留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

尖晶石结构ZnFe2O4纳米晶的形貌调控和光芬顿降解RhB性能

李智铭 魏智强 李超 韩明君 王青 赵玉峰

李智铭, 魏智强, 李超, 等. 尖晶石结构ZnFe2O4纳米晶的形貌调控和光芬顿降解RhB性能[J]. 复合材料学报, 2024, 41(2): 795-803. doi: 10.13801/j.cnki.fhclxb.20230627.001
引用本文: 李智铭, 魏智强, 李超, 等. 尖晶石结构ZnFe2O4纳米晶的形貌调控和光芬顿降解RhB性能[J]. 复合材料学报, 2024, 41(2): 795-803. doi: 10.13801/j.cnki.fhclxb.20230627.001
LI Zhiming, WEI Zhiqiang, LI Chao, et al. Morphology modulation and photo-Fenton degradation of RhB properties in spinel-structured ZnFe2O4 nanocrystals[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 795-803. doi: 10.13801/j.cnki.fhclxb.20230627.001
Citation: LI Zhiming, WEI Zhiqiang, LI Chao, et al. Morphology modulation and photo-Fenton degradation of RhB properties in spinel-structured ZnFe2O4 nanocrystals[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 795-803. doi: 10.13801/j.cnki.fhclxb.20230627.001

尖晶石结构ZnFe2O4纳米晶的形貌调控和光芬顿降解RhB性能

doi: 10.13801/j.cnki.fhclxb.20230627.001
基金项目: 国家自然科学基金(52268042);甘肃省自然科学基金(22JR5RA253);兰州理工大学红柳一流学科发展项目
详细信息
    通讯作者:

    魏智强,博士,教授,博士生导师,研究方向为纳米材料 E-mail: qianweizuo@163.com

  • 中图分类号: TB331

Morphology modulation and photo-Fenton degradation of RhB properties in spinel-structured ZnFe2O4 nanocrystals

Funds: National Natural Science Foundation of China (52268042); Natural Science Foundation of Gansu Province, China (22JR5RA253); HongLiu First-Class Disciplines Development Program of Lanzhou University of Technology
  • 摘要: 水资源短缺和人类生产生活需水量的增加使污水净化处理这一话题变热。高级氧化工艺因其高效、环境友好且没有二次污染成为一种行之有效的处理污水方法。其中最具代表性的就是光催化技术和芬顿技术。通过调整工艺参数,采用水热法和煅烧法制备了3种不同形貌的ZnFe2O4纳米晶,即微球状(ZFO-1)、空心球状(ZFO-2)和正六边形状(ZFO-3)。通过XRD、SEM、HRTEM、UV-vis、电化学阻抗谱(EIS)和瞬态光电流响应测试等,对样品的微观结构、形貌、元素组成和光电化学性能进行表征。此外,ZnFe2O4纳米晶光芬顿性能是通过对罗丹明B (RhB)的降解所得出的。结果表明:所制备的3种ZnFe2O4纳米晶均具有立方尖晶石结构和良好的结晶度。ZFO-2表现出优异的可见光吸收能力和最窄的带隙,并发生红移现象。EIS测试表明,ZFO-2的转移内阻最小且瞬态光电流最大,具有优异的光生载流子的迁移和分离能力。ZFO-1、ZFO-2、ZFO-3催化剂的光芬顿降解效率依次为88.2%、97.6%和48.1%,表明具有良好的降解性能。综合得到,ZFO-2具备优异的光降解性能。并探讨了可能的光芬顿降解RhB催化机制。

     

  • 图  1  微球状(ZFO-1)、空心球状(ZFO-2)和正六边形状(ZFO-3) ZnFe2O4纳米晶催化剂的XRD图谱

    Figure  1.  XRD patterns of microspherical (ZFO-1), hollow spherical (ZFO-2) and orthohexagonal (ZFO-3) ZnFe2O4 nanocrystals catalysts

    图  2  ZFO-1 (a)、ZFO-2 (b)和ZFO-3 (c)催化剂的SEM图像

    Figure  2.  SEM images of ZFO-1 (a), ZFO-2 (b) and ZFO-3 (c) catalysts

    图  3  ZFO-2光催化剂的TEM图像(a)和选区电子衍射(SAED)图像(b)

    d—Crystal pitch

    Figure  3.  TEM images (a) and selective electron diffraction (SAED) image (b) of ZFO-2 catalysts

    图  4  ZFO-2催化剂的EDS元素映射图

    Figure  4.  EDS elemental mapping of ZFO-2 catalyst

    图  5  ZFO-2催化剂的氮吸附-脱附等温线(a)和孔径分布(b)

    STP—Standard temperature and pressure

    Figure  5.  Nitrogen adsorption-desorption isotherm (a) and pore size distribution (b) of ZFO-2 catalysts

    图  6  ZFO-1、ZFO-2、ZFO-3样品的紫外-可见光吸收光谱(a)和(αhν)1/2-hν 曲线(b)

    a—Original longitudinal intensity; hv—Photon energy and also the transverse coordinate of the absorption spectrum

    Figure  6.  UV-Vis absorption spectra (a) and (αhν)1/2-hν curves (b) of ZFO-1, ZFO-2 and ZFO-3 samples

    图  7  ZFO-2催化剂的Mott-Schottky图

    SCE—Standard calomel electrode; C—System momentum

    Figure  7.  Mott-Schottky diagram of ZFO-2 catalyst

    图  8  ZFO-1、ZFO-2、ZFO-3催化剂的电化学阻抗图谱(a)和瞬态光电流响应图谱(b)

    Figure  8.  Electrochemical impedance profiles (a) and transient photocurrent response profiles (b) of ZFO-1, ZFO-2 and ZFO-3 catalysts

    图  9  ZFO-1、ZFO-2、ZFO-3催化剂的光催化(a)和光芬顿(b)降解RhB随时间变化曲线

    C0—Pre-light solution concentration; Ct—Post-light solution concentration

    Figure  9.  Photocatalytic (a) and photo-Fenton (b) degradation of RhB with time for ZFO-1, ZFO-2 and ZFO-3 catalysts

    图  10  ZFO-2催化剂的光催化(a)和光芬顿(b)降解RhB随辐照时间变化的UV图谱

    Figure  10.  Photocatalytic (a) and photo-Fenton (b) UV spectra of ZFO-2 catalysts for the degradation of RhB with irradiation time

    图  11  ZnFe2O4光芬顿降解罗丹明B (RhB)的机制示意图

    VB—Valence band; CB—Conduction band; Eg—Band-gap energy; NHE—Normal hydrogen electrode

    Figure  11.  Schematic diagram of the mechanism of rhodamine B (RhB) degradation by ZnFe2O4 photo-Fenton

    图  12  不同捕获剂对ZFO-2样品的光芬顿降解的影响

    BQ—1, 4-benzoquinone; IPA—Propan-2-ol; EDTA—Ethylene diamine tetraacetic acid

    Figure  12.  Effect of different trapping agents on the photo-Fenton degradation of ZFO-2 samples

  • [1] LI X, XIE S Y, ZENG G M, et al. Research progress on application of magnetic nanomaterials in water pollution control[J]. Mini-Reviews in Organic Chemistry,2023,20(3):240-249. doi: 10.2174/1570193X19666220328162619
    [2] 马金环, 魏智强, 赵继威, 等. FeOCl光芬顿催化剂的表征及其降解罗丹明B的效果[J]. 材料科学与工艺, 2023, 31(6): 9-18.

    MA Jinhuan, WEI Zhiqiang, ZHAO Jiwei, et al. Characterization of FeOCl photo-Fenton catalyst and its degradation effect of rhodamine B[J]. Materials Science and Technology, 2023, 31(6): 9-18(in Chinese).
    [3] WAN L, WANG H B. Control of urban river water pollution is studied based on SMS[J]. Environmental Technology & Innovation,2021,22:101468.
    [4] LI C, WEI Z Q, CHEN Y R, et al. Photo-electrochemical and enhanced photocatalytic activity of CdS/rGO nanocomposites prepared by hydrothermal method[J]. Journal of Materials Science,2021,32(17):22093-22105.
    [5] DANG M, DENG Q L, TIAN Y Y, et al. Synthesis of anionic ionic liquids@TpBd-(SO3)2 for the selective adsorption of cationic dyes with superior capacity[J]. RSC Advances,2020,10(9):5443-5453. doi: 10.1039/C9RA10035K
    [6] GUO Q F, SUN H R, ZHANG L Y, et al. Fabric-based rGO/BiVO4 recyclable photocatalytic nanocomposites for dye degradation under visible light[J]. Composites Communications,2021,27:100846.
    [7] LIU Q. Pollution and treatment of dye waste-water[J]. Earth and Environmental Science,2020,514(5):052001-052007.
    [8] 梁家浩, 魏智强, 朱学良, 等. 尖晶石结构Ni掺杂ZnFe2O4纳米颗粒的性能表征[J]. 材料工程, 2019, 47(10):113-119. doi: 10.11868/j.issn.1001-4381.2018.000042

    LIANG Jiahao, WEI Zhiqaing, ZHU Xueliang, et al. Pro-perty characterization of spinel structure Ni-doped ZnFe2O4 nanoparticles[J]. Journal of Materials Engineering,2019,47(10):113-119(in Chinese). doi: 10.11868/j.issn.1001-4381.2018.000042
    [9] TAO Y Q, CAI J, HUAI X L, et al. A novel antibiotic wastewater degradation technique combining cavitating jets impingement with multiple synergetic methods[J]. Ultrasonics Sonochemistryz,2018,44:36-44. doi: 10.1016/j.ultsonch.2018.02.008
    [10] ZHU X L, WEI Z Q, ZHAO W H, et al. Preparation and characterization of Zn1-xNixFe2O4 nanoparticles with spinel structure synthesized by hydrothermal method[J]. Current Nanoscience,2018,14(6):474-480. doi: 10.2174/1573413714666180528074117
    [11] CUI Y, ZHANG D A, SHEN K L, et al. Biomimetic anchoring of Fe3O4 onto Ti3C2 MXene for highly efficient removal of organic dyes by Fenton reaction[J]. Journal of Environmental Chemical Engineering,2020,8(5):104369. doi: 10.1016/j.jece.2020.104369
    [12] YOU J Q, ZHANG X H, CHEN J L. Degradation of antibiotics by Fenton-like reaction catalyzed by iron oxide[J]. Advances in Materials Science and Engineering,2022,2022:6849818.
    [13] ZHU X Y, LIU L, DONG Z, et al. Confining Fe2O3 in silicalite-1 for effective catalytic activity in bias-assisted photo-Fenton system for nitrobenzene degradation[J]. Journal of Cleaner Production,2023,383:135525. doi: 10.1016/j.jclepro.2022.135525
    [14] RUAN Y, KONG L J, ZHONG Y W, et al. Review on the synthesis and activity of iron-based catalyst in catalytic oxidation of refractory organic pollutants in wastewater[J]. Journal of Cleaner Production,2021,321:128924. doi: 10.1016/j.jclepro.2021.128924
    [15] LUO Y, HAN H R, LI J J, et al. Fe doped Bi2O2S nanosheets for improved organic pollutants photo-Fenton degradation and CO2 photoreduction[J]. Separation and Purification Technology,2023,306:122734. doi: 10.1016/j.seppur.2022.122734
    [16] LI C, WEI Z Q, LU Q, et al. Photoelectrochemical and photo-Fenton mechanism of enhanced visible light-driven nanocatalyst synthesis of ZnFe2O4/BiOI[J]. Environmental Science and Pollution Research,2022,29(23):34930-34942. doi: 10.1007/s11356-022-18682-5
    [17] KENFOUD H, NASRALLAH N, MEZIANI D, et al. Photoelectrochemical study of the spinel CaFe2O4 nanostructure: Application to basic blue 41 oxidation under solar light[J]. Journal of Solid State Electrochemistry,2021,25(6):1815-1823. doi: 10.1007/s10008-021-04952-8
    [18] BHOWMIK R. Tuning of composite cubic spinel structure in Co1.75Fe1.25O4 spinel oxide by thermal treatment and its effects on modifying the ferrimagnetic properties[J]. Journal of Alloys and Compounds,2016,680:315-327. doi: 10.1016/j.jallcom.2016.04.163
    [19] ZHAO W H, WEI Z Q, ZHANG X D, et al, Magnetic recyclable MnFe2O4/CeO2/SnS2 ternary nano-photocatalyst for photo-Fenton degradation[J]. Applied Catalysis A: General, 2020, 593: 117443.
    [20] KEFENI K K, MAMBA B B. Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater treatment: Review[J]. Sustainable Materials and Technologies,2020,23:e00140. doi: 10.1016/j.susmat.2019.e00140
    [21] 马金环, 魏智强, 梁家浩, 等. 水热法合成rGO/Mo0.7Co0.3S2超级电容器电极复合材料[J]. 复合材料学报, 2022, 39(10):4580-4589.

    MA Jinhuan, WEI Zhiqiang, LIANG Jiahao, et al. Hydrothermal method of rGO/Mo0.7Co0.3S2 nanocomposites for high-performance supercapacitor electrodes[J]. Acta Materiae Compositae Sinica,2022,39(10):4580-4589(in Chinese).
    [22] ZHAI B G, YANG L, MA Q L, et al. Visible light driven photocatalytic activity of Fe-doped ZnO nanocrystals[J]. Functional Materials Letters,2016,10(2):1750002.
    [23] ARIMI A, MEGATIF L, GRANONE L I, et al. Visible-light photocatalytic activity of zinc ferrites[J]. Journal of Photochemistry and Photobiology A: Chemistry,2018,366:118-126. doi: 10.1016/j.jphotochem.2018.03.014
    [24] ANIS-UR-REHMAN M. Facile preparation approaches and prospective applications for nanostructured ferrites[J]. Journal of Superconductivity and Novel Magnetism,2017,30(11):3327-3331. doi: 10.1007/s10948-016-3797-3
    [25] DIPPONG T, LEVEI E A, CADAR O. Recent advances in synthesis and applications of MFe2O4 (M = Co, Cu, Mn, Ni, Zn) nanoparticles[J]. Nanomaterials,2021,11(6):1560. doi: 10.3390/nano11061560
    [26] RASHEED T, RIZWAN K, BILAL M, et al. Metal-organic framework-based engineered materials—Fundamentals and applications[J]. Molecules,2020,25(7):1598. doi: 10.3390/molecules25071598
    [27] SHOBANA M K, NAM H S, CHOE H. The effects of lithium and yttrium substitution on the optical and structural properties of cobalt ferrites[J]. Indian Journal of Physics,2019,93(3):307-313. doi: 10.1007/s12648-018-1292-3
    [28] LU Q, WEI Z Q, LI C, et al. Photocatalytic degradation of methyl orange by noble metal Ag modified semiconductor Zn2SnO4[J]. Materials Science in Semiconductor Processing,2022,138:106290. doi: 10.1016/j.mssp.2021.106290
    [29] ARELLANO C M, RAMIRIREZ M E, PAL U, et al. pH dependent morphology and texture evolution of ZnO nanoparticles fabricated by microwave-assisted chemical synthesis and their photocatalytic dye degradation activities[J]. Ceramics International,2021,47(19):27469-27478. doi: 10.1016/j.ceramint.2021.06.170
    [30] HU J H, DING J E, AI J P, et al. Room temperature growth of ZnO with highly active exposed facets for photocatalytic application[J]. Nanotechnology Reviews,2021,10(1):919-932. doi: 10.1515/ntrev-2021-0057
    [31] KAJITVICHYANUKUL P, NGUYEN V H, BOONUPARA T, et al. Challenges and effectiveness of nanotechnology-based photocatalysis for pesticides-contaminated water: A review[J]. Environmental Research, 2022, 212(part C): 113336.
    [32] ZANGIABADI M, SALJOOQI A, SHAMSPUR T, et al. Evaluation of GO nanosheets decorated by CuFe2O4 and CdS nanoparticles as photocatalyst for the degradation of dinoseb and imidacloprid pesticides[J]. Ceramics International,2020,46(5):6124-6128. doi: 10.1016/j.ceramint.2019.11.076
    [33] REVATHI J, ABEL M J, ARCHANA V, et al. Synthesis and characterization of CoFe2O4 and Ni-doped CoFe2O4 nanoparticles by chemical Co-precipitation technique for photo-degradation of organic dyestuffs under direct sunlight[J]. Physica B: Condensed Matter,2020,587:412136. doi: 10.1016/j.physb.2020.412136
    [34] LEE D U, LI J D, PARK M G, et al. Self-assembly of spinel nanocrystals into mesoporous spheres as bifunctionally active oxygen reduction and evolution electrocatalysts[J]. ChemSusChem,2017,10(10):2258-2266. doi: 10.1002/cssc.201700369
    [35] LI L, WEI Z Q, LIU W Z, et al. Selenium-doped Se-CoSe2@ZnSe heterojunction structure derived from ZIF-8 metal organic skeleton is used in high-performance asymmetric supercapacitors[J]. Journal of Alloys and Compounds,2022,927:167100. doi: 10.1016/j.jallcom.2022.167100
    [36] WEI Z Q, HUANG S P, ZHANG X D, et al. Hydrothermal synthesis and photo-Fenton degradation of magnetic MnFe2O4/rGO nanocomposites[J]. Journal of Materials Science: Materials in Electronics,2020,31(7):5176-5186. doi: 10.1007/s10854-020-03077-4
  • 加载中
图(12)
计量
  • 文章访问数:  535
  • HTML全文浏览量:  456
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-17
  • 修回日期:  2023-06-03
  • 录用日期:  2023-06-11
  • 网络出版日期:  2023-06-27
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回