Effect mechanism of temperature on the interface properties of CFRP-steel bondedby self-developed adhesive
-
摘要: 粘结界面是碳纤维增强复合材料(CFRP)加固钢结构的薄弱环节,受胶粘剂和温度影响显著。为深入了解自研高性能胶胶粘CFRP-钢界面性能的温度影响机制,制作了28个CFRP-钢双搭接试件,开展了自研高性能胶粘剂G3和典型商品胶粘剂Sika30分别在7种环境温度下(−20℃、−5℃、10℃、25℃、40℃、55℃和70℃)的拉伸剪切试验。分析了试件的破坏模式、极限承载力、荷载-位移曲线、界面剪应力及粘结-滑移曲线等。结果表明:随温度升高,胶粘剂强度降低,韧性增加;当温度接近或超过胶粘剂玻璃转化温度,胶体性能急剧下降,搭接试件的破坏模式由CFRP层离破坏变为钢-胶界面破坏,界面性能显著降低;G3试件的低温性能与Sika30试件相当,但G3胶粘剂试件的高温性能显著优于Sika30胶粘剂试件;试件在低温环境下的界面性能较25℃显著降低,胶粘CFRP加固钢结构需考虑低温下加固系统脆化产生的不利影响。Abstract: Bonding interface is the weak link of carbon fiber reinforced polymer (CFRP) reinforced steel structure, which is significantly affected by adhesive and temperature. In order to investigate the effect of temperature on the interfacial properties of CFRP-steel bonded by a self-developed high-performance adhesive, 28 CFRP-steel double lap specimens were prepared. The tensile shear tests of self-developed high-performance adhesive G3 and typical commercial adhesive Sika30 were carried out at 7 ambient temperatures (−20℃, −5℃, 10℃, 25℃, 40℃, 55℃ and 70℃). The failure mode, ultimate bearing capacity, load-displacement curve, interface shear stress and bond-slip curve of the specimens were analyzed. The results show that the strength of the adhesive decreases and the toughness increases with the increase of temperature. When the temperature is close to or exceeds the glass transition temperature of the adhesive, the colloidal performance decreases sharply, and the failure mode of the lap joint specimen changes from CFRP layer separation failure to steel-adhesive interface failure, and the interface performance decreases significantly. The low temperature performance of G3 specimen is comparable to that of Sika30 specimen, but the high temperature performance of G3 adhesive specimen is significantly better than that of Sika30 adhesive specimen. The interface performance of the specimen at low temperature is significantly lower than that at 25℃. The adverse effects of brittleness of the reinforcement system at low temperature should be considered in the steel structure strengthened with adhesive CFRP.
-
表 1 材料参数
Table 1. Material parameters
Material Tensile strength/
MPaElasticity modulus/
GPaElongation at break/
%Glass conversion temperature
Tg/℃G3 64.4 2.7 9.73 95 Sika30 30.3 11.4 1.62 62 CFRP 2657.0 180.0 1.70 — Q345 D 514.0 206.0 — — Notes: CFRP—Carbon fiber reinforced polymer; G3, Sika30—Adhesive type. 表 2 CFRP-钢双搭接试件的拉伸剪切试验结果
Table 2. Tensile shear test results of CFRP-steel double lap specimens
Specimen Measuring
temperature
/℃Maximum displacement/mm Ultimate load/kN Failure mode Test value Mean value Test value Mean value G3 −20 8.0/7.3 7.7 68.5/69.3 68.9 d −5 7.1/7.5 7.3 78.9/78.7 78.8 a+d 10 8.0/7.1 7.6 94.6/95.5 95.1 a 25 7.9/8.0 8.0 97.9/98.4 98.2 a 40 8.2/9.3 8.8 119.1/120.4 119.8 a 55 8.3/10.2 9.3 128.3/128.2 128.3 a 70 9.6/11.5 10.6 144.9/147.4 146.2 a Sika30 −20 6.4/5.9 6.1 76.5/72.5 74.5 a −5 7.8/7.4 7.6 83.6/83.7 83.7 a 10 7.0/7.2 7.1 88.5/85.7 87.1 a 25 7.4/7.0 7.2 106.3/102.1 104.2 a 40 11.2/10.9 11.1 160.2/162.9 161.6 a 55 9.7/9.7 9.7 81.6/76.1 78.9 d 70 7.6/7.2 7.4 65.5/62.9 64.2 d Notes: Failure mode: a—CFRP material damage; d—Failure of steel-adhesive interface. 表 3 CFRP-钢双搭接试件本构参数
Table 3. Constitutive parameters of CFRP-steel double lap specimens
Specimen T/℃ P1/kN τmax/
MPaS1/
mmS2/
mmSf/
mmK/
(MPa·mm–1)Gf/
(MPa·mm)G3 −20 68.5 (Pu) 34.7 0.17 — 0.17 204.2 2.9 −5 78.7 (Pu) 36.6 0.17 — 0.17 215.1 3.1 10 95.5 (Pu) 38.1 0.17 — 0.17 223.9 3.2 25 97.9 (Pu) 38.1 0.18 — 0.18 211.8 3.4 40 105.0 (0.88Pu) 33.3 0.17 0.22 0.22 200.5 4.5 55 97.9 (0.73Pu) 32.8 0.17 0.25 0.33 198.4 6.7 70 114.1 (0.79Pu) 32.6 0.18 0.27 0.39 184.7 7.8 Sika30 −20 65.2 (0.9Pu) 21.0 0.10 — 0.23 208.5 2.4 −5 60.0 (0.72Pu) 24.3 0.08 — 0.21 289.6 2.6 10 68.2 (0.77Pu) 31.2 0.10 — 0.17 316.9 2.7 25 65.1 (0.61Pu) 35.4 0.10 — 0.29 343.8 5.1 40 85.7 (0.72Pu) 23.9 0.24 — 0.48 169.0 5.7 55 43.7 (0.54Pu) 9.7 0.16 0.22 0.35 59.0 2.0 70 46.6 (0.74Pu) 8.6 0.19 0.22 0.29 46.1 1.4 Notes: T—Test temperature; P1—Load corresponding to the peak shear stress; τmax—Peak shear stress; S1—Slip amount corresponding to the peak shear stress; S2—Corresponding slip when the shear stress begins to decrease; Sf—Limit slip; K—Interface stiffness; Gf—Interfacial fracture energy. -
[1] 王海涛, 卞致宁, 熊浩, 等. 粘结层和预应力对CFRP板加固损伤钢梁抗弯性能的影响[J]. 复合材料学报, 2013, 40(3):1718-1728.WANG Haitao, BIAN Zhining, XIONG Hao, et al. Effects of the adhesive layer and prestress on the flexural behavior of damaged steel beams strengthened with CFRP plates[J]. Acta Materiae Compositae Sinica,2013,40(3):1718-1728(in Chinese). [2] 郑元鹏, 陈涛, 黄诚. CFRP加固紧凑拉伸钢试件的疲劳试验研究[J]. 复合材料学报, 2022, 39(11):5192-5205. doi: 10.13801/j.cnki.fhclxb.20220622.003ZHENG Yuanpeng, CHEN Tao, HUANG Cheng. Experimental study on fatigue behavior of compact-tension specimens strengthened by CFRP[J]. Acta Materiae Compositae Sinica,2022,39(11):5192-5205(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220622.003 [3] 李传习, 柯璐, 陈卓异, 等. 正交异性钢桥面板弧形切口及其CFRP补强的疲劳性能[J]. 中国公路学报, 2021, 34(5):63-75.LI Chuanxi, KE Lu, CHEN Zhuoyi, et al. Fatigue behavior and CFRP reinforcement of diaphragm cutouts in orthotropic steel bridge decks[J]. China Journal Highway and Transport,2021,34(5):63-75(in Chinese). [4] 李安邦, 徐善华, 吴成, 等. 外贴CFRP板加固锈蚀钢板疲劳性能试验研究[J]. 土木工程学报, 2021, 54(7):62-72.LI Anbang, XU Shanhua, WU Cheng, et al. Experimental study on the fatigue performance of corroded steel plate strengthened with externally bonded CFRP plates[J]. China Civil Engineering Journal,2021,54(7):62-72(in Chinese). [5] KOWAL M, ROZYLO P. Effect of bond end shape on CFRP/steel joint strength[J]. Composite Structures,2022,284(3):115186. doi: DOI:10.1016/j.compstruct.2022.115186: [6] LI Y, LI C X, HE J, et al. Effect of functionalized nano-SiO2 addition on bond behavior of adhesively bonded CFRP-steel double-lap joint[J]. Construction and Building Materials,2020,244(3):118400. doi: DOI:10.1016/j.conbuildmat.2020.11840 [7] BORRIE D, AL-SAAD S, ZHAO X L, et al. Effects of CNT modified adhesives and silane chemical pre-treatment on CFRP/steel bond behaviour and durability[J]. Construction and Building Materials,2021,273:121803. doi: 10.1016/j.conbuildmat.2020.121803 [8] 李传习, 柯璐, 陈卓异, 等. CFRP-钢界面粘结性能试验与数值模拟[J]. 复合材料学报, 2018, 35(12):3534-3546.LI Chuanxi, KE Lu, CHEN Zhuoyi, et al. Experimental and numerical simulation of interfacial bonding properties of CFRP-steel[J]. Acta Materiae Compositae Sinica,2018,35(12):3534-3546(in Chinese). [9] JAHANI Y, BAENA M, BARRIS C, et al. Influence of curing, post-curing and testing temperatures on mechanical properties of a structural adhesive[J]. Construction and Building Materials,2022,324:126698. doi: 10.1016/j.conbuildmat.2022.126698 [10] FIRMO J P, ROQUETTE M G, CORREIA J R, et al. Influence of elevated temperatures on epoxy adhesive used in CFRP strengthening systems for civil engineering applications[J]. International Journal of Adhesion and Adhesives,2019,93:102333. doi: 10.1016/j.ijadhadh.2019.01.027 [11] BANEA M D, SILVA L F M D, CAMPILHO R D S G. Effect of temperature on tensile strength and mode I fracture toughness of a high temperature epoxy adhesive[J]. Journal of Adhesion Science and Technology,2012,26(7):939-953. doi: 10.1163/156856111X593649 [12] LI C X, KE L, HE J, et al. Effects of mechanical properties of adhesive and CFRP on the bond behavior in CFRP-strengthened steel structures[J]. Composite Structures,2019,211(3):163-174. doi: DOI:10.1016/j.compstruct.2018.12.020 [13] MARQUES E A S, DA SILVA L F M, BANEA M D, et al. Adhesive joints for low-and high-temperature use: An overview[J]. The Journal of Adhesion,2015,91(7):556-585. doi: 10.1080/00218464.2014.943395 [14] GUO D, LIU Y L, GAO W Y, et al. Bond behavior of CFRP-to-steel bonded joints at different service temperatures: Experimental study and FE modeling[J]. Construction and Building Materials,2023,326:129836. doi: DOI:10.1016/j.conbuildmat.2022.129836 [15] CHANDRATHILAKA E R K, GAMAGE J C P H, FAWZIA S. Mechanical characterization of CFRP/steel bond cured and tested at elevated temperature[J]. Composite Structures,2019,207:471-477. doi: 10.1016/j.compstruct.2018.09.048 [16] 李传习, 曹先慧, 柯璐, 等. 高温对结构加固用环氧粘结剂力学性能的影响[J]. 建筑材料学报, 2020, 23(3):642-649.LI Chuanxi, CAO Xianhui, KE Lu, et al. Effects of high temperatures on mechanical properties of epoxy adhesives for structural strengthening[J]. Journal of Building Materials,2020,23(3):642-649(in Chinese). [17] BISCAIA H C, RIBEIRO P. A temperature-dependent bond-slip model for CFRP-to-steel joints[J]. Composite Structures,2019,217:186-205. doi: 10.1016/j.compstruct.2019.03.019 [18] 陈卓异, 彭彦泽, 李传习, 等. 高温下双搭接钢-CFRP板胶粘界面力学性能试验[J]. 复合材料学报, 2021, 38(2):449-460. doi: 10.13801/j.cnki.fhclxb.20200608.002CHEN Zhuoyi, PENG Yanze, LI Chuanxi, et al. Experimental study for the adhesive interface mechanical properties of double lapped steel-CFRP plate at high temperature[J]. Acta Materiae Compositae Sinica,2021,38(2):449-460(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200608.002 [19] HE J, XIAN G, ZHANG Y X. Effect of moderately elevated temperatures on bond behaviour of CFRP-to-steel bonded joints using different adhesives[J]. Construction and Building Materials,2020,241:118057. doi: 10.1016/j.conbuildmat.2020.118057 [20] AL-SHAWAF A, AL-MAHAIDI R, ZHAO X L, et al. Effect of elevated temperature on bond behaviour of high modulus CFRP/steel double-strap joints[J]. Australian Journal of Structural Engineering,2009,10(1):63-74. doi: 10.1080/13287982.2009.11465033 [21] NGUYEN T C, YU B, ZHAO X L, et al. Mechanical characterization of steel/CFRP double strap joints at elevated temperatures[J]. Composite Structures,2011,93(6):1604-1612. doi: 10.1016/j.compstruct.2011.01.010 [22] 李栓, 张宝艳, 张思, 等. 酚醛环氧树脂改性环氧胶粘剂的耐热性能研究[J]. 化工新型材料, 2023, 51(1):272-275, 280.LI Shuan, ZHANG Baoyan, ZHANG Si, et al. Study on heat resistance of epoxy adhesive modified by phenolic epoxy resin[J]. New Chemical Materials,2023,51(1):272-275, 280(in Chinese). [23] 李伟捷, 光善仪, 徐洪耀. 不同固化剂复配的耐高温环氧树脂体系性能[J]. 高分子材料科学与工程, 2022, 38(5):69-80.LI Weijie, GUANG Shanyi, XU Hongyao. Properties of epoxy resin system with different curing agents[J]. Polymer Materials Science and Engineering,2022,38(5):69-80(in Chinese). [24] 李传习, 李游, 贺君, 等. 固化剂对室温胶黏CFRP板/钢板界面性能的影响[J]. 建筑材料学报, 2021, 24(2):339-347. doi: 10.3969/j.issn.1007-9629.2021.02.016LI Chuanxi, LI You, HE Jun, et al. Effect of curing agent on interfacial performance of adhesively bonded CFRP lami-nate/steel plate cured at room temperature[J]. Journal of Building Materials,2021,24(2):339-347(in Chinese). doi: 10.3969/j.issn.1007-9629.2021.02.016 [25] 李游, 李传习, 郑辉, 等. 固化剂混掺对高温下CFRP板-钢板界面粘结性能的影响[J]. 复合材料学报, 2021, 38(12):4073-4089. doi: 10.13801/j.cnki.fhclxb.20210311.005LI You, LI Chuanxi, ZHENG Hui, et al. Effect of curing agent mixing on interfacial bond behavior of glued CFRP plate-steel plate at elevated temperature[J]. Acta Materiae Compositae Sinica,2021,38(12):4073-4089(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210311.005 [26] YU T, FERNANDO D, TENG J G, et al. Experimental study on CFRP-to-steel bonded interfaces[J]. Composites Part B: Engineering,2012,43(5):2279-2289. doi: 10.1016/j.compositesb.2012.01.024 [27] 中国国家标准化管理委员会. 树脂浇铸体性能试验方法: GB/T 2567—2021[S]. 北京: 中国标准出版社, 2021.Standardization Administration of the People's Republic of China. Test methods for properties of resin casting body: GB/T 2567—2021[S]. Beijing: China Standards Press, 2021(in Chinese). [28] 中国国家标准化管理委员会. 胶粘剂 拉伸剪切强度的测定(刚性材料对刚性材料): GB/T 7124—2008[S]. 北京: 中国标准出版社, 2008.Standardization Administration of the People's Republic of China. Adhesives—Determination of tensile lap-shear strength of rigid-to-rigid bonded assemblies: GB/T 7124—2008[S]. Beijing: China Standards Press, 2008(in Chinese). [29] American Society for Testing and Materials. Standard test method for strength properties of double lap shear adhesive joints by tension loading: ASTM D3528-96[S]. West Conshohocken: ASTM, 2008. [30] 李腾, 宁志华, 吴嘉瑜. CFRP加固钢板的粘结界面剥离破坏[J]. 复合材料学报, 2021, 38(12):4090-4105.LI Teng, NING Zhihua, WU Jiayu. Interfacial debonding failure of CFRP-strengthened steel structures[J]. Acta Materiae Compositae Sinica,2021,38(12):4090-4105(in Chinese).