留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无机增殖剂对PE/ECC力学、抗氯离子渗透及自愈合性能的影响

谭燕 龙雄 余江滔 赵犇

谭燕, 龙雄, 余江滔, 等. 无机增殖剂对PE/ECC力学、抗氯离子渗透及自愈合性能的影响[J]. 复合材料学报, 2024, 41(2): 937-951. doi: 10.13801/j.cnki.fhclxb.20230614.005
引用本文: 谭燕, 龙雄, 余江滔, 等. 无机增殖剂对PE/ECC力学、抗氯离子渗透及自愈合性能的影响[J]. 复合材料学报, 2024, 41(2): 937-951. doi: 10.13801/j.cnki.fhclxb.20230614.005
TAN Yan, LONG Xiong, YU Jiangtao, et al. Effect of capillary crystalline cement additive on the mechanical, anti-chloride ion permeability, and self-healing properties of PE/ECC[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 937-951. doi: 10.13801/j.cnki.fhclxb.20230614.005
Citation: TAN Yan, LONG Xiong, YU Jiangtao, et al. Effect of capillary crystalline cement additive on the mechanical, anti-chloride ion permeability, and self-healing properties of PE/ECC[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 937-951. doi: 10.13801/j.cnki.fhclxb.20230614.005

无机增殖剂对PE/ECC力学、抗氯离子渗透及自愈合性能的影响

doi: 10.13801/j.cnki.fhclxb.20230614.005
基金项目: 国家自然科学基金(51978504)
详细信息
    通讯作者:

    谭燕,工学博士,副教授,硕士生导师,研究方向为工程材料与结构力学及耐久性能 E-mail: tanyan@hbut.edu.cn

  • 中图分类号: TB332

Effect of capillary crystalline cement additive on the mechanical, anti-chloride ion permeability, and self-healing properties of PE/ECC

Funds: National Natural Science Foundation of China (51978504)
  • 摘要: 为研究无机增殖剂(CCCA)对聚乙烯(PE)纤维增强高延性水泥基复合材料(ECC)力学、抗氯离子渗透及自愈合性能的影响,以PE/ECC为对照组,分别掺入不同质量分数的CCCA (2wt%、4wt%、6wt%、8wt%、10wt%),通过抗压、抗折、抗拉、电通量法及预加应变损伤法对PE/ECC力学、抗氯离子渗透及自愈合性能进行研究,并利用XRD、SEM-EDS对其自愈合产物进行物相成分、微观形貌及元素组成分析。结果表明:随着CCCA掺量的增加,PE/ECC力学和抗氯离子渗透性能呈先增后减趋势,当CCCA掺量为4wt%时,CCCA对PE/ECC力学和抗氯离子渗透性能整体提升最为明显,抗压、抗折、极限抗拉强度分别提升了55.5%、10.8%、79.4%,极限拉应变变化不大,电通量下降了38.6%。自愈合试验表明,掺入CCCA后,PE/ECC抗拉强度和应变能的恢复率有明显提升,自愈合性能得到了增强。当预损伤应变为0.5%时,掺CCCA的PE/ECC试件抗拉强度和应变能在养护84天后均高于原始基体,较原始基体分别提高10.41%和2.83%。未掺CCCA的PE/ECC试件在3种应变损伤下的抗拉强度和应变能均低于原始基体。XRD和SEM-EDS结果显示,掺CCCA的PE/ECC水化产物中CaCO3、水化硅酸钙(C-S-H)、钙矾石(AFt)衍射峰值强度有所增长,自愈合产物主要是C-S-H晶体,且掺CCCA的PE/ECC中分布更密集。

     

  • 图  1  狗骨试样尺寸

    Figure  1.  Dimensions of dogbone-shaped specimen

    图  2  试样预加载曲线

    Figure  2.  Preloading curves of specimens

    图  3  电通量法试验图

    Figure  3.  Test diagram of electric flux method

    图  4  不同CCCA掺量的PE/ECC破坏形态

    Figure  4.  PE/ECC failure morphologies with varying CCCA contents

    图  5  不同CCCA掺量的PE/ECC抗压(a)、抗折强度(b)

    Figure  5.  Compressive (a) and flexural strength (b) of PE/ECC with varying CCCA contents

    图  6  不同CCCA掺量的PE/ECC直接拉伸应力-应变曲线

    Figure  6.  Direct tensile stress-strain curves of PE/ECC with varying CCCA contents

    图  7  不同CCCA掺量的PE/ECC抗氯离子性能

    Figure  7.  Anti-chloride ion permeability of PE/ECC with varying CCCA contents

    图  8  不同预损伤PE/ECC试件的拉伸应力-应变曲线

    Figure  8.  Tensile stress-strain curves of the different pre-damage PE/ECC specimens

    The labels represent group (A/S)-the pre-loaded strain level-curing time-pre-loaded (Pre)/re-loaded after healing (Re); e.g. A-0.5%-14Re means the specimen in group A with pre-loaded strain of 0.5% is re-loaded after 14 days of self-healing

    图  9  预损愈合试件二次加载应力(σ)-应变(ε)曲线简化图

    Figure  9.  Simplified stress (σ)-strain (ε) curve of pre-damage healing specimen under secondary loading

    图  10  不同PE/ECC试件的拉伸性能参数:((a), (b))抗拉强度;((c), (d))应变能

    Figure  10.  Characteristics of tensile properties for different PE/ECC specimens: ((a), (b)) Tensile strength; ((c), (d)) Strain energy

    图  11  CCCA-PE/ECC和PE/ECC试件裂缝形貌

    Figure  11.  Microcracks morphology on surface of CCCA-PE/ECC and PE/ECC specimens

    图  12  CCCA、PE/ECC和CCCA-PE/ECC试样裂缝自愈合生成物XRD图谱

    C-S-H—Calcium silicate hydrate; AFt—Ettringite; CH—Ca(OH)2

    Figure  12.  XRD patterns of crack self-healing products from CCCA, PE/ECC and CCCA-PE/ECC specimens

    图  13  PE/ECC和CCCA-PE/ECC愈合裂纹愈合产物的SEM图像和EDS图谱

    Figure  13.  SEM images and EDS patterns of healing products in healed crack of PE/ECC and CCCA-PE/ECC

    表  1  聚乙烯(PE)纤维性能指标

    Table  1.   Polyethylene (PE) fiber performance index

    Density/
    (g·cm−3)
    Diameter/
    mm
    Length/
    mm
    Elastic modulus/
    GPa
    0.970.02518116
    Note: SJ—Sealant for joints.
    下载: 导出CSV

    表  2  无机增殖剂(CCCA)化学组成

    Table  2.   Chemical composition of capillary crystalline cement additive (CCCA)

    SiO2/wt%Al2O3/wt%Fe2O3/wt%CaO/wt%MgO/wt%HF/wt%NaCl/wt%SJ/wt%Loss/wt%
    73.4512.503.52.01.51.80.0153.002.235
    下载: 导出CSV

    表  3  PE/高延性水泥基复合材料(ECC) 配合比

    Table  3.   Mix proportions of PE/engineered cementitious composites (ECC)

    Sand/(kg·m−3)Cement/(kg·m−3)Fly ash/(kg·m−3)Water/(kg·m−3)HRWR/(kg·m−3)Fiber/(kg·m−3)CCCA/(kg·m−3)
    474.4593.0711.6313.14.019.0 0.0
    474.4593.0711.6313.14.019.0 26.1
    474.4593.0711.6313.14.019.0 52.2
    474.4593.0711.6313.14.019.0 78.3
    474.4593.0711.6313.14.019.0104.4
    474.4593.0711.6313.14.019.0130.5
    Note: HRWR—High range water reducer.
    下载: 导出CSV

    表  4  抗拉自愈合试验分组

    Table  4.   Test grouping of tensile self-healing specimen

    SpecimenPreloading levelCuring time/d
    S-PL-CT0.5%/1%/2%14/28/56/84
    A-PL-CT0.5%/1%/2%14/28/56/84
    Notes: S and A—Experimental group and the control group; PL—Preloading level; CT—Curing time.
    下载: 导出CSV

    表  5  PE/ECC试件拉伸应变云图

    Table  5.   Strain nephograms of PE/ECC tensile specimens

    CCCA contentInitial stage of strain hardeningMiddle stage of strain hardeningStrain softening stage
    0wt%
    2wt%
    4wt%
    6wt%
    8wt%
    10wt%
    下载: 导出CSV
  • [1] ZHANG D, WU H, LI V C, et al. Autogenous healing of engineered cementitious composites (ECC) based on MgO-fly ash binary system activated by carbonation curing[J]. Construction and Building Materials,2020,238:117672. doi: 10.1016/j.conbuildmat.2019.117672
    [2] YUNOVICH M, THOMPSON N G. Corrosion of highway bridges: Economic impact and control methodologies[J]. Concrete International,2003,25(1):52-57.
    [3] BETTIGOLE N H. Rebuilding our bridges-why and how[J]. ASTM Standardization News,1994,22:24-27.
    [4] LI V C, MISHRA D K, WU H C. Matrix design for pseudo-strain-hardening fibre reinforced cementitious compo-sites[J]. Materials and Structures,1995,28(10):586-595. doi: 10.1007/BF02473191
    [5] LI V C, LEUNG C K Y. Steady-state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics,1992,118(11):2246-2264. doi: 10.1061/(ASCE)0733-9399(1992)118:11(2246)
    [6] LI V C, STANG H, KRENCHEL H. Micromechanics of crack bridging in fiber-reinforced concrete[J]. Materials and Structures,1993,26(8):486-494. doi: 10.1007/BF02472808
    [7] ZHANG Z, QIAN S, MA H, et al. Investigating mechanical properties and self-healing behavior of micro-cracked ECC with different volume of fly ash[J]. Construction and Building Materials,2014,52(1):17-23.
    [8] YANG Y, LEPECH M D, YANG E H, et al. Autogenous healing of engineered cementitious composites under wet-dry cycles[J]. Cement and Concrete Research,2009,39(5):382-390. doi: 10.1016/j.cemconres.2009.01.013
    [9] LI V C. On engineered cementitious composites (ECC) a review of the material and its applications[J]. Journal of Advanced Concrete Technology,2003,1(3):215-230. doi: 10.3151/jact.1.215
    [10] ZHANG C, LU R, LI Y, et al. Effect of crystalline admixtures on mechanical, self-healing and transport properties of engineered cementitious composite[J]. Cement and Concrete Composites,2021,124:104256. doi: 10.1016/j.cemconcomp.2021.104256
    [11] SAHMARAN M, YILDIRIM G, ERDEM T K. Self-healing capability of cementitious composites incorporating different supplementary cementitious materials[J]. Cement and Concrete Composites, 2013, 35(1): 89-101.
    [12] 荣耀. 海底隧道衬砌裂缝控制关键技术研究[D]. 上海: 同济大学, 2007.

    RONG Yao. The research on the key technology of the crack controlling of reinforced concrete lining of undersea tunnel[D]. Shanghai: Tongji University, 2007(in Chinese).
    [13] WU B, OU Y. Experimental study on tunnel lining joints temporarily strengthened by SMA bolts[J]. Smart Materials and Structures,2014,23(12):125018. doi: 10.1088/0964-1726/23/12/125018
    [14] DRY C. Matrix cracking repair and filling using active and passive modes for smart timed release of chemicals from fibers into cement matrices[J]. Smart Materials and Structures,1994,3(2):118-123. doi: 10.1088/0964-1726/3/2/006
    [15] DRY C. Procedures developed for self-repair of polymer matrix composite materials[J]. Composite Structures,1996,35(3):263-269. doi: 10.1016/0263-8223(96)00033-5
    [16] DRY C, MCMILLAN W. Three-part methylmethacrylate adhesive system as an internal delivery system for smart responsive concrete[J]. Smart Materials and Structures,1996,5(3):297-300. doi: 10.1088/0964-1726/5/3/007
    [17] DONG B, FANG G, WANG Y, et al. Performance recovery concerning the permeability of concrete by means of a microcapsule based self-healing system[J]. Cement and Concrete Composites,2017,78:84-96. doi: 10.1016/j.cemconcomp.2016.12.005
    [18] WHITE S R, SOTTOS N R, GEUBELLE P H, et al. Autonomic healing of polymer composites[J]. Nature,2001,409:794-797. doi: 10.1038/35057232
    [19] BOH B, SUMIGA B. Microencapsulation technology and its applications in building construction materials[J]. RMZ-Materials and Geoenvironment,2008,55:329-344.
    [20] JIANG J, LI J, LI W. Preparation and characterization of autolytic mineral microsphere for self-healing cementitious materials[J]. Cement and Concrete Composites,2019,103:112-120. doi: 10.1016/j.cemconcomp.2019.04.004
    [21] IONKERS H M, THIJSSEN A, MUYZER G, et al. Application of bacteria as self-healing agent for the development of sustainable concrete[J]. Ecological Engineering,2010,36(2):230-235. doi: 10.1016/j.ecoleng.2008.12.036
    [22] DICK J, WINDT W D, GRAEF B D, et al. Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species[J]. Biodegradation,2006,17(4):357-367. doi: 10.1007/s10532-005-9006-x
    [23] XU J, YAO W. Multiscale mechanical quantification of self-healing concrete incorporating non-ureolytic bacteria-based healing agent[J]. Cement and Concrete Research,2014,64:1-10. doi: 10.1016/j.cemconres.2014.06.003
    [24] LING H, QIAN C. Effects of self-healing cracks in bacterial concrete on the transmission of chloride during electromigration[J]. Construction and Building Materials,2017,144:406-411. doi: 10.1016/j.conbuildmat.2017.02.160
    [25] TERMKHAJORNKIT P, NAWA T, YAMASHIRO Y, et al. Self-healing ability of fly ash-cement systems[J]. Cement and Concrete Composites,2009,31(3):195-203. doi: 10.1016/j.cemconcomp.2008.12.009
    [26] NA S H, HAMA Y, TANIGUCHI M, et al. Experimental investigation on reaction rate and self-healing ability in fly ash blended cement mixtures[J]. Journal of Advanced Concrete Technology,2012,10(7):240-253. doi: 10.3151/jact.10.240
    [27] SISOMPHON K, COPUROGLU O, KOENDERS E A B. Self-healing of surface cracks in mortars with expansive additive and crystalline additive[J]. Cement and Concrete Composites,2012,34(4):566-574. doi: 10.1016/j.cemconcomp.2012.01.005
    [28] HUANG H, YE G. Simulation of self-healing by further hydration in cementitious materials[J]. Cement and Concrete Composites,2012,34(4):460-467. doi: 10.1016/j.cemconcomp.2012.01.003
    [29] TITTELBOOM V K, BELIE N D. Self-healing in cementitious materials—A review[J]. Materials,2013,6(6):2182-2217. doi: 10.3390/ma6062182
    [30] LI V C, HERBERT E. Robust self-healing concrete for sustainable infrastructure[J]. Journal of Advanced Concrete Technology,2012,10(6):207-218. doi: 10.3151/jact.10.207
    [31] OZBAY E, SAHMARAN M, LACHEMI M, et al. Self-healing of microcracks in high-volume fly-ash-incorporated engi-neered cementitious composites[J]. ACI Materials Journal,2013,110(1):33-43.
    [32] HUNG C C, SU Y F, HUNG H H. Impact of natural weathering on medium-term self-healing performance of fiber reinforced cementitious composites with intrinsic crack-width control capability[J]. Cement and Concrete Composites,2017,80:200-209. doi: 10.1016/j.cemconcomp.2017.03.018
    [33] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese).
    [34] 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Architecture & Building Press, 2009(in Chinese).
    [35] NIU Y, WEI J, JIAO C. Crack propagation behavior of ultra-high-performance concrete (UHPC) reinforced with hybrid steel fibers under flexural loading[J]. Construction and Building Materials,2021,294:123510. doi: 10.1016/j.conbuildmat.2021.123510
    [36] KAN L, WANG F, ZHANG Z, et al. Mechanical properties of high ductile alkali-activated fiber reinforced composites with different curing ages[J]. Construction and Building Materials,2021,306:124833. doi: 10.1016/j.conbuildmat.2021.124833
    [37] JIANG J, ZHENG X, WU S, et al. Nondestructive experimental characterization and numerical simulation on self-healing and chloride ion transport in cracked ultra-high performance concrete[J]. Construction and Building Materials,2019,198:696-709. doi: 10.1016/j.conbuildmat.2018.11.054
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  469
  • HTML全文浏览量:  237
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-30
  • 修回日期:  2023-05-24
  • 录用日期:  2023-05-27
  • 网络出版日期:  2023-06-15
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回