留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳化养护对掺电石渣水泥石性能的影响

秦玲 毛星泰 谢期劼 崔祎菲 鲍玖文 陈铁锋 高小建 张鹏

秦玲, 毛星泰, 谢期劼, 等. 碳化养护对掺电石渣水泥石性能的影响[J]. 复合材料学报, 2024, 41(2): 1001-1010. doi: 10.13801/j.cnki.fhclxb.20230616.003
引用本文: 秦玲, 毛星泰, 谢期劼, 等. 碳化养护对掺电石渣水泥石性能的影响[J]. 复合材料学报, 2024, 41(2): 1001-1010. doi: 10.13801/j.cnki.fhclxb.20230616.003
QIN Ling, MAO Xingtai, XIE Qijie, et al. Effect of carbonation curing on the performance of cement paste added with carbide slag[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 1001-1010. doi: 10.13801/j.cnki.fhclxb.20230616.003
Citation: QIN Ling, MAO Xingtai, XIE Qijie, et al. Effect of carbonation curing on the performance of cement paste added with carbide slag[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 1001-1010. doi: 10.13801/j.cnki.fhclxb.20230616.003

碳化养护对掺电石渣水泥石性能的影响

doi: 10.13801/j.cnki.fhclxb.20230616.003
基金项目: 国家重点研发计划项目(2021YFB2600704);国家自然科学基金(52208260);山东省自然科学基金(ZR2022QE002)
详细信息
    通讯作者:

    张鹏,博士,教授,博士生导师,研究方向为混凝土耐久性 E-mail:peng.zhang@qut.edu.cn

  • 中图分类号: TQ172.1;TB332

Effect of carbonation curing on the performance of cement paste added with carbide slag

Funds: National Key Research and Development Program of China (2021YFB2600704); National Natural Science Foundation of China (52208260); Natural Science Foundation of Shandong Province (ZR2022QE002)
  • 摘要: 为降低水泥行业的碳足迹同时回收利用电石渣,本文将电石渣作为掺合料加入碳化养护水泥中,研究了碳化养护对掺电石渣水泥石抗压强度、干燥收缩、氯离子渗透等性能的影响,并利用X射线衍射、热分析、压汞法、扫描电镜等测试手段对水泥石的微观结构进行了分析。结果表明:碳化养护提高了掺电石渣水泥石的抗压强度及抗氯离子侵蚀性能,使其电通量降低了38.17%~50.08%,56天干燥收缩率降低了8.8%~25.2%,细化了其孔结构。在保证水泥石强度不降低的前提下,约10%的电石渣可以被资源化利用,同时水泥石的固碳率可达11.19%~15.87%。利用碳化养护达到了捕捉固化二氧化碳、资源化利用电石渣、提升水泥石性能的目的。

     

  • 图  1  CS的XRD图谱

    Figure  1.  XRD pattern of CS

    图  2  PO和CS的粒径分布

    Figure  2.  Particle size distribution of the PO and CS

    图  3  CS的SEM图像

    Figure  3.  SEM image of CS

    图  4  掺加不同掺量CS的水泥石抗压强度

    Figure  4.  Compressive strength of cement stone with different amounts of CS added

    图  5  PO-CS 净浆不同龄期的干燥收缩

    Figure  5.  Dry shrinkage of PO-CS paste at different ages

    图  6  掺电石渣的水泥砂浆氯离子渗透性能

    Figure  6.  Chloride ion permeability of cement mortar dopedwith calcium carbide slag

    图  7  不同龄期的CS水泥石XRD图谱

    Aft—Ettringite; C2S—Dicalcium silicate; C3S—Tricalcium silicate

    Figure  7.  XRD patterns of CS cement stone for different ages

    图  8  PO-CS 净浆不同龄期的TG-DTA曲线

    Figure  8.  TG-DTA curves of PO-CS pastes at various ages

    图  9  PO-CS浆体不同龄期微分孔隙度曲线

    dV/dlgD—Pore volume

    Figure  9.  Pore size distribution of PO-CS pastes at various ages

    图  10  PO-CS浆体不同龄期累积孔隙度

    Figure  10.  Cumulative porosity curves of PO-CS pastes at various ages

    图  11  PO-CS净浆的SEM图像

    Figure  11.  SEM images of PO-CS pastes

    表  1  普通硅酸盐水泥(PO)和电石渣(CS)的化学组成 (wt%)

    Table  1.   Chemical composition of ordinary portland cement (PO) and carbide slag (CS) (wt%)

    CompositeCaOSiO2Al2O3Fe2O3MgOSO3Na2OK2OTiO2
    PO58.3621.348.224.123.501.230.780.470.35
    CS93.50 3.021.600.630.100.880.010.040.07
    下载: 导出CSV

    表  2  水泥石的加速碳化结果

    Table  2.   Accelerated carbonation results of cement paste

    ItemsCuring
    age/d
    Uncarbonated (Control)Carbonated
    0%20%50%0%20%50%
    Ca(OH)2/wt% 1 2.23 2.93 5.72 2.08 2.71 5.61
    7 2.31 3.69 6.66 2.18 3.58 5.87
    28 2.61 4.71 7.52 2.48 4.11 6.89
    Well-crystallinity CaCO3/wt% 28 4.17 5.78 6.35 4.91 7.72 8.55
    Poor-crystallinity CaCO3/wt% 28 2.69 2.01 1.82 3.46 2.94 2.74
    WC/PC 28 0.64 0.34 0.28 0.70 0.38 0.32
    CO2 adsorption capacity/wt% 11.19 14.62 15.87
    Notes: WC—Well-crystallinity; PC—Poor-crystallinity.
    下载: 导出CSV

    表  3  PO-CS 浆体孔结构参数

    Table  3.   Pore structure parameters of PO-CS pastes

    Curing
    age/d
    GroupPorosity
    /%
    Pore size distribution/%
    <20 nm20-50 nm50-100 nm100-1000 nm>1000 nm
    1 Uncarbonated 0 26.7 21.3 16.3 13.4 39.5 9.5
    50% 50.6 14.5 12.5 8.7 44.8 19.2
    Carbonated 0 25.4 22.0 16.8 20.1 37.3 3.7
    50% 43.7 14.7 13.5 10.5 42.0 18.9
    7 Uncarbonated 0 21.1 28.7 16.9 15.9 34.1 4.4
    50% 42.8 24.4 17.3 13.6 27.7 17.0
    Carbonated 0 19.3 28.7 19.2 17.4 27.7 6.9
    50% 40.2 24.1 18.5 15.4 30.1 11.9
    28 Uncarbonated 0 18.7 26.3 18.7 21.4 24.0 9.6
    50% 39.08 29.1 23.5 14.9 24.1 8.4
    Carbonated 0 16.8 30.4 20.8 26.3 18.6 3.7
    50% 37.1 31.4 23.9 17.3 21.0 6.3
    下载: 导出CSV
  • [1] 赵雯涵, 吴水木, 李英杰. 钙基工业固废循环捕集CO2性能研究进展[J]. 煤炭学报, 2022, 47(11):3926-3935.

    ZHAO Wenhan, WU Shuimu, LI Yingjie. Research progress on CO2 recycling performance of calcium-based industrial solid waste[J]. Journal of China Coal Society,2022,47(11):3926-3935(in Chinese).
    [2] 万宗华, 张文芹, 刘志超, 等. 电石渣-矿渣复合胶凝材料性能研究[J]. 硅酸盐通报, 2022, 41(5):1704-1714.

    WAN Zonghua, ZHANG Wenqin, LIU Zhichao, et al. Study on properties of carbide slag-slag composite cementitious materials[J]. Bulletinthe Chinese Ceramic Society,2022,41(5):1704-1714(in Chinese).
    [3] 赵立文, 朱干宇, 李少鹏, 等. 电石渣特性及综合利用研究进展[J]. 洁净煤技术, 2021, 27(3):13-26.

    ZHAO Liwen, ZHU Ganyu, LI Shaopeng, et al. Research progress on properties and comprehensive utilization of calcium carbide slag[J]. Clean Coal Technology,2021,27(3):13-26(in Chinese).
    [4] 李文秀, 杨宇航, 黄艳, 等. 二氧化碳矿化高钙基固废制备微细碳酸钙研究进展[J]. 化工进展, 2023, 42(4):2047-2057.

    LI Wenxiu, YANG Yuhang, HUANG Yan, et al. Research progress on preparation of fine calcium carbonate from high calcium base solid waste by carbon dioxide mineralization[J]. Chemical Industry Progress,2023,42(4):2047-2057(in Chinese).
    [5] JUN C, JUN H Z, JIAN Z L, et al. Physicochemical characterizations and desulfurization properties in coal combustion of three calcium and sodium industrial wastes[J]. Energy & Fuels,2009,23(3):2506-2516.
    [6] 王秋华, 吴嘉帅, 张卫风. 碱性工业固废矿化封存二氧化碳研究进展[J]. 化工进展, 2023, 42(3):1572-1582.

    WANG Qiuhua, WU Jiashuai, ZHANG Weifeng. Research progress on carbon dioxide sequestration by alkaline industrial solid waste mineralization[J]. Chemical Industry Progress,2023,42(3):1572-1582(in Chinese).
    [7] 李英杰, 谢辛, 孙荣岳, 等. 流态化下电石渣循环煅烧/碳酸化捕集CO2特性[J]. 中国电机工程学报, 2014, 34(26):4447-4453.

    LI Yingjie, XIE Xin, SUN Rongyue, et al. Characteristics of carbon dioxide capture by cyclic calcination/carbonation of calcium carbide slag under fluidization[J]. Chinese Journal of Electrical Engineering,2014,34(26):4447-4453(in Chinese).
    [8] RIAD, AYECHE, OUALID, et al. Valorization of carbide lime waste, a by-product of acetylene manufacture, in wastewater treatment[J]. Desalination and Water Treat,2012,50(13):87-94.
    [9] YANG J, ZHANG Y, HE X, et al. Heat-cured cement-based composites with wet-grinded fly ash and carbide slag slurry: Hydration, compressive strength and carbonation[J]. Construction and Building Materials,2021,307:124916. doi: 10.1016/j.conbuildmat.2021.124916
    [10] DD A, ENVELOPE H, FANG W A, et al. Solid waste-based dry-mix mortar using fly ash, carbide slag, and flue gas desulfurization gypsum[J]. Journal of Materials Research and Technology,2022,21(10):3636-3649.
    [11] 王勇, 张萌, 曹元辉, 等. 电石渣水泥生产对水泥行业碳减排的影响分析[J]. 水泥, 2022, 545(7):10-12.

    WANG Yong, ZHANG Meng, CAO Yuanhui, et al. Analysis of influence of carbide slag cement production on carbon emission reduction in cement industry[J]. Cement,2022,545(7):10-12(in Chinese).
    [12] REN Y, WANG Z, QU G, et al. Comprehensive performance study of aluminum ash and calcium carbide slag for brick making under ultra-high pressure[J]. Construction and Building Materials,2022,359:129526. doi: 10.1016/j.conbuildmat.2022.129526
    [13] PANG L, PAN Y, DENG B, et al. Conjoint reuse of ceramic polishing waste and calcium carbide slag as mineral admixtures: Hydration and mechanical properties[J]. Journal of Building Engineering,2023,72:106741. doi: 10.1016/j.jobe.2023.106741
    [14] 张明星. 利用工业余热高产量/低能耗粉碎粉煤灰的动力学机制及关键控制技术[D]. 绵阳: 西南科技大学, 2022.

    ZHANG Mingxing. Dynamic mechanism and key control technology of pulverizing fly ash with industrial waste heat at high yield/low energy consumption[D]. Mianyang: Southwest University of Science and Technology, 2022(in Chinese).
    [15] 张忠圆, 付神进. 国际水泥行业发展及碳减排现状简述[J]. 中国水泥, 2022, 246(11):20-23.

    ZHANG Zhongyuan, FU Shenjin. Development and carbon emission reduction of international cement industry[J]. China Cement Corporation,2022,246(11):20-23(in Chinese).
    [16] 秦玲. 水泥基材料早期碳化反应动力学和长期性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    QIN Ling. Study on early carbonation kinetics and long-term properties of cement-based materials[D]. Harbin: Harbin Institute of Technology, 2021(in Chinese).
    [17] 曾海马, 刘志超, 王发洲. 碳化养护对大掺量钢渣砂浆的力学性能及显微结构的影响[J]. 硅酸盐学报, 2020, 48(11):1801-1807.

    ZENG Haima, LIU Zhichao, WANG Fazhou. Effect of carbonization curing on mechanical properties and microstructure of steel slag mortar with large dosage[J]. Journal of the Chinese Ceramic Society,2020,48(11):1801-1807(in Chinese).
    [18] 张丰, 莫立武, 邓敏. 碳化养护对钢渣混凝土强度和体积稳定性的影响[J]. 硅酸盐学报, 2016, 44(5):640-646.

    ZHANG Feng, MO Liwu, DENG Min. Influence of carbonization curing on strength and volume stability of steel slag concrete[J]. Journal of the Chinese Ceramic Society,2016,44(5):640-646(in Chinese).
    [19] 管学茂, 魏红姗, 马小娥, 等. C3S2矿物的加速碳化硬化过程[J]. 建筑材料学报, 2018, 21(6):900-905.

    GUAN Xuemao, WEI Hongshan, MA Xiao'e, et al. Accelerated carbonization hardening process of C3S2 minerals[J]. Journal of Building Materials,2018,21(6):900-905(in Chinese).
    [20] 秦玲, 毛星泰, 高小建, 等. 碳化养护蒸压加气混凝土改性水泥的抗硫酸盐侵蚀性能[J]. 建筑材料学报, 2022, 25(12):1269-1276.

    QIN Ling, MAO Xingtai, GAO Xiaojian, et al. Sulfate resistance of carbonized curing autoclaved aerated concrete modified cement[J]. Journal of Building Materials,2022,25(12):1269-1276(in Chinese).
    [21] XIAN X, MA H T, SHAO Y. Production of concrete pipes by carbonation curing in an inflatable enclosure[J]. Construction and Building Materials,2023,363:129861. doi: 10.1016/j.conbuildmat.2022.129861
    [22] ZHANG D, SHAO Y. Early age carbonation curing for precast reinforced concretes[J]. Construction Building Materials,2016,113(11):134-143.
    [23] 国家质量技术监督局. 水泥胶砂强度检验方法: GB/T 17671—1999[S]. 北京: 中国标准出版社, 1999.

    The State Bureau of Quality and Technical Supervision of China. Test method for strength of cement mortar: GB/T 17671—1999[S]. Beijing: China Standards Press, 1999(in Chinese).
    [24] ZHANG D, GHOULEH Z, SHAO Y. Review on carbonation curing of cement-based materials[J]. Journal of CO2 Utilization,2017,21(7):119-131.
    [25] SHAO Y, ROSTAMI V, HE Z, et al. Accelerated carbonation of portland limestone cement[J]. Journal of Materials in Civil Engineering,2014,26(1):117-124. doi: 10.1061/(ASCE)MT.1943-5533.0000773
    [26] GAITERO J J, CAMPILLO I, GUERRERO A. Reduction of the calcium leaching rate of cement paste by addition of silica nanoparticles[J]. Cement and Concrete Research,2008,38(8):1112-1118.
    [27] MO L W, ZHANG F, DENG M. Mechanical performance and microstructure of the calcium carbonate binders produced by carbonating steel slag paste under CO2 curing[J]. Cement and Concrete Research,2016,88(5):217-226.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  792
  • HTML全文浏览量:  374
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-17
  • 修回日期:  2023-05-16
  • 录用日期:  2023-05-27
  • 网络出版日期:  2023-06-19
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回