留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同加载模式下钢管约束重组竹轴压力学行为

吴凤贻 魏洋 王高飞 林煜 丁明珉

吴凤贻, 魏洋, 王高飞, 等. 不同加载模式下钢管约束重组竹轴压力学行为[J]. 复合材料学报, 2024, 41(2): 978-989. doi: 10.13801/j.cnki.fhclxb.20230616.002
引用本文: 吴凤贻, 魏洋, 王高飞, 等. 不同加载模式下钢管约束重组竹轴压力学行为[J]. 复合材料学报, 2024, 41(2): 978-989. doi: 10.13801/j.cnki.fhclxb.20230616.002
WU Fengyi, WEI Yang, WANG Gaofei, et al. Mechanical behavior of bamboo scrimber filled steel tube under different loading modes[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 978-989. doi: 10.13801/j.cnki.fhclxb.20230616.002
Citation: WU Fengyi, WEI Yang, WANG Gaofei, et al. Mechanical behavior of bamboo scrimber filled steel tube under different loading modes[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 978-989. doi: 10.13801/j.cnki.fhclxb.20230616.002

不同加载模式下钢管约束重组竹轴压力学行为

doi: 10.13801/j.cnki.fhclxb.20230616.002
基金项目: 国家自然科学基金(51778300);江苏省研究生科研与实践创新计划(KYCX22_1061);江苏省重点研发计划项目(BE2020703)
详细信息
    通讯作者:

    魏洋,博士,教授,博士生导师,研究方向为新型材料与新型结构 E-mail: wy78@njfu.edu.cn

  • 中图分类号: TU398.6;TB332

Mechanical behavior of bamboo scrimber filled steel tube under different loading modes

Funds: National Natural Science Foundation of China (51778300); Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX22_1061); Key Research and Development Project of Jiangsu Province (BE2020703)
  • 摘要: 本文将重组竹与钢管复合形成新型钢管约束重组竹。对24个新型钢管约束重组竹圆柱试件进行了轴压试验,研究了钢管厚度和加载方式(全截面与核心加载)对其轴压性能的影响。试验结果表明:外加钢管能够有效地提高结构承载力和变形能力;钢管约束重组竹圆柱主要破坏形态为剪切破坏;结构的峰值应力、峰值应变均与钢管厚度呈正相关,随着钢管厚度增加,试件的峰值应力最大增长22.4%,峰值应变最大增长6.1%;核心受压钢管重组竹较全截面受压试件展现了更好的承载潜力和变形能力。根据全截面受压和核心受压的曲线不同,考虑了钢管套箍系数,分别提出了两种加载方式下新型钢管约束重组竹的极限应力、极限应变和峰值应力、峰值应变的预测模型,应力计算模型误差均在10%以内。最后建议了应力-应变全曲线模型,预测了不同加载方式下新型钢管约束重组竹的应力-应变变化规律。

     

  • 图  1  圆形钢管重组竹柱结构概念图

    P—Vertical load

    Figure  1.  Structural concept diagram of bamboo scrimber-filled steel tube

    图  2  钢管重组竹制作过程

    Figure  2.  Forming process of bamboo scrimber filled steel tube

    图  3  试验加载及测量装置

    AF/AS, LF/LS—Strain gage

    Figure  3.  Test loading and measuring device

    图  4  全截面受压钢管重组竹破坏形态

    Figure  4.  Typical failure modes of bamboo scrimber filled steel tube under full section loading

    图  5  核心受压钢管重组竹破坏形态

    Figure  5.  Typical failure modes of bamboo scrimber filled steel tube under core loading

    图  6  钢管重组竹应力-应变关系曲线

    Figure  6.  Stress-strain curves of bamboo scrimber filled steel tube

    图  7  不同钢管厚度钢管重组竹应力-应变曲线对比

    Figure  7.  Comparisons of stress-strain curves of bamboo scrimber filled steel tube with different steel tube thickness

    fc—Peak stress of bamboo scrimber filled steel tube specimen; fc0—Ultimate stress of the bamboo scrimber; εc0—Ultimate strain of the bamboo scrimber; εc—Peak strain of bamboo scrimber filled steel tube specimen

    图  8  不同加载模式钢管重组竹峰值应力-应变对比

    Figure  8.  Comparison of peak stress and peak strain of bamboo scrimber filled steel tube under different loading modes

    图  9  全截面受压钢管约束重组竹柱应力-应变曲线

    Ey—Elastic-plastic stage stiffness; E'bs—Proportional stage stiffness; fcu—Ultimate stress; εcu—Ultimate strain; f—Stress; ε—Strain

    Figure  9.  Stress-strain curve of bamboo scrimber filled steel tube under full-section loading

    图  10  核心受压钢管约束重组竹柱应力-应变曲线

    Figure  10.  Stress-strain curves of bamboo scrimber filled steel tube under core loading

    图  11  全截面受压钢管约束重组竹柱极限应力-应变模型评估

    AV—Average; SD—Standard deviation; AAE—Average sbsolute error

    Figure  11.  Verification of peak stress and peak strain model under full-section loading

    图  12  核心受压钢管约束重组竹柱极限应力-应变模型评估

    Figure  12.  Verification of peak stress and peak strain model under core loading

    图  13  全截面受压钢管约束重组竹全曲线模型验证

    Figure  13.  Full curve model verification of bamboo scrimber filled steel tube under full section loading

    图  14  核心受压钢管约束重组竹全曲线模型验证

    Figure  14.  Full curve model verification of bamboo scrimber filled steel tube under core loading

    表  1  钢管约束重组竹柱轴压试验结果

    Table  1.   Axial compression test result of bamboo scrimber filled steel tube

    SpecimenH/mmDb/mmDs/mmPcu/kNfce/MPaεcefcy/MPaεcyfcc/MPaεccEbs/GPa
    D1S4.5-F3451031141628.8 92.560.0019159.580.06444.5
    D1S6.0-F3451001141994.2113.320.0021195.370.06352.3
    D2S4.5-F4001221331882.3 78.580.0019135.490.06342.1
    D2S6.0-F4001191332292.6 95.710.0018165.020.06543.8
    D1S4.5-C3451031141412.0142.780.033169.460.08615.8
    D1S6.0-C3451001141413.2162.900.047179.940.08716.2
    D2S4.5-C4001221331630.3122.860.033139.460.07516.7
    D2S6.0-C4001191331674.3131.550.031150.540.07515.2
    Notes: Specimens were numbered according to the different parameters of the specimens; D—Diameter of specimen; S—Thickness of the steel tube; F—Full section loading; C—Core loading; H—Height of all specimens; Db—Diameter of bamboo scrimber; Ds—Outer diameter of steel tube; Pcu—Peak load; fce—Proportional limit stress; εce—Proportional limit strain; fcy—Yield stress; εcy—Yield strain; fcc—Peak stress; εcc—Peak strain; Ebs—Nominal initial compressive elastic modulus.
    下载: 导出CSV

    表  2  钢管力学性能指标

    Table  2.   Mechanical properties of steel tube

    Ds/mmts/mmfy/MPafu/MPaEs/GPa
    1144.5327.4465.9205.2
    1334.5336.8502.2206.1
    1146.0376.0510.2206.4
    1336.0381.2499.2205.1
    Notes: ts—Thickness of steel tube; fy—Yield strength of steel tube; fu—Ultimate tensile strength of steel tube; Es—Elastic modulus of steel tube.
    下载: 导出CSV

    表  3  重组竹试件力学性能指标

    Table  3.   Properties of bamboo scrimber

    SpecimenH/mmDb/mmPbu/kNfby/MPaεbyfbu/MPaεbuEb/GPa
    D103345103 823.895.410.02998.870.05018.6
    D100345100 767.094.240.02997.660.05015.6
    D1224001221121.992.610.02895.970.05215.0
    D1194001191053.491.400.02694.710.04814.8
    Notes: Pbu—Ultimate load; fby—Yield stress of the bamboo scrimber; εby—Yield strain of the bamboo scrimber; fbu—Ultimate stress of the bamboo scrimber; εbu—Ultimate strain of the bamboo scrimber; Eb—Initial compressive elastic modulus.
    下载: 导出CSV
  • [1] HARELIMANA V, ZHU J, YUAN J, et al. Investigating the bamboo as alternative partial replacement of steel bars in concrete reinforcement members[J]. The Structural Design of Tall and Special Buildings,2022,6:31.
    [2] 陈思, 魏洋, 赵鲲鹏, 等. 重组竹顺纹受压蠕变性能及预测模型[J]. 复合材料学报, 2021, 38(3):944-952. doi: 10.13801/j.cnki.fhclxb.20200615.002

    CHEN Si, WEI Yang, ZHAO Kunpeng, et al. Creep performance and prediction model of bamboo scrimber under compression[J]. Acta Materiae Compositae Sinica,2021,38(3):944-952(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200615.002
    [3] CHEN S, WEI Y, ZHU J, et al. Experimental investigation of the shear performance of bamboo scrimber beams reinforced with bamboo pins[J]. Construction and Building Materials,2023,365:130044. doi: 10.1016/j.conbuildmat.2022.130044
    [4] YU Y, LIU R, HUANG Y, et al. Preparation, physical, mechanical, and interfacial morphological properties of engineered bamboo scrimber[J]. Construction and Building Materials,2017,157:1032-1039. doi: 10.1016/j.conbuildmat.2017.09.185
    [5] 盛叶, 黄庚浪, 叶小凡, 等. 重组竹抗拉力学性能分析[J]. 林业工程学报, 2023, 8(1):46-52.

    SHENG Ye, HUANG Genglang, YE Xiaofan, et al. Analysis on mechanical properties of bamboo scrimber under tension stress[J]. Journal of Forestry Engineering,2023,8(1):46-52(in Chinese).
    [6] 杨娜, 张亚慧. 重组竹材料技术创新与面临的关键问题[J]. 世界竹藤通讯, 2021, 19(5):64-68.

    YANG Na, ZHANG Yahui. Technological innovation for bamboo scrimber and its key technical problems faced[J]. World Bamboo and Rattan,2021,19(5):64-68(in Chinese).
    [7] LIU W, LIU M, HUANG J, et al. Constitutive relation models of bamboo scrimber under uniaxial loading along the fibre direction[J]. European Journal of Wood and Wood Products,2021,79:811-820. doi: 10.1007/s00107-021-01680-8
    [8] 朱彦, 卞玉玲, 周爱萍, 等. 重组竹高温下单轴受压性能试验研究[J]. 建筑结构学报, 2021, 42(9):127-134. doi: 10.14006/j.jzjgxb.2019.0866

    ZHU Yan, BIAN Yuling, ZHOU Aiping, et al. Experimental study on uniaxial compressive properties of parallel strand bamboo at high temperatures[J]. Journal of Building Structures,2021,42(9):127-134(in Chinese). doi: 10.14006/j.jzjgxb.2019.0866
    [9] WEI Y, JI X, DUAN M, et al. Flexural performance of bamboo scrimber beams strengthened with fiber-reinforced polymer[J]. Construction and Building Materials,2017,142:66-82. doi: 10.1016/j.conbuildmat.2017.03.054
    [10] ZHANG J, TONG K, WU P, et al. Research status on steel-bamboo composite structure[J]. MATEC Web of Conferences,2019,275:1018. doi: 10.1051/matecconf/201927501018
    [11] LI Y S, YAO J, LI R, et al. Thermal and energy performance of a steel-bamboo composite wall structure[J]. Energy and Buildings,2017,156:225-237. doi: 10.1016/j.enbuild.2017.09.083
    [12] ZHANG X, XU J, ZHANG X, et al. Life cycle carbon emission reduction potential of a new steel-bamboo composite frame structure for residential houses[J]. Journal of Building Engineering,2021,39(4):102295.
    [13] SHI D, DEMARTINO C, LI Z, et al. Axial load-deformation behavior and fracture characteristics of bolted steel to laminated timber and glubam connections[J]. Composite Structures,2023,305:116486. doi: 10.1016/j.compstruct.2022.116486
    [14] HASSANIEH A, VALIPOUR H, BRADFORD M. Load-slip behaviour of steel-cross laminated timber (CLT) composite connections[J]. Journal of Constructional Steel Research,2016,122:110-121. doi: 10.1016/j.jcsr.2016.03.008
    [15] CRISTIANO L, FRANGI A. Experimental investigation on in-plane stiffness and strength of innovative steel-timber hybrid floor diaphragms[J]. Engineering Structures,2017,138:229-244. doi: 10.1016/j.engstruct.2017.02.032
    [16] SHAN Q, ZHANG J, TONG K, et al. Study on flexural behaviour of box section bamboo-steel composite beams[J]. Advances in Civil Engineering,2020,2020:8878776.
    [17] 刘战江, 王占良, 吴时旭, 等. 装配式钢-竹组合结构建筑施工工艺及工程应用[J]. 建筑技术, 2023, 54(1):45-48.

    LIU Zhanjiang, WANG Zhanliang, WU Shixu, et al. Research on building construction technology and engineering application of prefabricated steel-bamboo composite structure[J]. Architecture Technology,2023,54(1):45-48(in Chinese).
    [18] ZHANG J, ZHANG Z, TONG K, et al. Bond performance of adhesively bonding interface of steel-bamboo composite structure[J]. Journal of Renewable Materials,2020,8(6):687-702. doi: 10.32604/jrm.2020.09513
    [19] ZHAO W, LUO Z, LI Y. Axial compression testing of bamboo-laminated encased steel tube composite columns[J]. Iranian Journal of Science and Technology Transactions of Civil Engineering,2020,44(2):645-655. doi: 10.1007/s40996-020-00381-1
    [20] GAN D, ZHANG T, ZHOU X, et al. Experimental investigation on the bamboo-concrete filled circular steel tubular stub columns[C]//Proceedings of the 12th International Conference on Advances in Steel-Concrete Composite Structures. Spain: Universitat Politècnica de València, 2018: 385-391.
    [21] 中国国家标准化管理委员会. 金属材料拉伸试验: 第一部分: 室温试验方法: GB/T 228.1—2010[S]. 北京: 中国标准出版社, 2010.

    Standardization Administration of the People's Republic of China. Tensile test of metallic materials: Part 1: Test method at room temperature: GB/T 228.1—2010[S]. Beijing: Standards Press of China, 2010(in Chinese).
    [22] ASTM. Standard test methods for small clear specimens of timber: ASTM D143—09[S]. West Conshohocken: ASTM International, 2009.
    [23] 柏佳文, 魏洋, 张依睿, 等. 新型碳纤维增强复合材料-钢复合管海水海砂混凝土圆柱轴压试验[J]. 复合材料学报, 2021, 38(9):3084-3093.

    BAI Jiawen, WEI Yang, ZHANG Yirui, et al. Axial compression behavior of new seawater and sea sand concrete filled circular carbon fiber reinforced polymer-steel composite tube columns[J]. Acta Materiae Compositae Sinica,2021,38(9):3084-3093(in Chinese).
    [24] 郭莹, 许天祥, 刘界鹏. 圆CFRP-钢复合管约束高强混凝土短柱轴压试验研究[J]. 建筑结构学报, 2019, 40(5):124-131.

    GUO Ying, XU Tianxiang, LIU Jiepeng. Experimental study on axial behavior of circular CFRP-steel composite tubed high-strength concrete stub columnss[J]. Journal of Building Structures,2019,40(5):124-131(in Chinese).
    [25] 魏洋, 纪雪微, 端茂军, 等. 重组竹轴向应力-应变关系模型[J]. 复合材料学报, 2018, 35(3): 572-579.

    WEI Yang, JI Xuewei, DUAN Maojun, et a. Model for axial stress strain relationship of bamboo scrimber[J]. Acta Materiac Compositae Sinica, 2018, 35(3): 572-579(in Chinese).
    [26] WEI Y, BAI J, ZHANG Y, et al. Compressive performance of high-strength seawater and sea-sand concrete-filled circular FRP-steel composite tube columns[J]. Engineering Structures,2021,240:112357. doi: 10.1016/j.engstruct.2021.112357
    [27] CHANG G, MANDER J. Seismic energy based fatigue damage analysis of bridge columns: Part I—Evaluation of seismic capacity[M]. Buffalo: National Center for Earthquake Engineering Research, 1994: 2.
    [28] 张依睿, 魏洋, 柏佳文, 等. 纤维增强聚合物复合材料-钢复合圆管约束混凝土轴压性能预测模型[J]. 复合材料学报, 2019, 36(10):2478-2485.

    ZHANG Yirui, WEI Yang, BAI Jiawen, et al. Models for predicting axial compression behavior of fiber reinforced polymer-steel composite circular tube confined concrete[J]. Acta Materiae Compositae Sinica,2019,36(10):2478-2485(in Chinese).
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  558
  • HTML全文浏览量:  311
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-20
  • 修回日期:  2023-05-23
  • 录用日期:  2023-06-02
  • 网络出版日期:  2023-06-16
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回