留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

集成竹拉伸蠕变性能加速试验

刘燕燕 盛宝璐 黄东升 王文蹈 张锟

刘燕燕, 盛宝璐, 黄东升, 等. 集成竹拉伸蠕变性能加速试验[J]. 复合材料学报, 2024, 41(2): 990-1000. doi: 10.13801/j.cnki.fhclxb.20230625.003
引用本文: 刘燕燕, 盛宝璐, 黄东升, 等. 集成竹拉伸蠕变性能加速试验[J]. 复合材料学报, 2024, 41(2): 990-1000. doi: 10.13801/j.cnki.fhclxb.20230625.003
LIU Yanyan, SHENG Baolu, HUANG Dongsheng, et al. Accelerated creep testing of tensile properties of glued laminated bamboo[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 990-1000. doi: 10.13801/j.cnki.fhclxb.20230625.003
Citation: LIU Yanyan, SHENG Baolu, HUANG Dongsheng, et al. Accelerated creep testing of tensile properties of glued laminated bamboo[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 990-1000. doi: 10.13801/j.cnki.fhclxb.20230625.003

集成竹拉伸蠕变性能加速试验

doi: 10.13801/j.cnki.fhclxb.20230625.003
基金项目: 国家自然科学基金(52008212;51978338)
详细信息
    通讯作者:

    黄东升,工学博士,教授,博士生导师,研究方向为现代竹/木结构 E-mail:dshuang@njfu.edu.cn

  • 中图分类号: TU366.3;TB332

Accelerated creep testing of tensile properties of glued laminated bamboo

Funds: National Natural Science Foundation of China (52008212; 51978338)
  • 摘要: 通过短期(500 h)拉伸蠕变试验,研究了不同应力水平下集成竹顺纹拉伸蠕变行为及变化规律,采用了Findley蠕变模型对蠕变曲线进行模拟;通过阶梯等温法加速蠕变试验,对集成竹顺纹拉伸长期蠕变行为进行了加速表征,构建了跨度50年的蠕变主曲线。结果表明:不同应力水平下,集成竹拉伸蠕变曲线具有初始蠕变和稳态蠕变两个阶段;集成竹拉伸蠕变行为符合线性黏弹性,在任意时刻,其蠕变变形基本与应力水平成正比;根据蠕变主曲线,在60%极限荷载下,集成竹约在104天发生蠕变断裂,呈现脆性破坏形态;Findley蠕变模型不仅能较好地模拟集成竹短期拉伸蠕变行为,其外推结果与加速蠕变试验所得主曲线吻合良好。基于上述试验结果与分析,建立了考虑材料蠕变效应的等时应力-应变曲线,进一步讨论了针对不同设计使用年限的集成竹弹性模量调整系数,并与GB/T 50005—2017《木结构设计标准》建议值进行了对比。

     

  • 图  1  阶梯等温法(SIM)蠕变主曲线的构建

    T—Temperature; t—Time

    Figure  1.  Construction of the stepped isothermal method (SIM) creep maser curves

    图  2  集成竹拉伸试样尺寸

    R—Radius

    Figure  2.  Dimensions of glued laminated bamboo tensile specimen

    图  3  集成竹顺纹拉伸应力-应变曲线

    Figure  3.  Tensile stress-strain curves parallel to the grain of glued laminated bamboo

    图  4  蠕变试验装置

    Figure  4.  Creep test equipment

    图  5  不同应力水平下集成竹常规蠕变结果

    Figure  5.  Creep results of glued laminated bamboo under different stress levels

    图  6  不同应力水平下集成竹相对蠕变曲线

    Figure  6.  Relative creep curves of glued laminated bamboo under different stress levels

    图  7  不同应力水平下集成竹加速蠕变试验结果

    Figure  7.  Results of accelerated creep test of glued laminated bamboo under different stress levels

    图  8  温度应变修正

    Figure  8.  Thermal strain correction

    图  9  参考温度23℃下集成竹的蠕变主曲线

    Figure  9.  Creep master curves of glued laminated bamboo at the reference temperature of 23℃

    图  10  基于加速蠕变试验的集成竹等时应力-应变曲线

    Figure  10.  Isochronous stress-strain curves of glued laminated bamboo based on the accelerated creep test

    表  1  阶梯等温法(SIM)加速蠕变试验加载方案

    Table  1.   Loading scheme of the accelerated creep test using the stepped isothermal method (SIM)

    Loading conditionNumber of specimenStress
    level
    Stepped temperature/℃
    SIM-T0%2 0%23, 30, 37, 44, 51, 58, 65, 72, 79, 86
    SIM-T30%230%
    SIM-T40%240%
    SIM-T50%250%
    SIM-T60%260%
    SIM-T70%270%
    Note: T—Tensile loading.
    下载: 导出CSV

    表  2  Findley蠕变模型拟合参数

    Table  2.   Fitting parameters of Findley creep model

    Stress level$ {\varepsilon _0} $$ a $$ n $$ {R^2} $
    30%$ 3.58 \times {10^{ - 3}} $$ 6.01 \times {10^{ - 4}} $0.090.74
    40%$ 4.39 \times {10^{ - 3}} $$ 6.61 \times {10^{ - 4}} $0.110.98
    50%$ 5.17 \times {10^{ - 3}} $$ 6.53 \times {10^{ - 4}} $0.090.95
    60%$ 6.46 \times {10^{ - 3}} $$ 6.97 \times {10^{ - 4}} $0.100.92
    70%$ 7.22 \times {10^{ - 3}} $$ 7.25 \times {10^{ - 4}} $0.110.96
    Notes: $ {\varepsilon _0} $—Instantaneous elastic strain; $ a $ and $ n $—Parameters of Findley model; $ {R^2} $—Goodness of fit.
    下载: 导出CSV

    表  3  不同设计使用年限集成竹弹性模量调整系数

    Table  3.   Coefficient of elastic modulus of glued laminated bamboo for different design service life

    Design service life/yearGB/T 50005—2017[36]Test results
    $ E $/MPa$ {K_{\text{L}}} $
    51.10114601.09
    251.05107701.02
    501.00105201.00
    Notes: $ E $—Elastic modulus considering creep effect, obtained from the isochronous stress-strain curves in Fig. 10; $ {K_{\text{L}}} $—Coefficient of elastic modulus.
    下载: 导出CSV
  • [1] 中国工程建设标准化协会. 工程竹材: T/CECS 10138—2021[S]. 北京: 中国标准出版社, 2021.

    China Association for Engineering Construction Standardization. Engineered bamboo: T/CECS 10138—2021[S]. Beijing: Standards Press of China, 2021(in Chinese).
    [2] 陈国, 王振国, 吴新涛, 等. 竹集成材钉节点抗剪性能试验研究[J]. 湖南大学学报(自然科学版), 2023, 50(1):119-127.

    CHEN Guo, WANG Zhenguo, WU Xintao, et al. Experimental study on shear performance of laminated bamboo lumber nailed connections[J]. Journal of Hunan University (Natural Sciences),2023,50(1):119-127(in Chinese).
    [3] SUN X F, HE M J, LI Z. Novel engineered wood and bamboo composites for structural applications: State-of-art of manufacturing technology and mechanical performance evaluation[J]. Constructions and Building Materials,2020,249:118751. doi: 10.1016/j.conbuildmat.2020.118751
    [4] 张家亮, 茅鸣, 俞斌武, 等. 钢-竹组合工字形柱轴压性能试验研究[J]. 建筑结构学报, 2022, 43(2):105-115.

    ZHANG Jialiang, MAO Ming, YU Binwu, et al. Experimental study on axial compressive behavior of steel-bamboo I-section composite columns[J]. Journal of Building Structures,2022,43(2):105-115(in Chinese).
    [5] 刘燕燕, 黄东升, 盛宝璐. 集成竹I型层间断裂特性试验研究与数值分析[J]. 建筑结构学报, 2023, 44(1):280-288.

    LIU Yanyan, HUANG Dongsheng, SHENG Baolu. Experimental study and numerical simulation on mode-I interlaminar fracture behavior of laminated bamboo[J]. Journal of Building Structures,2023,44(1):280-288(in Chinese).
    [6] 肖岩, 陈国, 单波, 等. 竹结构轻型框架房屋的研究与应用[J]. 建筑结构学报, 2010, 31(6):195-203.

    XIAO Yan, CHEN Guo, SHAN Bo, et al. Research and application of lightweight glue-laminated bamboo frame structure[J]. Journal of Building Structures,2010,31(6):195-203(in Chinese).
    [7] XIAO Y, ZHOU Q J, SHAN B. Design and construction of modern bamboo bridges[J]. Journal of Bridge Engineering (ASCE),2010,15:533-541. doi: 10.1061/(ASCE)BE.1943-5592.0000089
    [8] 肖岩, 单波. 现代竹结构 [M]. 北京: 中国建筑工业出版社, 2013: 1-18.

    XIAO Yan, SHAN Bo. Glubam structures[M]. Beijing: China Architecture & Building Press, 2013: 1-18(in Chinese).
    [9] 谢桥军, 肖岩. 大跨度胶合竹结构屋架受力性能研究[J]. 建筑结构学报, 2016, 37(4):47-53.

    XIE Qiaojun, XIAO Yan. Experimental study on large-span glubam roof trusses[J]. Journal of Building Structures,2016,37(4):47-53(in Chinese).
    [10] 蒋为安, 刘可为, 张鑫, 等. 中国竹建筑工程2035发展趋势与路径研究[J]. 土木工程学报, 2021, 54(10):125-132.

    JIANG Weian, LIU Kewei, ZHANG Xin, et al. Trends and path for development of bamboo structural engineering towards 2035 in China[J]. China Civil Engineering Journal,2021,54(10):125-132(in Chinese).
    [11] TSUBAKI T, NAKANO T. Creep behavior of bamboo under various desorption conditions[J]. Holzforschung,2010,64:489-493.
    [12] GOTTRON J, HARRIES K A, XU Q. Creep behavior of bamboo[J]. Construction and Building Materials,2014,66:79-88. doi: 10.1016/j.conbuildmat.2014.05.024
    [13] BROKANS A, OZOLA L. Behaviour of creep of timber beams under natural environmental conditions[J]. WIT Transactions on the Built Environment,2014,137:479-489.
    [14] NUR YAZDANI P E, JOHNSON E, DUWADI S. Creep effect in structural composite lumber for bridge application[J]. Journal of Bridge Engineering,2004,9(1):87-94. doi: 10.1061/(ASCE)1084-0702(2004)9:1(87)
    [15] XIAO Y, LI Z, YANG R. Long-term loading behavior of a full-scale glubam bridge model[J]. Journal of Bridge Engineering,2014,19(9):04014027. doi: 10.1061/(ASCE)BE.1943-5592.0000600
    [16] 李磊. 现代新型胶竹材料蠕变性能及组合结构蠕变研究[D]. 长沙: 湖南大学, 2012: 24-29.

    LI Lei. Research on creep property of glubam and modern bamboo composite structure[D]. Changsha: Hunan University, 2012: 24-29(in Chinese).
    [17] 陈思, 魏洋, 赵鲲鹏, 等. 重组竹顺纹受压蠕变性能及预测模型[J]. 复合材料学报, 2021, 38(3): 944-952.

    CHEN Si, WEI Yang, ZHAO Kunpeng, et al. Creep performance and prediction model of bamboo scrimber under compression[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 944-952(in Chinese).
    [18] 李玉顺, 张秀华, 吴培增, 等. 重组竹在长期荷载作用下的蠕变行为[J]. 建筑材料学报, 2019, 22(1):65-71.

    LI Yushun, ZHANG Xiuhua, WU Peizeng, et al. Creep behavior of bamboo scrimber under long-term load[J]. Journal of Building Materials,2019,22(1):65-71(in Chinese).
    [19] MA X X, SHI S Q, WANG G, et al. Long creep-recovery behavior of bamboo-based products[J]. Journal of Wood Science,2017,64(2):119-125.
    [20] 马欣欣. 结构用竹质工程材料的蠕变特性研究[D]. 北京: 中国林业科学研究院, 2015: 74-81.

    MA Xinxin. Creep properties of bamboo-based engineering composite material applied in structure[D]. Beijing: Chinese Academy of Forestry, 2015: 74-81(in Chinese).
    [21] ZHAO K, WEI Y, CHEN S, et al. Experimental investigation of the long-term behavior of reconstituted bamboo beams with various loading levels[J]. Journal of Building Engi-neering,2021,36:102107. doi: 10.1016/j.jobe.2020.102107
    [22] PLAZEK D J. Temperature dependence of the viscoelastic behavior of polystyrene[J]. Journal of Physical Chemistry,1965,69(10):3480-3487. doi: 10.1021/j100894a039
    [23] LEADERMAN H. Elastic and creep properties of filamentous materials and other high polymers[J]. The Journal of Physical and Colloid Chemistry,2002,51(3):886.
    [24] HUNG K, WU T, CHEN Y, et al. Assessing the effect of wood acetylation on mechanical properties and extended creep behavior of wood/recycled-polypropylene composites[J]. Construction and Building Materials,2016,108:139-145. doi: 10.1016/j.conbuildmat.2016.01.039
    [25] 欧荣贤, 姚开泰, 孙理超, 等. 木塑复合材料蠕变特性及预测方法的研究进展[J]. 复合材料学报, 2021, 38(6):1734-1753.

    OU Rongxian, YAO Kaitai, SUN Lichao, et al. State-of-the-art of the creep characteristics of wood-plastic composite and its prediction methods[J]. Acta Materiae Compositae Sinica,2021,38(6):1734-1753(in Chinese).
    [26] PENG H, JIANG J, ZHAN T, et al. Flexural creep behavior of hierarchical bamboo structure using time-temperature-stress superposition principle[J]. Industrial Crops and Products,2022,190:115906. doi: 10.1016/j.indcrop.2022.115906
    [27] THORNTON J S, PAULSON J N, SANDRI D. Conventional and stepped isothermal methods for characterizing long term creep strength of polyester geogrids[C]//ROWE R K. Proceedings of the 6th International Conference on Geosynthetics. Atlanta: Industrial Fabrics Assciation International, 1998: 691-698.
    [28] ALWIS K G N C, BURGOYNE C J. Accelerated creep testing for aramid fibres using the stepped isothermal method[J]. Journal of Materials Science,2008,43(14):4789-4800. doi: 10.1007/s10853-008-2676-0
    [29] ZHAO Y, LU Z, YAO H, et al. A fast and precise methodology of creep master curve construction for geosynthetics based on stepped isothermal method (SIM)[J]. Geotextiles and Geomembranes,2021,49:952-962. doi: 10.1016/j.geotexmem.2021.01.005
    [30] American Society of Testing Materials. Standard test method for accelerated tensile creep and creep-rupture of geosynthetic materials based on time-temperature superposition using the stepped isothermal method: ASTM D6992—16[S]. West Conshohocken: ASTM Committee, 2016.
    [31] American Society of Testing Materials. Standard test method for accelerated compressive creep of geosynthetic materials based on time-temperature superposition using the stepped isothermal method: ASTM D7361—07[S]. West Conshohocken: ASTM Committee, 2007.
    [32] BOLTZMANN L. Zur theorie der elastischen nachwirkung[C]//KAISERL. Sitzungsberichte der Kaiserlichen Akademie der Wissenhaften Mathematische Naturwissenhaft. Wien: Gerold's Sohn Press, 1874: 275-305.
    [33] American Society of Testing Materials. Standard test methods for small clear specimens of timber: ASTM D143—14[S]. West Conshohocken: ASTM Committee, 2014.
    [34] American Society of Testing Materials. Standard test methods for tensile, compressive, and flexural creep and creep-rupture of plastics: ASTM D2990—17[S]. West Conshohocken: ASTM Committee, 2017.
    [35] FINDLEY W N, LAI J S, ONARN K. Creep and relaxation of nonlinear viscoelastic materials[M]. New York: North-Holland Publishing Company, 1976: 8-10.
    [36] 中华人民共和国住房和城乡建设部. 木结构设计规范: GB/T 50005—2017[S]. 北京: 中国建筑工业出版社, 2017.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for design of timber structures: GB/T 50005—2017[S]. Beijing: China Architecture & Building Press, 2017(in Chinese).
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  534
  • HTML全文浏览量:  307
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-21
  • 修回日期:  2023-06-05
  • 录用日期:  2023-06-10
  • 网络出版日期:  2023-06-26
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回