Electrochemical oxidation mechanism of high modulus carbon fibers in ammonium electrolyte solution
-
摘要: 聚丙烯腈基高模碳纤维(HMCFs)具有高比强度、高比模量、低热膨胀系数等优异性能,在航空航天、高端运动器材等领域应用广泛,但因其表面呈现极高惰性而难以与树脂基体有效结合,直接影响了复合材料性能。目前,电化学氧化是唯一实现在线配套的碳纤维表面改性工艺,而有关高模碳纤维表面的电化学氧化研究尤其是电解质溶液对HMCF表面的氧化机制尚缺乏系统研究。通过采用具有4种不同酸碱性特征的铵盐溶液对HMCF进行电化学氧化处理,表征并分析了处理前后纤维表面结构、力学性能及复合材料界面性能变化。结果表明:碳纤维经铵类电解质溶液处理后,表面发生氧化的同时引入N元素、产生含氮官能团,纤维表面无序化程度及含氧量随电解质溶液酸碱性的增强而增加;电化学处理后纤维模量都有不同程度地提高,而只有弱碱性的NH4HCO3和酸性的NH4H2PO4电解质溶液处理后的纤维拉伸强度出现增加,分别从处理前的4.21 GPa提升到4.82 GPa和4.75 GPa,并且其复合材料界面剪切强度相对于从未处理碳纤维的复合材料分别提高了49.86%和49.02%,证明电化学氧化过程中适度的氧化刻蚀能够在纤维表面改性的同时提高纤维拉伸强度。Abstract: Polyacrylonitrile-based high-modulus carbon fibers (HMCFs) have excellent properties such as high specific strength, high specific modulus, and low coefficient of thermal expansion. So far, HMCFs have been widely used in aerospace and high-end sports equipment, etc. However, it is really difficult for HMCFs to effectively bond with the matrix owing to their extremely high surface inertness, which directly affects the performance of the corresponding composites. At present, electrochemical oxidation is one feasible surface modification process of carbon fiber which has been equipped online, whereas there is a lack of systematic research on the surface electrochemical oxidation of HMCFs, especially the oxidation mechanism of HMCF surface oxidized by different electrolyte solutions. In this paper, the electrochemical oxidation of HMCFs in four ammonium solutions with different acid-base characteristics was conducted. Changes in fiber surface structure, mechanical properties and composite interfacial properties before and after treatment were characterized and analyzed in detail. The results showed that after the treatment with ammonium electrolyte solutions, the fiber surface was oxidized together with the introduction of N elements and the generation of nitrogen-containing functional groups. Meantime, the degree of fiber surface disordering and the oxygen content also increased with the enhancement of the acidity and alkalinity of the electrolyte solutions. The fiber modulus increased to varying degrees after electrochemical treatment, while the fiber samples oxidized in NH4HCO3 and NH4H2PO4 electrolyte solutions showed an increase in fiber tensile strength after treatment, from 4.21 GPa to 4.82 GPa and 4.75 GPa, respectively, and the interfacial shear strength of their compo-sites also increased by 49.86% and 49.02%, respectively, compared with composites reinforced by untreated fibers. It is demonstrated that moderate oxidative etching during electrochemical oxidation can improve the tensile strength of fibers while modifying the fiber surface.
-
表 1 化合物缩写及涵义
Table 1. Appendix main abbreviations and meanings of samples
Fiber sample Composite sample Electrolyte type in oxidation UCF UCFC Untreated NPCF NPCFC (NH4)3PO4 NHCCF NHCCFC NH4HCO3 NSCF NSCFC (NH4)2SO4 NHPCF NHPCFC NH4H2PO4 Notes: CF—Carbon fiber; C—Composite. 表 2 电解质溶液pH值
Table 2. pH of electrolyte solutions
Electrolyte solutions (2.5wt%) pH (NH4)3PO4 8.5 NH4HCO3 8.0 (NH4)2SO4 5.7 NH4H2PO4 4.6 表 3 电化学氧化处理前后HMCF的XRD结构参数
Table 3. XRD structural parameters of HMCF before and after electrochemical oxidation
Sample 2θ/(º) d(002)/nm β1/2/(º) LC/nm UCF 26.084 0.34134 1.727 4.68 NPCF 26.328 0.33823 1.810 4.46 NHCCF 26.152 0.34046 1.702 4.74 NSCF 26.250 0.33922 1.769 4.57 NHPCF 26.285 0.33877 1.789 4.52 Notes: θ—Diffraction angle; d(002)—Average interlayer spacing; LC—Crystallite thickness; β1/2—Full width at half maxima of (002) peak. 表 4 电化学氧化处理前后HMCF的Raman图谱参数
Table 4. Raman spectrum parameters of HMCF before and after electrochemical oxidation
Sample D-line G-line D'-line ID/IG ID'/IG Peak position/cm−1 Area Peak position/cm−1 Area Peak position/cm−1 Area UCF 1346.45 326039.05 1576.82 780519.02 1613.95 33604.87 0.418 0.043 NPCF 1346.33 1945521.02 1583.71 1066397.18 1614.47 155600.84 1.824 0.146 NHCCF 1348.04 180253.59 1578.84 359296.04 1615.35 17618.14 0.502 0.049 NSCF 1346.91 1054326.44 1579.69 879123.16 1615.73 72909.15 1.199 0.083 NHPCF 1343.08 2520042.64 1576.66 1672045.13 1610.80 217845.53 1.507 0.130 Notes: ID/IG—Integral area ratio of D-band and G-band; ID'/IG—Integral area ratio of D'-band and G-band. 表 5 电化学氧化处理前后HMCF的表面元素含量
Table 5. Surface element content of HMCF before and after electrochemical oxidation
Sample C1s/% O1s/% N1s/% O/C/% N/C/% UCF 98.72 0.93 0.00 0.01 0.00 NPCF 73.35 20.70 3.71 0.28 0.05 NHCCF 93.00 4.83 0.36 0.05 0.00 NSCF 86.64 12.24 0.07 0.14 0.00 NHPCF 77.04 19.55 1.32 0.25 0.02 表 6 电化学氧化处理前后HMCF的表面官能团相对含量
Table 6. Relative contents of surface functional groups on HMCF before and after electrochemical oxidation
Sample C=C/% C—C/% C—O/C—N/% C=O/% UCF 53.26 25.15 21.59 — NPCF 43.38 23.39 20.18 13.15 NHCCF 53.78 26.55 19.68 — NSCF 33.88 39.05 22.42 4.65 NHPCF 55.10 12.17 24.44 8.28 表 7 电化学氧化处理前后HMCF的直径
Table 7. Diameter of HMCF before and after electrochemical oxidation treatment
Sample Diameter/nm UCF 4.89 NPCF 4.73 NHCCF 4.87 NSCF 4.87 NHPCF 4.86 -
[1] ZHENG H, ZHANG W J, LI B W, et al. Recent advances of interphases in carbon fiber-reinforced polymer composites: A review[J]. Composites Part B: Engineering,2022,233:109639. doi: 10.1016/j.compositesb.2022.109639 [2] 张莎, 田艳红, 张学军, 等. 电化学氧化对高强高模碳纤维表面结构及力学性能的影响[J]. 复合材料学报, 2012, 29(3):1-8. doi: 10.13801/j.cnki.fhclxb.2012.03.011ZHANG Sha, TIAN Yanhong, ZHANG Xuejun, et al. Effect of electrochemical oxidation on the surface structure and mechanical performance of high strength and high-modulus carbon fibers[J]. Acta Materiae Compositae Sinica,2012,29(3):1-8(in Chinese). doi: 10.13801/j.cnki.fhclxb.2012.03.011 [3] DOMINGUEZ-ALFARO A, CHAU N D Q, YAN S, et al. Electrochemical modification of carbon nanotube fibres[J]. Nanoscale,2022,14(26):9313-9322. doi: 10.1039/D1NR07495D [4] TIWARI S, BIJWE J, PANIER S. Tribological studies on polyetherimide composites based on carbon fabric with optimized oxidation treatment[J]. Wear,2011,271(9-10):2252-2260. doi: 10.1016/j.wear.2010.11.052 [5] EYCKENS D J, ARNOLD C L, SIMON Ž, et al. Covalent sizing surface modification as a route to improved interfacial adhesion in carbon fibre-epoxy composites[J]. Compo-sites Part A: Applied Science and Manufacturing,2021,140:106147. doi: 10.1016/j.compositesa.2020.106147 [6] YANG L N, HAN P, GU Z. Grafting of a novel hyperbranched polymer onto carbon fiber for interfacial enhancement of carbon fiber reinforced epoxy compo-sites[J]. Materials & Design,2021,200:109456. [7] KIM J H, HAN J H, HONG S, et al. Effect of plasma surface modification on pullout characteristics of carbon fiber-reinforced cement composites[J]. Carbon Trends,2021,3:100030. doi: 10.1016/j.cartre.2021.100030 [8] SHARMA M, GAO S L, MÄDER E, et al. Carbon fiber surfaces and composite interphases[J]. Composites Science and Technology,2014,102:35-50. doi: 10.1016/j.compscitech.2014.07.005 [9] 刘杰, 白艳霞, 田宇黎, 等. 电化学表面处理对碳纤维结构及性能的影响[J]. 复合材料学报, 2012, 29(2):16-25.LIU Jie, BAI Yanxia, TIAN Yuli, et al. Effect of the process of electrochemical modification on the surface structure and properties of PAN-based carbon fibers[J]. Acta Materiae Compositae Sinica,2012,29(2):16-25(in Chinese). [10] 贺福. 碳纤维及石墨纤维[M]. 北京: 化学工业出版社, 2010: 295-303.HE Fu. Carbon fiber and graphite fiber[M]. Beijing: Chemical Industry Press, 2010: 295-303(in Chinese). [11] 乔伟静, 田艳红, 张学军. 高强高模碳纤维表面电化学氮化机制[J]. 复合材料学报, 2023, 40(3):1446-1454.QIAO Weijing, TIAN Yanhong, ZHANG Xuejun. Forming mechanism of surface nitriding of high strength and high modulus carbon fiber by electrochemical modification[J]. Acta Materiae Compositae Sinica,2023,40(3):1446-1454(in Chinese). [12] 崔荣庆, 谌磊, 李春红, 等. 电化学氧化处理对PAN基炭纤维表面浸润性的影响[J]. 材料导报, 2012, 26(2):40-43, 48.CUI Rongqing, CHEN Lei, LI Chunhong, et al. Study on wettability of electrochemically oxidized PAN-based carbon fibers[J]. Materials Reports,2012,26(2):40-43, 48(in Chinese). [13] 王力勇, 杨常玲, 吕永根, 等. 电化学处理对PAN基碳纤维表面特征的影响[J]. 宇航材料工艺, 2010, 40(3):51-54.WANG Liyong, YANG Changling, LYU Yonggen, et al. Effect of electrochemical treatment on surface characters of PAN-based carbon fibers[J]. Aerospace Materials & Technology,2010,40(3):51-54(in Chinese). [14] 季春晓, 常丽, 周新露, 等. 聚丙烯腈基碳纤维电化学氧化表面处理研究[J]. 石油化工技术与经济, 2013, 29(5):16-23.JI Chunxiao, CHANG Li, ZHOU Xinlu, et al. Study on surface treatment of PAN-based carbon fibers with electrochemical oxidation[J]. Technology & Economics in Petrochemicals,2013,29(5):16-23(in Chinese). [15] American Society for Testing and Materials. Standard test method for short-beam strength of polymer matrix composite materials and their laminates: ASTM D2344/D2344M—22[S]. West Conshohocken: ASTM International, 2022. [16] SUN Y, YANG C, LU Y. Weak layer exfoliation and an attempt for modification in anodic oxidation of PAN-based carbon fiber[J]. Journal of Materials Science,2020,55(6):1-8. [17] KAINOURGIOS P, KARTSONAKIS I A, DRAGATOGIANNIS D A, et al. Electrochemical surface functionalization of carbon fibers for chemical affinity improvement with epoxy resins[J]. Applied Surface Science,2017,416:593-604. doi: 10.1016/j.apsusc.2017.04.214 [18] LIU J, TIAN Y L, CHEN Y J, et al. A surface treatment technique of electrochemical oxidation to simultaneously improve the interfacial bonding strength and the tensile strength of PAN-based carbon fibers[J]. Materials Chemistry and Physics,2010,122(2-3):548-555. doi: 10.1016/j.matchemphys.2010.03.045 [19] LIU J, TIAN Y L, CHEN Y J, et al. Interfacial and mechanical properties of carbon fibers modified by electrochemical oxidation in (NH4HCO3)/(NH4)2C2O4·H2O aqueous compound solution[J]. Applied Surface Science,2010,256(21):6199-6204. doi: 10.1016/j.apsusc.2010.03.141 [20] FU Y P, LI H X, CAO W Y. Enhancing the interfacial properties of high-modulus carbon fiber reinforced polymer matrix composites via electrochemical surface oxidation and grafting[J]. Composites Part A: Applied Science and Manufacturing,2020,130:105719. doi: 10.1016/j.compositesa.2019.105719 [21] QIN J J, WANG C G, LU R J, et al. Uniform growth of carbon nanotubes on carbon fiber cloth after surface oxidation treatment to enhance interfacial strength of composites[J]. Composites Science and Technology,2020,195:108198. doi: 10.1016/j.compscitech.2020.108198 [22] MA Y Y, YAN C, XU H B, et al. Enhanced interfacial properties of carbon fiber reinforced polyamide 6 composites by grafting graphene oxide onto fiber surface[J]. Applied Surface Science,2018,452:286-298. doi: 10.1016/j.apsusc.2018.04.274 [23] FU Y P, LU Y K, YOU T, et al. Study on multistage anodization for high-modulus carbon fiber[J]. Surface and Interface Analysis,2019,51(8):798-808. doi: 10.1002/sia.6651 [24] LENGSFELD H, MAINKA H, ALTSTÄDT V. Carbon fibers, carbon fibers[M]. Munich: Hanser Publishers, Carl Hanser Verlag GmbH Co KG, 2020: 41-43. [25] HUTSCHREUTHER J, KUNZ R, BREU J, et al. Influence of particle size on toughening mechanisms of layered silicates in CFRP[J]. Materials (Basel),2020,13(10):2396. doi: 10.3390/ma13102396 [26] 许昆鹏, 潘书刚. 表面改性高模高强碳纤维与环氧树脂界面相容性研究[J]. 热固性树脂, 2021, 36(2):43-46.XU Kunpeng, PAN Shugang. Study on interfacial compatibility of surface modified high modulus and high strength carbon fiber and epoxy resin[J]. Thermosetting Resin,2021,36(2):43-46(in Chinese). [27] QIAN X, ZHONG J J, ZHI J H, et al. Electrochemical surface modification of polyacrylonitrile-based ultrahigh modulus carbon fibers and its effect on the interfacial properties of UHMCF/EP composites[J]. Composites Part B: Engineering,2019,164:476-484. doi: 10.1016/j.compositesb.2019.01.083