留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

316L表面激光熔覆NiTi合金涂层的组织结构及元素占位

丰玉强 胡正飞

丰玉强, 胡正飞. 316L表面激光熔覆NiTi合金涂层的组织结构及元素占位[J]. 复合材料学报, 2024, 41(2): 1030-1037. doi: 10.13801/j.cnki.fhclxb.20230614.003
引用本文: 丰玉强, 胡正飞. 316L表面激光熔覆NiTi合金涂层的组织结构及元素占位[J]. 复合材料学报, 2024, 41(2): 1030-1037. doi: 10.13801/j.cnki.fhclxb.20230614.003
FENG Yuqiang, HU Zhengfei. Research on microstructure and site preference of NiTi alloy coating on 316L by laser cladding[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 1030-1037. doi: 10.13801/j.cnki.fhclxb.20230614.003
Citation: FENG Yuqiang, HU Zhengfei. Research on microstructure and site preference of NiTi alloy coating on 316L by laser cladding[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 1030-1037. doi: 10.13801/j.cnki.fhclxb.20230614.003

316L表面激光熔覆NiTi合金涂层的组织结构及元素占位

doi: 10.13801/j.cnki.fhclxb.20230614.003
基金项目: 国家自然科学基金(51971163)
详细信息
    通讯作者:

    胡正飞,博士,教授,博士生导师,研究方向为高强度轻量化金属材料和复合材料 E-mail: huzhengf@tongji.edu.cn

  • 中图分类号: TG111;TB331

Research on microstructure and site preference of NiTi alloy coating on 316L by laser cladding

Funds: National Natural Science Foundation of China (51971163)
  • 摘要: 60 NiTi (60wt%Ni-40wt%Ti)合金具有高硬度、高弹性模量及优异的耐磨和耐腐蚀性能,在许多领域有潜在的应用价值。本文对激光熔覆方法在316L不锈钢表面制备NiTi涂层的微观组织结构和物相组成进行了分析。结果表明:基材中主要成分Fe和Cr扩散到熔覆涂层中并显著地影响了镍钛涂层的组织结构和性能。熔覆涂层主要组成相为NiTi和Ni3Ti,提高Ni含量可抑制NiTi2析出。第一性原理计算结果显示,Fe和Cr元素易于固溶在B2结构的NiTi相中,并且都倾向于置换晶胞中的Ni原子。Ni3Ti晶胞结构中的Ni和Ti原子各有2个不同的晶位,Fe原子倾向于置换晶胞中Ni-1晶位的Ni原子,而Cr原子倾向于置换晶胞中Ni-2晶位的Ni原子。根据涂层的成分分析结合模拟可知,镍钛合金涂层中NiTi和Ni3Ti相的化学式分别为Ni5Ti8Fe2Cr和Ni9Ti4Fe2Cr。

     

  • 图  1  IPG YLS-10000激光熔覆设备:(a) 设备全貌;(b) 激光熔覆过程示意图

    Figure  1.  IPG YLS-10000 laser equipment: (a) Overview of the equipment; (b) Schematic diagram of the laser cladding process

    图  2  熔覆涂层表面形貌及截面金相图:(a) 55 NiTi涂层;(b) 60 NiTi涂层

    Figure  2.  Surface morphology and cross-section metallography of the coatings: (a) 55 NiTi coating; (b) 60 NiTi coating

    图  3  60 NiTi和55 NiTi两种熔覆涂层的XRD图谱

    Figure  3.  XRD patterns of the 60 NiTi and 55 NiTi coating

    图  4  熔覆涂层中部微观形貌图:(a) 55 NiTi涂层;(b) 60 NiTi涂层

    Figure  4.  Microstructure of the coating middle area: (a) 55 NiTi coating; (b) 60 NiTi coating

    图  5  铁镍钛三元合金系在1000℃的等温截面图

    Figure  5.  Isothermal section of the Fe-Ni-Ti ternary system phase diagram at 1000℃

    图  6  55 NiTi和60 NiTi熔覆层里NiTi相和Ni3Ti相中Ni、Ti、Fe和Cr原子占比

    Figure  6.  Atomic proportion of Ni, Ti, Fe and Cr in NiTi phase and Ni3Ti phase of 55 NiTi coating and 60 NiTi coating

    图  7  晶胞结构示意图:(a) NiTi体心立方结构;(b) Ni3Ti密排六方晶体结构

    Figure  7.  Schematic diagram of the crystal structure: (a) NiTi crystal with bcc structure; (b) Ni3Ti crystal with close-packed hexagonal structure

    图  8  NiTi晶胞结构示意图:(a)置换前;(b)置换后

    Figure  8.  Schematic diagram of NiTi crystal structure: (a) Before substitution; (b) After substitution

    图  9  Ni3Ti晶胞中原子位置示意图:(a) 三维透视图;(b) 俯视图

    Figure  9.  Atom position in the Ni3Ti crystal structure: (a) 3D perspective view; (b) Vertical view

    图  10  单个Fe和Cr原子置换Ni3Ti中的Ni和Ti原子后形成能

    Figure  10.  Formation energy after substitution of single Fe and Cr atom to replace Ni and Ti atom in the Ni3Ti crystal

    图  11  置换后晶胞示意图:(a) Ni5Ti8Fe2Cr;(b) Ni9Ti4Fe2Cr

    Figure  11.  Schematic diagram of crystal structure after substitution: (a) Ni5Ti8Fe2Cr; (b) Ni9Ti4Fe2Cr

    表  1  基体材料316L不锈钢的化学成分

    Table  1.   Chemical composition of 316L stainless steel substrate

    ElementFeCrNiMoMnSiPCS
    Mass fraction/wt%Balance16.32010.1202.0400.9200.3400.0260.0160.015
    下载: 导出CSV

    表  2  Ni粉末和55 NiTi合金粉末的化学成分

    Table  2.   Chemical composition of Ni and 55 NiTi powders

    ElementNiTiFeNbCoCSiO
    Mass fraction of
    Ni powder/wt%
    Balance0.0030.0200.0200.0030.006
    Mass fraction of 55 NiTi powder/wt%56.460Balance0.0050.0100.0050.0050.037
    下载: 导出CSV

    表  3  激光熔覆工艺参数

    Table  3.   Process parameters for laser cladding

    ParameterValue
    Laser power/kW2.0
    Scan speed/(mm·s–1)2.0
    Laser beam spot diameter/mm7.2
    Working distance/mm10
    Overlap ratio/%55
    Powder feed rate/(r·min–1)50
    Carrier gas flow rate/(L·min–1)8
    Shielding gas flow rate/(L·min–1)5
    下载: 导出CSV

    表  4  图4中标出点位的EDS扫描结果

    Table  4.   EDS scanning results for positions marked in Fig.4

    CoatingPositionNi/at%Ti/at%Fe/at%Cr/at%Major phase
    55 NiTi 1 35.34 41.28 15.63 7.75 NiTi
    2 59.59 25.74 10.32 4.35 Ni3Ti
    3 45.10 34.77 14.52 5.61 Ni3Ti + NiTi
    60 NiTi 4 38.48 42.89 13.42 5.21 NiTi
    5 61.63 23.27 9.26 5.84 Ni3Ti
    6 50.08 30.34 16.33 3.25 Ni3Ti + NiTi
    下载: 导出CSV

    表  5  NiTi相和Ni3Ti相的晶胞结构和原子位置

    Table  5.   Crystal structure and atom position of the NiTi and Ni3Ti phase

    CompoundLattice categoryLattice parameterAtomPosition
    NiTiSP No.221a=b=c=0.3005 nmNi1a
    α=β=γ=90°Ti1b
    Ni3TiSP No.194a=b=0.5096 nmNi-16g
    c=0.8304 nmNi-26h
    α=β=90°Ti-12a
    γ=120°Ti-22c
    下载: 导出CSV

    表  6  Ni、Ti、Fe和Cr的原子半径及其电负性

    Table  6.   Atom radius and its electronegativity of Ni, Ti, Fe and Cr atom

    ElementAtomic radius/nmAtomic electronegativity/eV
    Ni0.1251.91
    Ti0.1451.54
    Fe0.1241.83
    Cr0.1251.66
    下载: 导出CSV

    表  7  Ni3Ti相晶胞中原子坐标

    Table  7.   Atom coordinates in Ni3Ti crystal structure

    CompoundAtomxyz
    Ni3TiNi-10.500
    Ni-20.83330.66670.25
    Ti-1000
    Ti-20.33330.66670.25
    下载: 导出CSV

    表  8  Fe和Cr原子置换后Ni3Ti晶胞的晶格常数

    Table  8.   Lattice parameters of Ni3Ti crystal after substitution of Fe and Cr atom

    AtomReplaced positionCompositiona/nmb/nmc/nm
    Fe Ni-1 Ni11Ti4Fe 0.5118 0.4418 0.8316
    Ni-2 Ni11Ti4Fe 0.5116 0.4419 0.8317
    Ti-1 Ni12Ti3Fe 0.5068 0.4388 0.8286
    Ti-2 Ni12Ti3Fe 0.5060 0.4385 0.8281
    Cr Ni-1 Ni11Ti4Cr 0.5122 0.4434 0.8357
    Ni-2 Ni11Ti4Cr 0.5129 0.4443 0.8377
    Ti-1 Ni12Ti3Cr 0.5088 0.4407 0.8293
    Ti-2 Ni12Ti3Cr 0.5085 0.4404 0.8293
    下载: 导出CSV

    表  9  Fe和Cr原子在NiTi和Ni3Ti结构中的原子占比

    Table  9.   Atomic proportion of Fe and Cr atom in NiTi and Ni3Ti crystal structure after substitution

    PhaseComposition after substitutionNi/at%Ti/at%Fe/at%Cr/at%
    NiTi (B2)Ni5Ti8Fe2Cr31.2550.0012.506.25
    Ni3TiNi9Ti4Fe2Cr56.2525.0012.506.25
    下载: 导出CSV

    表  10  Fe和Cr原子置换后的形成能及晶格常数

    Table  10.   Formation energy and lattice parameters after substitution of Fe and Cr atoms

    CrystalCompositionFormation
    energy/eV
    a/nmb/nmc/nm
    NiTi (B2)Ni5Ti8Fe2Cr−0.32860.59620.59620.6007
    Ni3TiNi9Ti4Fe2Cr−0.30500.51280.44320.8362
    下载: 导出CSV
  • [1] HASSAN M, MEHRPOUYA M, DAWOOD S. Review of the machining difficulties of nickel-titanium based shape memory alloys[J]. Advances in Mechanical and Manufacturing Engineering, 2014 , 564 : 533-537.
    [2] VELMURUGAN C, SENTHILKUMAR V, DINESH S, et al. Review on phase transformation behavior of NiTi shape memory alloys[J]. Materials Today: Proceedings,2018,5(6):14597-14606. doi: 10.1016/j.matpr.2018.03.051
    [3] WANG X, KUSTOV S, VAN HUMBEECK J. A short review on the microstructure, transformation behavior and functional properties of NiTi shape memory alloys fabricated by selective laser melting[J]. Materials (Basel),2018,11(9):1683. doi: 10.3390/ma11091683
    [4] 王本力. 镍钛形状记忆合金的研究及其应用进展[J]. 新材料产业, 2021, 4(4):28-31.

    WANG Benli. Research and application progress of NiTi shape memory alloys[J]. Advanced Materials Industry,2021,4(4):28-31(in Chinese).
    [5] 杨建楠, 黄彬, 谷小军, 等. 形状记忆合金力学行为与应用综述[J]. 固体力学学报, 2021, 42(4):345-375.

    YANG Jiannan, HUANG Bin, GU Xiaojun, et al. A review of shape memory alloys: Mechanical behaviour and application[J]. Chinese Journal of Solid Mechanics,2021,42(4):345-375(in Chinese).
    [6] SABURI T, YOSHIDA M, NENNO S. Deformation behavior of shape memory TiNi alloy crystals[J]. Scripta Metallurgica,1984,18(4):363-366. doi: 10.1016/0036-9748(84)90453-8
    [7] ELAHINIA M, SHAYESTEH MOGHADDAM N, TAHERI ANDANI M, et al. Fabrication of NiTi through additive manufacturing: A review[J]. Progress in Materials Science,2016,83:630-663. doi: 10.1016/j.pmatsci.2016.08.001
    [8] 任虔弘, 陈超越, 卢战军, 等. 激光选区熔化制备镍钛合金的研究进展[J]. 材料研究与应用, 2021, 15(3):276-286. doi: 10.3969/j.issn.1673-9981.2021.03.013

    REN Qianhong, CHEN Chaoyue, LU Zhanjun, et al. Progress in the preparation of NiTi alloy by selective laser melting[J]. Materials Research and Application,2021,15(3):276-286(in Chinese). doi: 10.3969/j.issn.1673-9981.2021.03.013
    [9] 郭绍庆, 刘伟, 黄帅, 等. 金属激光增材制造技术发展研究[J]. 中国工程科学, 2020, 22(3):56-62.

    GUO Shaoqing, LIU Wei, HUANG Shuai, et al. Development of laser additive manufacturing technology for metals[J]. Strategic Study of Chinese Academy of Engi-neering,2020,22(3):56-62(in Chinese).
    [10] FENG Y, DU Z, HU Z. Study on the effect of Ni addition on the microstructure and properties of NiTi alloy coating on AISI 316L prepared by laser cladding[J]. Materials,2021,14(16):4373. doi: 10.3390/ma14164373
    [11] DU Z, HU Z, FENG Y, et al. The effect of powder composition on the microstructure and corrosion resistance of laser cladding 60 NiTi alloy coatings on SS 316L[J]. Metals,2021,11(7):1104. doi: 10.3390/met11071104
    [12] 肖斌, 吴雨沁, 刘轶. 基于第一性原理计算的镍基单晶高温合金掺杂的机器学习研究[J]. 上海金属, 2020, 42(3):97-104, 110.

    XIAO Bin, WU Yuqin, LIU Yi. Machine learning on doping of nickel-base single crystal superalloy based on first-principles calculation[J]. Shanghai Metals,2020,42(3):97-104, 110(in Chinese).
    [13] OHNO K, TSUCHIYA M, KUWAHARA R, et al. Study on Ni-Ti alloys around equiatomic composition by the first-principles phase field method [J]. Computational Materials Science, 2021, 191: 110284.
    [14] 孙浚晞, 杜婉, 肖斌, 等. 镍基单晶高温合金多组元置换的第一性原理研究[J]. 上海金属, 2021, 43(6):92-102.

    SUN Junxi, DU Wan, XIAO Bin, et al. First-principles study of multiple component subsititution in nickel-based single crystal superalloy[J]. Shanghai Metals,2021,43(6):92-102(in Chinese).
    [15] 席蒙, 尚家香. 过渡元素掺杂NiTi合金的第一性原理研究[J]. 稀有金属材料与工程, 2016, 45(8):2041-2045.

    XI Meng, SHANG Jiaxiang. First principle study on NiTi alloyed with transition elements[J]. Rare Metal Materials and Engineering,2016,45(8):2041-2045(in Chinese).
    [16] YIN J Y, LI G F, SI Y L, et al. Micromechanism of Cu and Fe alloying process on the martensitic phase transformation of NiTi-based alloys: First-principles calculation[J]. Jour-nal of Structural Chemistry,2016,56(6):1051-1057.
    [17] OKAMOTO H, OKAMOTO H. Phase diagrams for binary alloys[M]. Ohio: ASM International Materials Park, 2000.
    [18] DUARTE L I, KLOTZ U E, LEINENBACH C, et al. Experimental study of the Fe-Ni-Ti system[J]. Intermetallics,2010,18(3):374-384. doi: 10.1016/j.intermet.2009.08.008
    [19] 李梦龙. 化学数据速查手册[Z]. 北京: 化学工业出版社. 2003.

    LI Menglong. Concise handbook of chemical China[Z]. Beijing: Chemical Industry Press, 2003(in Chinese).
    [20] 陈志伟, 敬云兵, 甘春雷, 等. Fe含量对等原子比NiTi形状记忆合金微观组织、相变行为和显微硬度的影响[J]. 材料研究与应用, 2021, 15(2):118-124. doi: 10.3969/j.issn.1673-9981.2021.02.006

    CHEN Zhiwei, JING Yunbing, GAN Chunlei, et al. Effect of Fe content on microstructure, phase transformation bevaviour and microhardness of the equiatomic NiTi shape memory alloy[J]. Materials Research and Application,2021,15(2):118-124(in Chinese). doi: 10.3969/j.issn.1673-9981.2021.02.006
    [21] BOZZOLO G, NOEBE R D, MOSCA H O. Site preference of ternary alloying additions to NiTi: Fe, Pt, Pd, Au, Al, Cu, Zr and Hf[J]. Journal of Alloys and Compounds,2005,389(1-2):80-94. doi: 10.1016/j.jallcom.2004.07.051
    [22] 张磊, 李世春. Ni-Ti系金属间化合物的电子结构与结合能计算[J]. 材料导报, 2011, 25(10):126-130.

    ZHANG Lei, LI Shichun. Calculations of valence electron structure and cohesive energy for intermetallic compounds in Ni-Ti alloys[J]. Materials Reports,2011,25(10):126-130(in Chinese).
  • 加载中
图(11) / 表(10)
计量
  • 文章访问数:  616
  • HTML全文浏览量:  238
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-26
  • 修回日期:  2023-05-24
  • 录用日期:  2023-05-26
  • 网络出版日期:  2023-06-14
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回