留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔导电凝胶PAM/CNTs-PEG在锌-空气电池中的应用

李培枝 杨海潮 程晓亮 陈志刚 张康 王晨

李培枝, 杨海潮, 程晓亮, 等. 多孔导电凝胶PAM/CNTs-PEG在锌-空气电池中的应用[J]. 复合材料学报, 2024, 41(2): 787-794. doi: 10.13801/j.cnki.fhclxb.20230625.002
引用本文: 李培枝, 杨海潮, 程晓亮, 等. 多孔导电凝胶PAM/CNTs-PEG在锌-空气电池中的应用[J]. 复合材料学报, 2024, 41(2): 787-794. doi: 10.13801/j.cnki.fhclxb.20230625.002
LI Peizhi, YANG Haichao, CHENG Xiaoliang, et al. Application of porous conductive gel PAM/CNTs-PEG in zinc-air batteries[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 787-794. doi: 10.13801/j.cnki.fhclxb.20230625.002
Citation: LI Peizhi, YANG Haichao, CHENG Xiaoliang, et al. Application of porous conductive gel PAM/CNTs-PEG in zinc-air batteries[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 787-794. doi: 10.13801/j.cnki.fhclxb.20230625.002

多孔导电凝胶PAM/CNTs-PEG在锌-空气电池中的应用

doi: 10.13801/j.cnki.fhclxb.20230625.002
基金项目: 陕西省青年科技新星项目(2023KJXX-046);国家自然科学基金(22008148)
详细信息
    通讯作者:

    王晨,博士,教授,博士生导师,研究方向为油田助剂、金属-空气电池、燃料电池 E-mail: wangchenhg@sust.edu.cn

  • 中图分类号: TM911.4;TB33

Application of porous conductive gel PAM/CNTs-PEG in zinc-air batteries

Funds: Shaanxi Province Youth Science and Technology Rising Star Project (2023KJXX-046); National Natural Science Foundation of China (22008148)
  • 摘要: 为实现锌-空气电池工业化生产,优化其空气扩散电极性能,使其有利于气体的扩散,并形成更多的三相界面。导电水凝胶是由导电材料和交联聚合物网络组成,聚合物网络提供支架,而导电材料赋予水凝胶良好的导电性。多孔的结构可以给气体更多的扩散通路,也有利于催化层的负载,形成更多的三相界面。本文采用聚丙烯酰胺基水凝胶,以聚乙二醇-2000 (PEG2000)为制孔剂,合成多孔聚丙烯酰胺/碳纳米管-聚乙二醇(PAM/CNTs-PEG)导电水凝胶。将制备的PAM/CNTs-PEG导电水凝胶浸泡于乙醇溶液中,可形成不同数量的介孔。本文研究了不同浸泡时间对于多孔PAM/CNTs-PEG导电水凝胶在柔性锌空电池中的性能影响。实验结果表明:乙醇浸泡5 h的导电凝胶电化学性能最好。当电压从1 mA/cm2 时的1.23 V到5 mA/cm2时的1.11 V,仅衰减了0.12 V。8.5 mA/cm2时产生最大功率密度为77.35 mW/cm2,且放电时具有1104.85 mA·h/g的高克容量,远高于其他导电凝胶。且有较好的导电性和应变灵敏度,可应用于传感等领域。

     

  • 图  1  聚丙烯酰胺/碳纳米管-聚乙二醇(PAM/CNTs-PEG)导电凝胶的制备示意图

    AM—Acrylamide; CMC-Na—Sodium carboxymethyl cellulose

    Figure  1.  Schematic diagram of the preparation of polyacrylamide/carbon nanotubes-polyethylene glycol (PAM/CNTs-PEG) conductive gel

    图  2  未加制孔剂(a)、乙醇浸泡1 h (b)、乙醇浸泡2 h (c)、乙醇浸泡5 h (d)及乙醇浸泡10 h (e)后制得的PAM/CNTs-PEG导电凝胶的SEM图像

    Figure  2.  SEM images of PAM/CNT-PEG conductive gel prepared after no pore-making agent (a), 1 h ethanol immersion (b), 2 h ethanol immersion (c), 5 h ethanol immersion (d) and 10 h ethanol immersion (e)

    图  3  加入制孔剂后不同乙醇浸泡时间下的PAM/CNTs-PEG导电水凝胶的 FTIR图谱

    Figure  3.  FTIR spectra of PAM/CNT-PEG conductive hydrogels at different ethanol soaking time after adding pore-making agent

    图  4  未加PEG及加入PEG不同乙醇浸泡时间的PAM/CNTs-PEG导电水凝胶的溶胀曲线

    Figure  4.  Swelling curves of PAM/CNTs-PEG conductive hydrogels without PEG or with PEG for different ethanol immersion time

    图  5  未加PEG及加入PEG不同乙醇浸泡时间的PAM/CNTs-PEG导电水凝胶的应力-应变曲线

    Figure  5.  Stress-strain curves of PAM/CNTs-PEG conductive hydrogels without PEG or with PEG for different ethanol immersion time

    图  6  未加PEG及加入PEG不同乙醇浸泡时间的PAM/CNTs-PEG导电水凝胶的倍率性能

    Figure  6.  Rate performance of PAM/CNTs-PEG conductive hydrogels without PEG or with PEG for different ethanol immersion time

    图  7  未加PEG及加入PEG不同乙醇浸泡时间的PAM/CNTs-PEG导电水凝胶的极化曲线

    Figure  7.  Polarization curves of PAM/CNTs-PEG conductive hydrogels without PEG and with PEG in different ethanol soaking time

    图  8  未加PEG及加入PEG不同乙醇浸泡时间的PAM/CNTs-PEG导电水凝胶的最大功率密度曲线

    Figure  8.  Maximum power density curves of PAM/CNTs-PEG conductive hydrogels without PEG or with PEG for different ethanol immersion time

    图  9  未加PEG及加入PEG不同乙醇浸泡时间的PAM/CNTs-PEG导电水凝胶的放电曲线

    Figure  9.  Discharge curves of PAM/CNTs-PEG conductive hydrogels without PEG and with PEG added for different ethanol soaking time

    图  10  未加PEG及加入PEG不同乙醇浸泡时间的PAM/CNTs-PEG导电水凝胶的交流阻抗图谱

    Figure  10.  EIS impedance profiles of PAM/CNTs-PEG conductive hydrogels without PEG or with PEG for different ethanol immersion time

    图  11  加入PEG乙醇浸泡5 h的PAM/CNTs-PEG导电水凝胶的传感图

    Figure  11.  Sensing diagram of PAM/CNTs-PEG conductive hydrogel immersed in ethanol for 5 h with PEG

    表  1  未加PEG及加入PEG不同乙醇浸泡时间的PAM/CNTs-PEG导电水凝胶的孔隙率

    Table  1.   Porosity of PAM/CNTs-PEG conducting hydrogels without PEG and with PEG in different ethanol soaking time

    SamplePore volume/
    (mL·g−1)
    Density ρ/(g·cm−3)Porosity/%
    Unadded0.00701.2129 3.96
    1 h0.00651.3217 6.50
    2 h0.03741.236427.35
    5 h0.21941.075465.71
    10 h4.73201.020695.89
    下载: 导出CSV
  • [1] GÖHLERT T, SILES P F, PÄSSLER T, et al. Ultra-thin all-solid-state micro-supercapacitors with exceptional performance and device flexibility[J]. Nano Energy,2017,33:387-392. doi: 10.1016/j.nanoen.2017.01.054
    [2] ZHU T, NI Y, BIESOLD G M, et al. Recent advances in conductive hydrogels: Classifications, properties, and applications[J]. Chemical Society Reviews,2023,52(2):473-509. doi: 10.1039/D2CS00173J
    [3] SONG Y, NIU L, MA P, et al. Rapid preparation of anti-freezing conductive hydrogels for flexible strain sensors and supercapacitors[J]. ACS Applied Materials & Interfaces,2023,15(7):10006-10017.
    [4] NISHIDE H, OYAIZU K. Toward flexible batteries[J]. Science,2008,319(5864):737-738. doi: 10.1126/science.1151831
    [5] WANG J, WU H, GAO D, et al. High-density iron nanoparticles encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for zinc-air battery[J]. Nano Energy,2015,13:387-396. doi: 10.1016/j.nanoen.2015.02.025
    [6] HAN X, WU X, ZHONG C, et al. NiCo2S4 nanocrystals anchored on nitrogen-doped carbon nanotubes as a highly efficient bifunctional electrocatalyst for rechargeable zinc-air batteries[J]. Nano Energy,2017,31:541-550. doi: 10.1016/j.nanoen.2016.12.008
    [7] FU J, CANO Z P, PARK M G, et al. Electrically rechargeable zinc-air batteries: Progress, challenges, and perspectives[J]. Advanced Materials,2017,29(7):1604685. doi: 10.1002/adma.201604685
    [8] YOO H D, MARKEVICH E, SALITRA G, et al. On the challenge of developing advanced technologies for electrochemical energy storage and conversion[J]. Materials Today,2014,17(3):110-121. doi: 10.1016/j.mattod.2014.02.014
    [9] AASEN D, CLARK M, IVEY D G. A gas diffusion layer impregnated with Mn3O4-decorated N-doped carbon nanotubes for the oxygen reduction reaction in zinc-air batteries[J]. Batteries & Supercaps,2019,2(10):882-893.
    [10] WANG R, CHEN Z, HU N, et al. Nanocarbon-based electrocatalysts for rechargeable aqueous Li/Zn-air batteries[J]. ChemElectroChem,2018,5(14):1745-1763. doi: 10.1002/celc.201800141
    [11] ZHU Y, LIN L, CHEN Y, et al. Extreme temperature-tolerant conductive gel with antibacterial activity for flexible dual-response sensors[J]. ACS Applied Materials & Interfaces,2020,12(50):56470-56479.
    [12] WEI J, XIAO P, CHEN T. Water-resistant conductive gels toward underwater wearable sensing[J]. Advanced Materials, 2023, 35(42): 2211758.
    [13] CHEN L, ZHANG W, DONG Y, et al. Polyaniline/poly(acrylamide-co-sodium acrylate) porous conductive hydrogels with high stretchability by freeze-thaw-shrink treatment for flexible electrodes[J]. Macromolecular Materials and Engineering,2020,305(3):1900737. doi: 10.1002/mame.201900737
    [14] WANG S, GUAN S, ZHU Z, et al. Hyaluronic acid doped-poly(3, 4-ethylenedioxythiophene)/chitosan/gelatin (PEDOT-HA/Cs/Gel) porous conductive scaffold for nerve regeneration[J]. Materials Science and Engineering: C,2017,71:308-316. doi: 10.1016/j.msec.2016.10.029
    [15] LI Z H, LIU W T, LI Z Y, et al. Swelling and thermal properties of porous PNIPAM/PEG hydrogels prepared by radiation polymerization[J]. Nuclear Science and Techniques,2013,24(2):17-24.
    [16] 李健昱, 徐朝阳, 周欢, 等. 多孔PVA/CNFs复合水凝胶的制备与性能[J]. 包装工程, 2016, 37(15):56-60. doi: 10.19554/j.cnki.1001-3563.2016.15.012

    LI Jianyu, XU Chaoyang, ZHOU Huan, et al. Preparation and properties of porous PVA/CNFs composite hydrogel[J]. Packaging Engineering,2016,37(15):56-60(in Chinese). doi: 10.19554/j.cnki.1001-3563.2016.15.012
    [17] 张思雨. 基于MXene导电水凝胶的制备及性能研究[D]. 西宁: 青海师范大学, 2022.

    ZHANG Siyu. Preparation and properties of conductive hydrogel based on MXene [D]. Xining: Qinghai Normal University, 2022(in Chinese).
    [18] SHI Y, YU G H. Designing hierarchically nanostructured conductive polymer gels for electrochemical energy storage and conversion[J]. Chemistry of Materials,2016,28(8):2466-2477. doi: 10.1021/acs.chemmater.5b04879
    [19] 石奋玲, 杜莹, 逯帅帅, 等. 基于甜菜碱的两性离子导电水凝胶的合成及性能[J]. 印染, 2023, 49(1):49-52.

    SHI Fenling, DU Ying, LU Shuaishuai, et al. Synthesis and properties of zwitterionic conductive hydrogel based on betaine[J]. Dyeing and Finishing,2023,49(1):49-52(in Chinese).
    [20] 汪锋. 可拉伸导电水凝胶设计及其制备方法与储能器件应用研究[D]. 南京: 南京邮电大学, 2022.

    WANG Feng. Design and preparation of stretchable conductive hydrogel and its application to energy storage devices[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2022(in Chinese).
    [21] 魏垂高, 周丽娜, 张宇彪, 等. 基于导电水凝胶的柔性电子皮肤传感器研究[J]. 电子元件与材料, 2022, 41(11):1149-1157. doi: 10.14106/j.cnki.1001-2028.2022.0609

    WEI Chuigao, ZHOU Lina, ZHANG Yubiao, et al. Research on flexible electronic skin sensor based on conductive hydrogel[J]. Electronic Components & Materials,2022,41(11):1149-1157(in Chinese). doi: 10.14106/j.cnki.1001-2028.2022.0609
    [22] 李媛. 基于中性凝胶聚合物电解质的柔性锌空气电池研究[D]. 天津: 天津大学, 2019.

    LI Yuan. Research on flexible zinc-air battery based on neutral gel polymer electrolyte[D]. Tianjin: Tianjin University, 2019(in Chinese).
    [23] 程时富. 多孔炭材料的制备及其电化学性能[D]. 上海: 华东师范大学, 2020.

    CHENG Shifu. Preparation and electrochemical properties of porous carbon materials[D]. Shanghai: East China Normal University, 2020(in Chinese).
    [24] 陈东方, 裴普成, 宋鑫, 等. 锌空燃料电池电化学阻抗等效电路模型[J]. 清华大学学报(自然科学版), 2020, 60(2):139-146. doi: 10.16511/j.cnki.qhdxxb.2019.22.042

    CHEN Dongfang, PEI Pucheng, SONG Xin, et al. Electrochemical impedance equivalent circuit model for zinc-air fuel cells[J]. Journal of Tsinghua University (Science and Technology),2020,60(2):139-146(in Chinese). doi: 10.16511/j.cnki.qhdxxb.2019.22.042
    [25] MA M, SHANG Y, SHEN H, et al. Highly transparent conductive ionohydrogel for all-climate wireless human-motion sensor[J]. Chemical Engineering Journal,2021,420:129865. doi: 10.1016/j.cej.2021.129865
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  835
  • HTML全文浏览量:  381
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-19
  • 修回日期:  2023-05-28
  • 录用日期:  2023-06-11
  • 网络出版日期:  2023-06-26
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回