留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自研高性能胶胶粘CFRP-钢界面性能的温度影响机制

李传习 高有为 王孝耀 李游 司睹英胡

李传习, 高有为, 王孝耀, 等. 自研高性能胶胶粘CFRP-钢界面性能的温度影响机制[J]. 复合材料学报, 2024, 41(2): 925-936. doi: 10.13801/j.cnki.fhclxb.20230614.006
引用本文: 李传习, 高有为, 王孝耀, 等. 自研高性能胶胶粘CFRP-钢界面性能的温度影响机制[J]. 复合材料学报, 2024, 41(2): 925-936. doi: 10.13801/j.cnki.fhclxb.20230614.006
LI Chuanxi, GAO Youwei, WANG Xiaoyao, et al. Effect mechanism of temperature on the interface properties of CFRP-steel bondedby self-developed adhesive[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 925-936. doi: 10.13801/j.cnki.fhclxb.20230614.006
Citation: LI Chuanxi, GAO Youwei, WANG Xiaoyao, et al. Effect mechanism of temperature on the interface properties of CFRP-steel bondedby self-developed adhesive[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 925-936. doi: 10.13801/j.cnki.fhclxb.20230614.006

自研高性能胶胶粘CFRP-钢界面性能的温度影响机制

doi: 10.13801/j.cnki.fhclxb.20230614.006
基金项目: 国家自然科学基金(51778069);湖南省自然科学基金(2021JJ40173);湖南省研究生科研创新重点项目(QL20210180)
详细信息
    通讯作者:

    高有为,博士,研究方向为钢结构加固、新材料、新技术、新结构 E-mail:gaoyouwei95@163.com

  • 中图分类号: TB332

Effect mechanism of temperature on the interface properties of CFRP-steel bondedby self-developed adhesive

Funds: National Natural Science Foundation of China (51778069); Natural Science Foundation of Hunan Province (2021JJ40173); Key Research and Innovation Project for Graduate Students of Hunan Province (QL20210180)
  • 摘要: 粘结界面是碳纤维增强复合材料(CFRP)加固钢结构的薄弱环节,受胶粘剂和温度影响显著。为深入了解自研高性能胶胶粘CFRP-钢界面性能的温度影响机制,制作了28个CFRP-钢双搭接试件,开展了自研高性能胶粘剂G3和典型商品胶粘剂Sika30分别在7种环境温度下(−20℃、−5℃、10℃、25℃、40℃、55℃和70℃)的拉伸剪切试验。分析了试件的破坏模式、极限承载力、荷载-位移曲线、界面剪应力及粘结-滑移曲线等。结果表明:随温度升高,胶粘剂强度降低,韧性增加;当温度接近或超过胶粘剂玻璃转化温度,胶体性能急剧下降,搭接试件的破坏模式由CFRP层离破坏变为钢-胶界面破坏,界面性能显著降低;G3试件的低温性能与Sika30试件相当,但G3胶粘剂试件的高温性能显著优于Sika30胶粘剂试件;试件在低温环境下的界面性能较25℃显著降低,胶粘CFRP加固钢结构需考虑低温下加固系统脆化产生的不利影响。

     

  • 图  1  胶粘剂试件尺寸

    R—Radius of arc segment; b—Breadth; L0—Test segment spacing; L1—Length; L—Total length of specimen; h—Thickness

    Figure  1.  Size of adhesive specimen

    图  2  几何尺寸及应变片布置

    Figure  2.  Geometric dimensions and strain gauge arrangement

    图  3  胶粘剂试验

    Figure  3.  Adhesive test

    图  4  双搭接试件试验

    Figure  4.  Double lap test

    图  5  不同工作温度下胶粘剂的拉伸应力-应变曲线

    Figure  5.  Tensile stress-strain curves of adhesives at different working temperatures

    图  6  不同工作温度下胶粘剂的剪切荷载-位移曲线

    Figure  6.  Shear load-displacement curves of adhesives at different operating temperatures

    图  7  CFRP-钢双搭接试件的界面破坏形态

    Figure  7.  Interface failure mode of the CFRP-steel double lap specimens

    图  8  CFRP-钢双搭接试件最大位移(a)与极限荷载(b)随温度升高的变化趋势

    Figure  8.  Variation trend of maximum displacement (a) and ultimate load (b) of CFRP-steel double lap specimens with increasing temperature

    图  9  CFRP-钢双搭接试件荷载-位移曲线

    Figure  9.  Load-displacement curves of CFRP-steel double lap specimens

    图  10  CFRP表面轴向应变分布

    Pu—Ultimate load

    Figure  10.  Axial strain distribution on CFRP surface

    图  11  CFRP-钢双搭接试件剪应力分布

    Figure  11.  Shear stress distribution of CFRP-steel double lap specimens

    图  12  CFRP-钢双搭接试件粘结-滑移关系

    Figure  12.  Bond-slip relationship of CFRP-steel double lap specimens

    表  1  材料参数

    Table  1.   Material parameters

    MaterialTensile strength/
    MPa
    Elasticity modulus/
    GPa
    Elongation at break/
    %
    Glass conversion temperature
    Tg/℃
    G3 64.4 2.79.7395
    Sika30 30.3 11.41.6262
    CFRP2657.0180.01.70
    Q345 D 514.0206.0
    Notes: CFRP—Carbon fiber reinforced polymer; G3, Sika30—Adhesive type.
    下载: 导出CSV

    表  2  CFRP-钢双搭接试件的拉伸剪切试验结果

    Table  2.   Tensile shear test results of CFRP-steel double lap specimens

    SpecimenMeasuring
    temperature
    /℃
    Maximum displacement/mmUltimate load/kNFailure mode
    Test valueMean valueTest valueMean value
    G3−208.0/7.37.768.5/69.368.9d
    −57.1/7.57.378.9/78.778.8a+d
    108.0/7.17.694.6/95.595.1a
    257.9/8.08.097.9/98.498.2a
    408.2/9.38.8119.1/120.4119.8a
    558.3/10.29.3128.3/128.2128.3a
    709.6/11.510.6144.9/147.4146.2a
    Sika30−206.4/5.96.176.5/72.574.5a
    −57.8/7.47.683.6/83.783.7a
    107.0/7.27.188.5/85.787.1a
    257.4/7.07.2106.3/102.1104.2a
    4011.2/10.911.1160.2/162.9161.6a
    559.7/9.79.781.6/76.178.9d
    707.6/7.27.465.5/62.964.2d
    Notes: Failure mode: a—CFRP material damage; d—Failure of steel-adhesive interface.
    下载: 导出CSV

    表  3  CFRP-钢双搭接试件本构参数

    Table  3.   Constitutive parameters of CFRP-steel double lap specimens

    SpecimenT/℃P1/kNτmax/
    MPa
    S1/
    mm
    S2/
    mm
    Sf/
    mm
    K/
    (MPa·mm–1)
    Gf/
    (MPa·mm)
    G3−20 68.5 (Pu)34.70.170.17204.22.9
    −5 78.7 (Pu)36.60.170.17215.13.1
    10 95.5 (Pu)38.10.170.17223.93.2
    25 97.9 (Pu)38.10.180.18211.83.4
    40105.0 (0.88Pu)33.30.170.220.22200.54.5
    55 97.9 (0.73Pu)32.80.170.250.33198.46.7
    70114.1 (0.79Pu)32.60.180.270.39184.77.8
    Sika30−20 65.2 (0.9Pu)21.00.100.23208.52.4
    −5 60.0 (0.72Pu)24.30.080.21289.62.6
    10 68.2 (0.77Pu)31.20.100.17316.92.7
    25 65.1 (0.61Pu)35.40.100.29343.85.1
    40 85.7 (0.72Pu)23.90.240.48169.05.7
    55 43.7 (0.54Pu) 9.70.160.220.3559.02.0
    70 46.6 (0.74Pu) 8.60.190.220.2946.11.4
    Notes: T—Test temperature; P1—Load corresponding to the peak shear stress; τmax—Peak shear stress; S1—Slip amount corresponding to the peak shear stress; S2—Corresponding slip when the shear stress begins to decrease; Sf—Limit slip; K—Interface stiffness; Gf—Interfacial fracture energy.
    下载: 导出CSV
  • [1] 王海涛, 卞致宁, 熊浩, 等. 粘结层和预应力对CFRP板加固损伤钢梁抗弯性能的影响[J]. 复合材料学报, 2013, 40(3):1718-1728.

    WANG Haitao, BIAN Zhining, XIONG Hao, et al. Effects of the adhesive layer and prestress on the flexural behavior of damaged steel beams strengthened with CFRP plates[J]. Acta Materiae Compositae Sinica,2013,40(3):1718-1728(in Chinese).
    [2] 郑元鹏, 陈涛, 黄诚. CFRP加固紧凑拉伸钢试件的疲劳试验研究[J]. 复合材料学报, 2022, 39(11):5192-5205. doi: 10.13801/j.cnki.fhclxb.20220622.003

    ZHENG Yuanpeng, CHEN Tao, HUANG Cheng. Experimental study on fatigue behavior of compact-tension specimens strengthened by CFRP[J]. Acta Materiae Compositae Sinica,2022,39(11):5192-5205(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220622.003
    [3] 李传习, 柯璐, 陈卓异, 等. 正交异性钢桥面板弧形切口及其CFRP补强的疲劳性能[J]. 中国公路学报, 2021, 34(5):63-75.

    LI Chuanxi, KE Lu, CHEN Zhuoyi, et al. Fatigue behavior and CFRP reinforcement of diaphragm cutouts in orthotropic steel bridge decks[J]. China Journal Highway and Transport,2021,34(5):63-75(in Chinese).
    [4] 李安邦, 徐善华, 吴成, 等. 外贴CFRP板加固锈蚀钢板疲劳性能试验研究[J]. 土木工程学报, 2021, 54(7):62-72.

    LI Anbang, XU Shanhua, WU Cheng, et al. Experimental study on the fatigue performance of corroded steel plate strengthened with externally bonded CFRP plates[J]. China Civil Engineering Journal,2021,54(7):62-72(in Chinese).
    [5] KOWAL M, ROZYLO P. Effect of bond end shape on CFRP/steel joint strength[J]. Composite Structures,2022,284(3):115186. doi: DOI:10.1016/j.compstruct.2022.115186:
    [6] LI Y, LI C X, HE J, et al. Effect of functionalized nano-SiO2 addition on bond behavior of adhesively bonded CFRP-steel double-lap joint[J]. Construction and Building Materials,2020,244(3):118400. doi: DOI:10.1016/j.conbuildmat.2020.11840
    [7] BORRIE D, AL-SAAD S, ZHAO X L, et al. Effects of CNT modified adhesives and silane chemical pre-treatment on CFRP/steel bond behaviour and durability[J]. Construction and Building Materials,2021,273:121803. doi: 10.1016/j.conbuildmat.2020.121803
    [8] 李传习, 柯璐, 陈卓异, 等. CFRP-钢界面粘结性能试验与数值模拟[J]. 复合材料学报, 2018, 35(12):3534-3546.

    LI Chuanxi, KE Lu, CHEN Zhuoyi, et al. Experimental and numerical simulation of interfacial bonding properties of CFRP-steel[J]. Acta Materiae Compositae Sinica,2018,35(12):3534-3546(in Chinese).
    [9] JAHANI Y, BAENA M, BARRIS C, et al. Influence of curing, post-curing and testing temperatures on mechanical properties of a structural adhesive[J]. Construction and Building Materials,2022,324:126698. doi: 10.1016/j.conbuildmat.2022.126698
    [10] FIRMO J P, ROQUETTE M G, CORREIA J R, et al. Influence of elevated temperatures on epoxy adhesive used in CFRP strengthening systems for civil engineering applications[J]. International Journal of Adhesion and Adhesives,2019,93:102333. doi: 10.1016/j.ijadhadh.2019.01.027
    [11] BANEA M D, SILVA L F M D, CAMPILHO R D S G. Effect of temperature on tensile strength and mode I fracture toughness of a high temperature epoxy adhesive[J]. Journal of Adhesion Science and Technology,2012,26(7):939-953. doi: 10.1163/156856111X593649
    [12] LI C X, KE L, HE J, et al. Effects of mechanical properties of adhesive and CFRP on the bond behavior in CFRP-strengthened steel structures[J]. Composite Structures,2019,211(3):163-174. doi: DOI:10.1016/j.compstruct.2018.12.020
    [13] MARQUES E A S, DA SILVA L F M, BANEA M D, et al. Adhesive joints for low-and high-temperature use: An overview[J]. The Journal of Adhesion,2015,91(7):556-585. doi: 10.1080/00218464.2014.943395
    [14] GUO D, LIU Y L, GAO W Y, et al. Bond behavior of CFRP-to-steel bonded joints at different service temperatures: Experimental study and FE modeling[J]. Construction and Building Materials,2023,326:129836. doi: DOI:10.1016/j.conbuildmat.2022.129836
    [15] CHANDRATHILAKA E R K, GAMAGE J C P H, FAWZIA S. Mechanical characterization of CFRP/steel bond cured and tested at elevated temperature[J]. Composite Structures,2019,207:471-477. doi: 10.1016/j.compstruct.2018.09.048
    [16] 李传习, 曹先慧, 柯璐, 等. 高温对结构加固用环氧粘结剂力学性能的影响[J]. 建筑材料学报, 2020, 23(3):642-649.

    LI Chuanxi, CAO Xianhui, KE Lu, et al. Effects of high temperatures on mechanical properties of epoxy adhesives for structural strengthening[J]. Journal of Building Materials,2020,23(3):642-649(in Chinese).
    [17] BISCAIA H C, RIBEIRO P. A temperature-dependent bond-slip model for CFRP-to-steel joints[J]. Composite Structures,2019,217:186-205. doi: 10.1016/j.compstruct.2019.03.019
    [18] 陈卓异, 彭彦泽, 李传习, 等. 高温下双搭接钢-CFRP板胶粘界面力学性能试验[J]. 复合材料学报, 2021, 38(2):449-460. doi: 10.13801/j.cnki.fhclxb.20200608.002

    CHEN Zhuoyi, PENG Yanze, LI Chuanxi, et al. Experimental study for the adhesive interface mechanical properties of double lapped steel-CFRP plate at high temperature[J]. Acta Materiae Compositae Sinica,2021,38(2):449-460(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200608.002
    [19] HE J, XIAN G, ZHANG Y X. Effect of moderately elevated temperatures on bond behaviour of CFRP-to-steel bonded joints using different adhesives[J]. Construction and Building Materials,2020,241:118057. doi: 10.1016/j.conbuildmat.2020.118057
    [20] AL-SHAWAF A, AL-MAHAIDI R, ZHAO X L, et al. Effect of elevated temperature on bond behaviour of high modulus CFRP/steel double-strap joints[J]. Australian Journal of Structural Engineering,2009,10(1):63-74. doi: 10.1080/13287982.2009.11465033
    [21] NGUYEN T C, YU B, ZHAO X L, et al. Mechanical characterization of steel/CFRP double strap joints at elevated temperatures[J]. Composite Structures,2011,93(6):1604-1612. doi: 10.1016/j.compstruct.2011.01.010
    [22] 李栓, 张宝艳, 张思, 等. 酚醛环氧树脂改性环氧胶粘剂的耐热性能研究[J]. 化工新型材料, 2023, 51(1):272-275, 280.

    LI Shuan, ZHANG Baoyan, ZHANG Si, et al. Study on heat resistance of epoxy adhesive modified by phenolic epoxy resin[J]. New Chemical Materials,2023,51(1):272-275, 280(in Chinese).
    [23] 李伟捷, 光善仪, 徐洪耀. 不同固化剂复配的耐高温环氧树脂体系性能[J]. 高分子材料科学与工程, 2022, 38(5):69-80.

    LI Weijie, GUANG Shanyi, XU Hongyao. Properties of epoxy resin system with different curing agents[J]. Polymer Materials Science and Engineering,2022,38(5):69-80(in Chinese).
    [24] 李传习, 李游, 贺君, 等. 固化剂对室温胶黏CFRP板/钢板界面性能的影响[J]. 建筑材料学报, 2021, 24(2):339-347. doi: 10.3969/j.issn.1007-9629.2021.02.016

    LI Chuanxi, LI You, HE Jun, et al. Effect of curing agent on interfacial performance of adhesively bonded CFRP lami-nate/steel plate cured at room temperature[J]. Journal of Building Materials,2021,24(2):339-347(in Chinese). doi: 10.3969/j.issn.1007-9629.2021.02.016
    [25] 李游, 李传习, 郑辉, 等. 固化剂混掺对高温下CFRP板-钢板界面粘结性能的影响[J]. 复合材料学报, 2021, 38(12):4073-4089. doi: 10.13801/j.cnki.fhclxb.20210311.005

    LI You, LI Chuanxi, ZHENG Hui, et al. Effect of curing agent mixing on interfacial bond behavior of glued CFRP plate-steel plate at elevated temperature[J]. Acta Materiae Compositae Sinica,2021,38(12):4073-4089(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210311.005
    [26] YU T, FERNANDO D, TENG J G, et al. Experimental study on CFRP-to-steel bonded interfaces[J]. Composites Part B: Engineering,2012,43(5):2279-2289. doi: 10.1016/j.compositesb.2012.01.024
    [27] 中国国家标准化管理委员会. 树脂浇铸体性能试验方法: GB/T 2567—2021[S]. 北京: 中国标准出版社, 2021.

    Standardization Administration of the People's Republic of China. Test methods for properties of resin casting body: GB/T 2567—2021[S]. Beijing: China Standards Press, 2021(in Chinese).
    [28] 中国国家标准化管理委员会. 胶粘剂 拉伸剪切强度的测定(刚性材料对刚性材料): GB/T 7124—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Adhesives—Determination of tensile lap-shear strength of rigid-to-rigid bonded assemblies: GB/T 7124—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [29] American Society for Testing and Materials. Standard test method for strength properties of double lap shear adhesive joints by tension loading: ASTM D3528-96[S]. West Conshohocken: ASTM, 2008.
    [30] 李腾, 宁志华, 吴嘉瑜. CFRP加固钢板的粘结界面剥离破坏[J]. 复合材料学报, 2021, 38(12):4090-4105.

    LI Teng, NING Zhihua, WU Jiayu. Interfacial debonding failure of CFRP-strengthened steel structures[J]. Acta Materiae Compositae Sinica,2021,38(12):4090-4105(in Chinese).
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  345
  • HTML全文浏览量:  157
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-07
  • 修回日期:  2023-05-24
  • 录用日期:  2023-06-03
  • 网络出版日期:  2023-06-15
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回