[1] |
LI X, XIE S Y, ZENG G M, et al. Research progress on application of magnetic nanomaterials in water pollution control[J]. Mini-Reviews in Organic Chemistry,2023,20(3):240-249. doi: 10.2174/1570193X19666220328162619
|
[2] |
马金环, 魏智强, 赵继威, 等. FeOCl光芬顿催化剂的表征及其降解罗丹明B的效果[J]. 材料科学与工艺, 2023, 31(6): 9-18.MA Jinhuan, WEI Zhiqiang, ZHAO Jiwei, et al. Characterization of FeOCl photo-Fenton catalyst and its degradation effect of rhodamine B[J]. Materials Science and Technology, 2023, 31(6): 9-18(in Chinese).
|
[3] |
WAN L, WANG H B. Control of urban river water pollution is studied based on SMS[J]. Environmental Technology & Innovation,2021,22:101468.
|
[4] |
LI C, WEI Z Q, CHEN Y R, et al. Photo-electrochemical and enhanced photocatalytic activity of CdS/rGO nanocomposites prepared by hydrothermal method[J]. Journal of Materials Science,2021,32(17):22093-22105.
|
[5] |
DANG M, DENG Q L, TIAN Y Y, et al. Synthesis of anionic ionic liquids@TpBd-(SO3)2 for the selective adsorption of cationic dyes with superior capacity[J]. RSC Advances,2020,10(9):5443-5453. doi: 10.1039/C9RA10035K
|
[6] |
GUO Q F, SUN H R, ZHANG L Y, et al. Fabric-based rGO/BiVO4 recyclable photocatalytic nanocomposites for dye degradation under visible light[J]. Composites Communications,2021,27:100846.
|
[7] |
LIU Q. Pollution and treatment of dye waste-water[J]. Earth and Environmental Science,2020,514(5):052001-052007.
|
[8] |
梁家浩, 魏智强, 朱学良, 等. 尖晶石结构Ni掺杂ZnFe2O4纳米颗粒的性能表征[J]. 材料工程, 2019, 47(10):113-119. doi: 10.11868/j.issn.1001-4381.2018.000042LIANG Jiahao, WEI Zhiqaing, ZHU Xueliang, et al. Pro-perty characterization of spinel structure Ni-doped ZnFe2O4 nanoparticles[J]. Journal of Materials Engineering,2019,47(10):113-119(in Chinese). doi: 10.11868/j.issn.1001-4381.2018.000042
|
[9] |
TAO Y Q, CAI J, HUAI X L, et al. A novel antibiotic wastewater degradation technique combining cavitating jets impingement with multiple synergetic methods[J]. Ultrasonics Sonochemistryz,2018,44:36-44. doi: 10.1016/j.ultsonch.2018.02.008
|
[10] |
ZHU X L, WEI Z Q, ZHAO W H, et al. Preparation and characterization of Zn1-xNixFe2O4 nanoparticles with spinel structure synthesized by hydrothermal method[J]. Current Nanoscience,2018,14(6):474-480. doi: 10.2174/1573413714666180528074117
|
[11] |
CUI Y, ZHANG D A, SHEN K L, et al. Biomimetic anchoring of Fe3O4 onto Ti3C2 MXene for highly efficient removal of organic dyes by Fenton reaction[J]. Journal of Environmental Chemical Engineering,2020,8(5):104369. doi: 10.1016/j.jece.2020.104369
|
[12] |
YOU J Q, ZHANG X H, CHEN J L. Degradation of antibiotics by Fenton-like reaction catalyzed by iron oxide[J]. Advances in Materials Science and Engineering,2022,2022:6849818.
|
[13] |
ZHU X Y, LIU L, DONG Z, et al. Confining Fe2O3 in silicalite-1 for effective catalytic activity in bias-assisted photo-Fenton system for nitrobenzene degradation[J]. Journal of Cleaner Production,2023,383:135525. doi: 10.1016/j.jclepro.2022.135525
|
[14] |
RUAN Y, KONG L J, ZHONG Y W, et al. Review on the synthesis and activity of iron-based catalyst in catalytic oxidation of refractory organic pollutants in wastewater[J]. Journal of Cleaner Production,2021,321:128924. doi: 10.1016/j.jclepro.2021.128924
|
[15] |
LUO Y, HAN H R, LI J J, et al. Fe doped Bi2O2S nanosheets for improved organic pollutants photo-Fenton degradation and CO2 photoreduction[J]. Separation and Purification Technology,2023,306:122734. doi: 10.1016/j.seppur.2022.122734
|
[16] |
LI C, WEI Z Q, LU Q, et al. Photoelectrochemical and photo-Fenton mechanism of enhanced visible light-driven nanocatalyst synthesis of ZnFe2O4/BiOI[J]. Environmental Science and Pollution Research,2022,29(23):34930-34942. doi: 10.1007/s11356-022-18682-5
|
[17] |
KENFOUD H, NASRALLAH N, MEZIANI D, et al. Photoelectrochemical study of the spinel CaFe2O4 nanostructure: Application to basic blue 41 oxidation under solar light[J]. Journal of Solid State Electrochemistry,2021,25(6):1815-1823. doi: 10.1007/s10008-021-04952-8
|
[18] |
BHOWMIK R. Tuning of composite cubic spinel structure in Co1.75Fe1.25O4 spinel oxide by thermal treatment and its effects on modifying the ferrimagnetic properties[J]. Journal of Alloys and Compounds,2016,680:315-327. doi: 10.1016/j.jallcom.2016.04.163
|
[19] |
ZHAO W H, WEI Z Q, ZHANG X D, et al, Magnetic recyclable MnFe2O4/CeO2/SnS2 ternary nano-photocatalyst for photo-Fenton degradation[J]. Applied Catalysis A: General, 2020, 593: 117443.
|
[20] |
KEFENI K K, MAMBA B B. Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater treatment: Review[J]. Sustainable Materials and Technologies,2020,23:e00140. doi: 10.1016/j.susmat.2019.e00140
|
[21] |
马金环, 魏智强, 梁家浩, 等. 水热法合成rGO/Mo0.7Co0.3S2超级电容器电极复合材料[J]. 复合材料学报, 2022, 39(10):4580-4589.MA Jinhuan, WEI Zhiqiang, LIANG Jiahao, et al. Hydrothermal method of rGO/Mo0.7Co0.3S2 nanocomposites for high-performance supercapacitor electrodes[J]. Acta Materiae Compositae Sinica,2022,39(10):4580-4589(in Chinese).
|
[22] |
ZHAI B G, YANG L, MA Q L, et al. Visible light driven photocatalytic activity of Fe-doped ZnO nanocrystals[J]. Functional Materials Letters,2016,10(2):1750002.
|
[23] |
ARIMI A, MEGATIF L, GRANONE L I, et al. Visible-light photocatalytic activity of zinc ferrites[J]. Journal of Photochemistry and Photobiology A: Chemistry,2018,366:118-126. doi: 10.1016/j.jphotochem.2018.03.014
|
[24] |
ANIS-UR-REHMAN M. Facile preparation approaches and prospective applications for nanostructured ferrites[J]. Journal of Superconductivity and Novel Magnetism,2017,30(11):3327-3331. doi: 10.1007/s10948-016-3797-3
|
[25] |
DIPPONG T, LEVEI E A, CADAR O. Recent advances in synthesis and applications of MFe2O4 (M = Co, Cu, Mn, Ni, Zn) nanoparticles[J]. Nanomaterials,2021,11(6):1560. doi: 10.3390/nano11061560
|
[26] |
RASHEED T, RIZWAN K, BILAL M, et al. Metal-organic framework-based engineered materials—Fundamentals and applications[J]. Molecules,2020,25(7):1598. doi: 10.3390/molecules25071598
|
[27] |
SHOBANA M K, NAM H S, CHOE H. The effects of lithium and yttrium substitution on the optical and structural properties of cobalt ferrites[J]. Indian Journal of Physics,2019,93(3):307-313. doi: 10.1007/s12648-018-1292-3
|
[28] |
LU Q, WEI Z Q, LI C, et al. Photocatalytic degradation of methyl orange by noble metal Ag modified semiconductor Zn2SnO4[J]. Materials Science in Semiconductor Processing,2022,138:106290. doi: 10.1016/j.mssp.2021.106290
|
[29] |
ARELLANO C M, RAMIRIREZ M E, PAL U, et al. pH dependent morphology and texture evolution of ZnO nanoparticles fabricated by microwave-assisted chemical synthesis and their photocatalytic dye degradation activities[J]. Ceramics International,2021,47(19):27469-27478. doi: 10.1016/j.ceramint.2021.06.170
|
[30] |
HU J H, DING J E, AI J P, et al. Room temperature growth of ZnO with highly active exposed facets for photocatalytic application[J]. Nanotechnology Reviews,2021,10(1):919-932. doi: 10.1515/ntrev-2021-0057
|
[31] |
KAJITVICHYANUKUL P, NGUYEN V H, BOONUPARA T, et al. Challenges and effectiveness of nanotechnology-based photocatalysis for pesticides-contaminated water: A review[J]. Environmental Research, 2022, 212(part C): 113336.
|
[32] |
ZANGIABADI M, SALJOOQI A, SHAMSPUR T, et al. Evaluation of GO nanosheets decorated by CuFe2O4 and CdS nanoparticles as photocatalyst for the degradation of dinoseb and imidacloprid pesticides[J]. Ceramics International,2020,46(5):6124-6128. doi: 10.1016/j.ceramint.2019.11.076
|
[33] |
REVATHI J, ABEL M J, ARCHANA V, et al. Synthesis and characterization of CoFe2O4 and Ni-doped CoFe2O4 nanoparticles by chemical Co-precipitation technique for photo-degradation of organic dyestuffs under direct sunlight[J]. Physica B: Condensed Matter,2020,587:412136. doi: 10.1016/j.physb.2020.412136
|
[34] |
LEE D U, LI J D, PARK M G, et al. Self-assembly of spinel nanocrystals into mesoporous spheres as bifunctionally active oxygen reduction and evolution electrocatalysts[J]. ChemSusChem,2017,10(10):2258-2266. doi: 10.1002/cssc.201700369
|
[35] |
LI L, WEI Z Q, LIU W Z, et al. Selenium-doped Se-CoSe2@ZnSe heterojunction structure derived from ZIF-8 metal organic skeleton is used in high-performance asymmetric supercapacitors[J]. Journal of Alloys and Compounds,2022,927:167100. doi: 10.1016/j.jallcom.2022.167100
|
[36] |
WEI Z Q, HUANG S P, ZHANG X D, et al. Hydrothermal synthesis and photo-Fenton degradation of magnetic MnFe2O4/rGO nanocomposites[J]. Journal of Materials Science: Materials in Electronics,2020,31(7):5176-5186. doi: 10.1007/s10854-020-03077-4
|