合材料学报, 2024, 41(2): 694-701. doi: 10.13801/j.cnki.fhclxb.20230627.002
LYU Dongyang, CHEN Li, WANG Jing. Effect of glass fibers and coupling agents on the degradation properties of polylactic acid[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 694-701. doi: 10.13801/j.cnki.fhclxb.20230627.002
Citation: LYU Dongyang, CHEN Li, WANG Jing. Effect of glass fibers and coupling agents on the degradation properties of polylactic acid[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 694-701. doi: 10.13801/j.cnki.fhclxb.20230627.002

玻璃纤维及偶联剂对聚乳酸降解性能的影响

doi: 10.13801/j.cnki.fhclxb.20230627.002
基金项目: 国家科技重大专项项目(2017-VII-0011-0177);天津市多元投入重点项目(22JCZDJC00940)
详细信息
    通讯作者:

    王静,博士,副研究员,博士生导师,研究方向为先进纺织复合材料 E-mail: jingwang@tiangong.edu.cn

  • 中图分类号: TB332

Effect of glass fibers and coupling agents on the degradation properties of polylactic acid

Funds: National Science and Technology Major Project (2017-VII-0011-0177); Key Projects with Diversified Investment in Tianjin (22JCZDJC00940)
  • 摘要: 聚乳酸因其优异的性能广泛应用在骨折内固定领域,但其存在降解速度过快导致的弯曲和剪切性能下降问题,因此复合改性是提高其性能的途经之一。本文采用三维编织技术制备了玻璃纤维(GF)和聚乳酸(PLA)混编预制体,并采用偶联剂KH550对预制体进行改性处理。采取热压成型工艺制备复合材料。在37℃条件下将复合材料浸泡在磷酸盐缓冲溶液(PBS)中进行体外降解实验。结果显示:GF质量分数增加会降低复合材料的质量损失率及吸水率。降解28天后,GF质量分数为40wt%的结晶度较GF质量分数为30wt%的试样增加了12.3%,GF质量分数为30wt%、35wt%和40wt%时,弯曲强度分别下降了32.3%、28.13%和16.16%,剪切强度分别下降了53.74%、51.1%和47.18%。说明提高GF质量分数有助于维持复合材料的力学性能,缓解因降解引起的界面损伤。KH550的引入使降解介质(PBS缓冲液) pH值下降幅度小。降解28天后,改性复合材料弯曲强度下降了22.85%,剪切强度下降了56.11%。结合SEM图像,发现降解第7天时GF质量分数为30wt%的试样出现细小沟壑,第28天时表面损伤明显。而GF质量分数为40wt%的试样降解损伤较小。可见,GF对PLA复合材料的力学性能和结晶度起到促进作用,同时抑制了PLA的降解。KH550改善了GF和PLA的界面,对降解介质pH值变化影响较小。

     

  • 图  1  (a) 聚乳酸(PLA)纤维DSC曲线;(b) 玻璃纤维(GF)/PLA复合材料热压成型工艺曲线

    Figure  1.  (a) DSC curve of polylactic acid (PLA) fiber; (b) Hot press molding process curves of glass fiber (GF)/PLA composite

    图  2  GF/PLA复合材料降解过程中质量损失率(a)及吸水率(b)

    5 mod sample is the modified sample of KH550 with 40wt%GF

    Figure  2.  Quality retention rate (a) and water absorption rate (b) during the degradation of GF/PLA composite materials

    图  3  GF/PLA复合材料降解过程中pH值变化

    Figure  3.  pH value change during degradation of GF/PLA composite materials

    图  4  GF/PLA复合材料降解过程中结晶度变化

    Figure  4.  Changes in crystallinity during the degradation of GF/PLA composite materials

    图  5  GF/PLA复合材料降解过程中弯曲强度变化

    Figure  5.  Flexural strength change during degradation of GF/PLA composite materials

    图  6  GF/PLA复合材料降解过程中剪切强度变化

    Figure  6.  Shear strength change during degradation of GF/PLA composite materials

    图  7  GF/PLA复合材料的SEM图像:(a) 40wt%GF;(b) 5 mod

    Figure  7.  SEM images of GF/PLA composite materials: (a) 40wt%GF; (b) 5 mod

    图  8  GF/PLA复合材料降解第7天的SEM图像:(a) 30wt%GF;(b) 35wt%GF;(c) 40wt%GF;(d) 5 mod

    Figure  8.  SEM images of GF/PLA composite degradation at 7 days: (a) 30wt%GF; (b) 35wt%GF; (c) 40wt%GF; (d) 5 mod

    图  9  GF/PLA复合材料降解第14天的SEM图像:(a) 30wt%GF;(b) 35wt%GF;(c) 40wt%GF;(d) 5 mod

    Figure  9.  SEM images of GF/PLA composite degradation at 14 days: (a) 30wt%GF; (b) 35wt%GF; (c) 40wt%GF; (d) 5 mod

    图  10  GF/PLA复合材料降解第21天的SEM图像:(a) 30wt%GF;(b) 35wt%GF;(c) 40wt%GF;(d) 5 mod

    Figure  10.  SEM images of GF/PLA composite degradation at 21 days: (a) 30wt%GF; (b) 35wt%GF; (c) 40wt%GF; (d) 5 mod

    图  11  GF/PLA复合材料降解第28天的SEM图像:(a) 30wt%GF;(b) 35wt%GF;(c) 40wt%GF;(d) 5 mod

    Figure  11.  SEM images of GF/PLA composite degradation at 28 days: (a) 30wt%GF; (b) 35wt%GF; (c) 40wt%GF; (d) 5 mod

  • [1] LI J L, QIN L, YANG K, et al. Materials evolution of bone plates for internal fixation of bone fractures: A review[J]. Journal of Materials Science & Technology,2020,36:190-208.
    [2] ORASSI V, FISCHER H, DUDA G N, et al. In silico biomechanical evaluation of WE43 magnesium plates for mandibular fracture fixation[J]. Frontiers in Bioengineering and Biotechnology,2022,9:803103. doi: 10.3389/fbioe.2021.803103
    [3] LETT J A, SAGADEVAN S, LÉONARD E, et al. Bone tissue engineering potentials of 3D printed magnesium-hydroxyapatite in polylactic acid composite scaffolds[J]. Artificial Organs,2021,45(12):1501-1512. doi: 10.1111/aor.14045
    [4] FAIRAG R, LI L, RAMIREZ-GARCIALUNA J L, et al. A composite lactide-mineral 3D-printed scaffold for bone repair and regeneration[J]. Frontiers in Cell and Developmental Biology,2021,9:654518. doi: 10.3389/fcell.2021.654518
    [5] LIU Y, DU T M, QIAO A K, et al. Zinc-based biodegradable materials for orthopaedic internal fixation[J]. Journal of Functional Biomaterials,2022,13(4):164. doi: 10.3390/jfb13040164
    [6] SUJAN M I, SARKAR S D, ROY C K, et al. Graphene oxide crosslinker for the enhancement of mechanical properties of polylactic acid[J]. Journal of Polymer Science,2021,59(11):1043-1054. doi: 10.1002/pol.20210029
    [7] 陈倩, 曾威, 石伊康, 等. 接枝细菌纤维素改性聚乳酸复合材料的制备与性能[J]. 复合材料学报, 2023, 40(3):1430-1437.

    CHEN Qian, ZENG Wei, SHI Yikang, et al. Preparation and properties of polylactic acid composite modified by bacterial cellulose[J]. Acta Materiae Compositae Sinica,2023,40(3):1430-1437(in Chinese).
    [8] FELFEL R M, AHMED I, PARSONS A J, et al. Bioresorbable screws reinforced with phosphate glass fibre: Manufacturing and mechanical property characterisation[J]. Journal of the Mechanical Behavior of Biomedical Materials,2013,17:76-88. doi: 10.1016/j.jmbbm.2012.08.001
    [9] FELFEL R M, AHMED I, PARSONS A J, et al. Initial mechanical properties of phosphate-glass fibre-reinforced rods for use as resorbable intramedullary nails[J]. Journal of Materials Science,2012,47(12):4884-4894. doi: 10.1007/s10853-012-6355-9
    [10] LEKSAKUL K, PHUENDEE M. Development of hydroxyapatite-polylactic acid composite bone fixation plate[J]. Science and Engineering of Composite Materials,2018,25(5):903-914. doi: 10.1515/secm-2016-0359
    [11] HASAN M, AHMED I, PARSONS A, et al. Cytocompatibility and mechanical properties of short phosphate glass fibre reinforced polylactic acid (PLA) composites: Effect of coupling agent mediated interface[J]. Journal of Functional Biomaterials,2012,3(4):705-725.
    [12] HASAN M S, WALKER G S, SCOTCHFORD C A. The influence of coupling agents on mechanical property retention and long-term cytocompatibility of phosphate glass fibre reinforced PLA composites[J]. Journal of the Mechanical Behavior of Biomedical Materials,2013,28:1-14. doi: 10.1016/j.jmbbm.2013.07.014
    [13] EKINCI A, GLEADALL A, JOHNSON A A, et al. Mechanical and hydrolytic properties of thin polylactic acid films by fused filament fabrication[J]. Journal of the Mechanical Behavior of Biomedical Materials,2020,114:104217.
    [14] AHMED I, CRONIN P S, ABOU N E A, et al. Retention of mechanical properties and cytocompatibility of a phosphate-based glass fiber/polylactic acid composite[J]. Journal of Biomedical Materials Research, Part B, Applied Biomaterials,2009,89(1):18-27.
    [15] 封端佩, 商元元, 李俊. 三维四向和五向编织复合材料冲击断裂行为的多尺度模拟[J]. 纺织学报, 2020, 41(10):67-73. doi: 10.13475/j.fzxb.20190902007

    FENG Duanpei, SHANG Yuanyuan, LI Jun. Multi-scale simulation of impact failure behavior for 4-and 5-directional 3D braided composites[J]. Journal of Textile Research,2020,41(10):67-73(in Chinese). doi: 10.13475/j.fzxb.20190902007
    [16] LI X, DENG L G, LI Y, et al. Preparation of microcrystalline cellulose from bagasse bleached pulp reinforced polylactic acid composite films[J]. Sugar Tech,2020,22(6):1138-1147. doi: 10.1007/s12355-020-00827-w
    [17] 中华人民共和国医药行业标准. 外科植入物用聚L-丙交酯树脂及制品体外降解试验: YY/T 0474—2004[S]. 北京: 中国标准出版社, 2004.

    Pharmaceutical Industry Standards of the People's Republic of China. Poly(L-lactide) resins and fabricated forms for surgical implants—In vitro degradation testing: YY/T 0474—2004[S]. Beijing: China Standard Press, 2004(in Chinese).
    [18] 中国国家标准化管理委员会. 纤维增强塑料弯曲性能试验方法: GB/T 1449—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic of China. Fiber-reinforced plastic composites—Determination of flexural properties: GB/T 1449—2005[S]. Beijing: China Standard Press, 2005(in Chinese).
    [19] American Society for Testing Materials. Standard test method for short beam shear strength of polymer matrix composites and their laminates: ASTM/D 2344—2016[S]. West Conshohocken: American Society for Testing Materials, 2016.
    [20] SUN Y F, WANG Y P, MU W L, et al. Mechanical properties of 3D printed micro-nano rice husk/polylactic acid filaments[J]. Journal of Applied Polymer Science,2022,139(28):e52619.
    [21] KING F L, ARUL JEYA KUMAR A, VIJAYARAGAHAVAN S. Mechanical characterization of polylactic acid reinforced bagasse/basalt hybrid fiber composites[J]. Journal of Composite Materials,2019,53(1):33-43. doi: 10.1177/0021998318780208
    [22] REVATI R, ABDUL M M S, RIDZUAN M J M, et al. In vitro degradation of a 3D porous pennisetum purpureum/PLA biocomposite scaffold[J]. Journal of the Mechanical Behavior of Biomedical Materials,2017,74:383-391. doi: 10.1016/j.jmbbm.2017.06.035
    [23] WENCEL D, KAWOREK A, ABEL T, et al. Optical sensor for real-time pH monitoring in human tissue[J]. Small,2018,14(51):1803627. doi: 10.1002/smll.201803627
    [24] HE L Z, LIU X L, RUDD C. Additive-manufactured gyroid scaffolds of magnesium oxide, phosphate glass fiber and polylactic acid composite for bone tissue engineering[J]. Polymers,2021,13(2):270. doi: 10.3390/polym13020270
    [25] CUI H Z, JIN Z Y, ZHENG D P, et al. Effect of carbon fibers grafted with carbon nanotubes on mechanical properties of cement-based composites[J]. Construction and Building Materials, 2018, 181: 713-720.
    [26] LIAO C G, CHEN K, LI P, et al. Nano-TiO2 modified wheat straw/polylactic acid composites based on synergistic effect between interfacial bridging and heterogeneous nucleation[J]. Journal of Polymers and the Environment,2022,30(7):3021-3030. doi: 10.1007/s10924-022-02414-4
    [27] YANG J T, ZHANG Y F, ZHENG S J, et al. Probing structure-heterogeneous nucleation efficiency relationship of mesoporous particles in polylactic acid microcellular foaming by supercritical carbon dioxide[J]. The Journal of Supercritical Fluids,2014,95:228-235. doi: 10.1016/j.supflu.2014.08.020
    [28] ZHANG D, QI J G, QIAO S F, et al. A strategy for controlling degradation in vitro of carbon fiber-reinforced polylactic acid composites (by combining fiber modification and pulsed electromagnetic fields)[J]. Journal of Biomaterials Science, Polymer Edition,2018,29(16):1964-1977. doi: 10.1080/09205063.2018.1495798
  • 加载中
图(11)
计量
  • 文章访问数:  453
  • HTML全文浏览量:  259
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-14
  • 修回日期:  2023-06-12
  • 录用日期:  2023-06-18
  • 网络出版日期:  2023-06-27
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回