留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多层次迭代修正的纤维增强复合薄壁截顶圆锥壳振动响应分析

许卓 许沛尧 初晨 姚楠 李晖 顾大卫 李鹤 闻邦椿

许卓, 许沛尧, 初晨, 等. 基于多层次迭代修正的纤维增强复合薄壁截顶圆锥壳振动响应分析[J]. 复合材料学报, 2024, 41(3): 1601-1610. doi: 10.13801/j.cnki.fhclxb.20230625.001
引用本文: 许卓, 许沛尧, 初晨, 等. 基于多层次迭代修正的纤维增强复合薄壁截顶圆锥壳振动响应分析[J]. 复合材料学报, 2024, 41(3): 1601-1610. doi: 10.13801/j.cnki.fhclxb.20230625.001
XU Zhuo, XU Peiyao, CHU Chen, et al. Vibration response analysis of fiber reinforced composite thin-walled truncated conical shell based on multilevel iterative correction[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1601-1610. doi: 10.13801/j.cnki.fhclxb.20230625.001
Citation: XU Zhuo, XU Peiyao, CHU Chen, et al. Vibration response analysis of fiber reinforced composite thin-walled truncated conical shell based on multilevel iterative correction[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1601-1610. doi: 10.13801/j.cnki.fhclxb.20230625.001

基于多层次迭代修正的纤维增强复合薄壁截顶圆锥壳振动响应分析

doi: 10.13801/j.cnki.fhclxb.20230625.001
基金项目: 东北电力大学博士科研启动基金(BSJXM-2020221);东北大学航空动力装备振动及控制教育部重点实验室研究基金(VCAME202204)
详细信息
    通讯作者:

    李晖,博士,副教授,博士生导师,研究方向为复合结构减振降噪 E-mail: lh200300206@163.com

  • 中图分类号: TB535;TB330.1

Vibration response analysis of fiber reinforced composite thin-walled truncated conical shell based on multilevel iterative correction

Funds: Northeast Electric Power University Doctoral Research Initiation Fund (BSJXM-2020221); Research Fund from the Key Laboratory of Aeroengine Vibration and Control, Ministry of Education, Northeastern University (VCAME202204)
  • 摘要: 提出了一种纤维增强复合薄壁截锥壳的振动响应分析模型。针对纤维增强复合薄壁截锥壳的结构特点,考虑基础激励载荷方向与母线的夹角、纤维铺层方向与x轴的夹角,利用板壳振动理论、复弹性模量等方法对所研究结构进行了理论建模。利用双向梁函数法表示振型函数,并通过能量法和模态叠加法对其固有特性和振动响应进行求解。为了验证模型的正确性,基于自行搭建的振动测试平台,以TC300/环氧树脂基纤维增强复合薄壁截锥壳为对象,进行了振动特性测试。为减小因样件加工时产生的材料参数误差影响,开发了二分粒子群迭代法对材料参数进行修正。研究发现,测试结果与理论计算获得的共振响应误差最大不超过3.0%,验证了所提出的理论模型与计算方法的正确性和有效性。

     

  • 图  1  纤维增强复合薄壁圆锥壳理论模型

    Figure  1.  Theoretical model for fiber-reinforced composite thin-walled conical shells

    u, ν, and w—Displacement functions in the X, θ, and Z directions, respectively; R2—Major radius; R1—Minor radius; L—Length of the generatrix; h—Shell thickness; α—Half-cone angle; β—Angle between the fiber direction and the X-axis

    图  2  二分粒子群迭代法的计算流程

    Figure  2.  Computational process of the binary particle swarm iteration method

    E' 1, E' 2, G' 12—Elastic modulus in different directions; η1, η2, η12—Loss factor in different directions

    图  3  纤维增强复合材料薄壁圆锥壳幅频测试系统

    Figure  3.  Amplitude frequency test system for thin-walled conical shells of fiber-reinforced composites

    图  4  纤维增强复合材料薄壁圆锥壳的固有频率-加速度曲线

    Figure  4.  Intrinsic frequency-acceleration curves of fiber-reinforced composite conical shells

    图  5  纤维增强复合材料薄壁圆锥壳的固有频率及计算误差

    Figure  5.  Natural frequencies and computational inaccuracies of fiber-reinforced composite thin-walled conical shells

    图  6  实验和计算获得的纤维增强复合材料薄壁圆锥壳的前4阶频率-响应曲线

    Figure  6.  Experimentally and computationally obtained frequency-response curves of the first 4th orders of thin-walled conical shells of fiber-reinforced composites

    表  1  梁函数系数的取值

    Table  1.   Values of beam function coefficients

    m λm σm
    1 1.87510 0.734096
    2 4.69409 1.018467
    3 7.85476 0.999224
    Note: λm and σm—Coefficients of the beam functions.
    下载: 导出CSV

    表  2  修正前后的材料参数、损耗因子

    Table  2.   Material parameters before and after correction, loss factor

    Before iterative calculationAfter iterative calculationLoss factor
    Material parameters/GPaMaterial parameters/GPa
    E'1E'2G'12E1E2G12η1η2η12
    1208.54.74114.98443518.14473084.54188510.00479090.00383280.0043119
    下载: 导出CSV

    表  3  实验和计算获得的纤维增强复合材料薄壁圆锥壳的前4阶响应值及误差

    Table  3.   Experimentally and computationally obtained response values and errors of the first 4th order for thin-walled conical shells of fiber-reinforced composites

    ModeAmplitude/mError/%
    Experiment (C)Calculation (D)Calculation (E)|CD|/D|CE|/E
    12.71×10−32.66×10−32.86×10−31.85.2
    23.11×10−43.06×10−43.19×10−41.62.5
    34.89×10−54.76×10−54.99×10−52.64.3
    42.73×10−52.65×10−52.98×10−53.08.3
    下载: 导出CSV
  • [1] 曹志远. 板壳振动理论[M]. 北京: 中国铁道出版社, 1989.

    CAO Zhiyuan. Vibration theory of plate and shell[M]. Beijing: China Railway Publishing House, 1989(in Chinese).
    [2] QATU M S. Vibration of laminated shells and plates[M]. Amsterdam: Elsevier, 2004.
    [3] 邢誉峰, 刘波. 板壳自由振动的精确解[M]. 北京: 科学出版社, 2015.

    XING Yufeng, LIU Bo. An exact solution for the free vibration of plates and shells[M]. Beijing: Science Press of Beijing, 2015(in Chinese).
    [4] ZOU Y, TONG L, STEVEN G P. Vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures-A review[J]. Journal of Sound and Vibration, 2000, 230(2): 357-378.
    [5] 李晖, 孙伟, 许卓, 等. 纤维增强复合薄板振动测试与分析方法[M]. 北京: 机械工业出版社, 2020.

    LI Hui, SUN Wei, XU Zhuo, et al. Vibration test and analysis method of fiber reinforced composite sheet[M]. Beijing: China Machine Press, 2020(in Chinese).
    [6] 王爱勤. 圆锥(柱)体在复杂载荷作用下振动响应的计算[J]. 西安公路交通大学学报, 1998,18(3):66-69.

    WANG Aiqin. Vibration responses of conical body under complex loads[J]. Journal of Xi'an Highway University,1998,18(3):66-69(in Chinese).
    [7] 杨绍武. 复杂载荷作用下功能梯度圆锥壳的非线性动力学研究[D]. 北京: 北京信息科技大学, 2015.

    YANG Zhaowu. Study on nonlinear dynamics of functionally graded conical shells under complex loads[D]. Beijing: Beijing Information Science and Technology University, 2015(in Chinese).
    [8] DEY S, MUKHOPADHYAY T, KHODAPARAST H H, et al. Stochastic natural frequency of composite conical shells[J]. Acta Mechanica,2015,226(8):2537-2553. doi: 10.1007/s00707-015-1316-4
    [9] ANSARI R, TORABI J. Numerical study on the buckling and vibration of functionally graded carbon nanotube-reinforced composite conical shells under axial loading[J]. Composites Part B: Engineering,2016,95:196-208. doi: 10.1016/j.compositesb.2016.03.080
    [10] MERCAN K, BALTACIOGLU A K, CIVALEK Ö. Free vibration of laminated and FGM/CNT composites annular thick plates with shear deformation by discrete singular convolution method[J]. Composite Structures,2018,186:139-153. doi: 10.1016/j.compstruct.2017.12.008
    [11] 谢坤. 纵向激励下桨—轴—艇耦合模型声振响应半解析计算方法及特性研究[D]. 武汉: 华中科技大学, 2018.

    XIE Kun. Study on semi-analytic methods and vibro-acoustic characteristics of coupled propeller-shaft-hull structures subjected to longitudinal excitations[D]. Wuhan: Huazhong University of Science and Technology, 2018(in Chinese).
    [12] 张永强. 薄壁圆锥壳构件的动力学相似设计方法研究[D]. 沈阳: 东北大学, 2020.

    ZHANG Yongqiang. Research on dynamic similarity design method for thin-walled conical shell structures[D]. Shenyang: Northeastern University, 2020(in Chinese).
    [13] LEI Z X, LIEW K M, YU J L. Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment[J]. Composite Structures,2013,106:128-138. doi: 10.1016/j.compstruct.2013.06.003
    [14] LI H, ZHOU Z X, SUN H, et al. Theoretical study on the influence of hard coating on vibration characteristics of fiber-reinforced composite thin shell[J]. Coatings,2018,8(3):87. doi: 10.3390/coatings8030087
    [15] HEIDARI SOURESHJANI A, TALEBITOOTI R, TALEBITOOTI M. A semi-analytical approach on the effect of external lateral pressure on free vibration of joined sandwich aerospace composite conical-conical shells[J]. Aerospace Science and Technology,2020,99:105559. doi: 10.1016/j.ast.2019.105559
    [16] ZHANG H, ZHU R P, SHI D Y, et al. A simplified plate theory for vibration analysis of composite laminated sector, annular and circular plate[J]. Thin-Walled Structures,2019,143:106252. doi: 10.1016/j.tws.2019.106252
    [17] KAMALOO A, JABBARI M, TOOSKI M Y, et al. Nonlinear free vibrations analysis of delaminated composite conical shells[J]. International Journal of Structural Stability and Dynamics,2020,20(1):2050010. doi: 10.1142/S0219455420500108
    [18] YANG S W, ZHANG W, HAO Y X, et al. Nonlinear vibrations of FGM truncated conical shell under aerodynamics and in-plane force along meridian near internal resonances[J]. Thin-Walled Structures,2019,142:369-391. doi: 10.1016/j.tws.2019.04.024
    [19] SAFARPOUR M, RAHIMI A R, ALIBEIGLOO A. Static and free vibration analysis of graphene platelets reinforced composite truncated conical shell, cylindrical shell, and annular plate using theory of elasticity and DQM[J]. Mechanics Based Design of Structures and Machines,2020,48(4):496-524. doi: 10.1080/15397734.2019.1646137
    [20] REZAIEE-PAJAND M, SOBHANI E, MASOODI A R. Free vibration analysis of functionally graded hybrid matrix/fiber nanocomposite conical shells using multiscale method[J]. Aerospace Science and Technology,2020,105:105998. doi: 10.1016/j.ast.2020.105998
    [21] MAJI P, SINGH B N. Free vibration responses of 3D braided rotating cylindrical shells based on third-order shear deformation[J]. Composite Structures,2021,260:113255. doi: 10.1016/j.compstruct.2020.113255
    [22] SOBHANI E, MASOODI A R, AHMADI-PARI A R. Vibration of FG-CNT and FG-GNP sandwich composite coupled conical-cylindrical-conical shell[J]. Composite Structures,2021,273:114281. doi: 10.1016/j.compstruct.2021.114281
    [23] SHI X J, ZUO P, ZHONG R, et al. Vibration analysis of combined functionally graded cylindrical-conical shells coupled with annular plates in thermal environment[J]. Composite Structures, 2022, 294: 115738.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  497
  • HTML全文浏览量:  192
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-05
  • 修回日期:  2023-06-08
  • 录用日期:  2023-06-09
  • 网络出版日期:  2023-06-25
  • 刊出日期:  2024-03-01

目录

    /

    返回文章
    返回