留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米C-S-H-PCE对免蒸养高强混凝土性能的影响

付华 王鹏刚 田砾 唐兴滨 赵铁军

付华, 王鹏刚, 田砾, 等. 纳米C-S-H-PCE对免蒸养高强混凝土性能的影响[J]. 复合材料学报, 2024, 41(1): 333-347. doi: 10.13801/j.cnki.fhclxb.20230612.003
引用本文: 付华, 王鹏刚, 田砾, 等. 纳米C-S-H-PCE对免蒸养高强混凝土性能的影响[J]. 复合材料学报, 2024, 41(1): 333-347. doi: 10.13801/j.cnki.fhclxb.20230612.003
FU Hua, WANG Penggang, TIAN Li, et al. Effect of nano C-S-H-PCE on the properties of high-strength non-steam-cured concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 333-347. doi: 10.13801/j.cnki.fhclxb.20230612.003
Citation: FU Hua, WANG Penggang, TIAN Li, et al. Effect of nano C-S-H-PCE on the properties of high-strength non-steam-cured concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 333-347. doi: 10.13801/j.cnki.fhclxb.20230612.003

纳米C-S-H-PCE对免蒸养高强混凝土性能的影响

doi: 10.13801/j.cnki.fhclxb.20230612.003
基金项目: 国家自然科学基金 (52278263)
详细信息
    通讯作者:

    王鹏刚,博士,副教授,博士生导师,研究方向为混凝土结构耐久性、性能评估与寿命预测 E-mail: wangpenggang007@163.com

  • 中图分类号: TU377.2;TB332

Effect of nano C-S-H-PCE on the properties of high-strength non-steam-cured concrete

Funds: National Natural Science Foundation of China (52278263)
  • 摘要: 针对蒸汽养护易引起混凝土初始损伤及耐久性差等问题。本文采用纳米水化硅酸钙-聚羧酸醚复合材料(n-C-S-H-PCE)制备免蒸养高强混凝土。通过水化热、低场核磁等试验研究了n-C-S-H-PCE对混凝土抗压强度、水化速率、孔径分布、自收缩及耐久性的影响。结果表明:纳米水化硅酸钙(C-S-H)晶核为水化产物提供了成核位点,降低了成核的临界离子浓度Ksp,诱导期和加速期显著提前,显著提高了混凝土早期抗压强度,1天混凝土抗压强度提高64%,且28天以后混凝土没有发生强度倒缩。掺入n-C-S-H-PCE后,混凝土基体孔径细化,凝胶孔和毛细孔比例均增加,导致混凝土自干燥过程中毛细孔负压增大,增大混凝土自收缩;然而,混凝土基体的最可几孔径和50~100 nm孔隙累计体积降低,提高了混凝土的抗氯离子侵蚀性能;孔径大于14 nm (临界孔径)的孔隙含量降低(由0.0287 mL/g降低到0.0156 mL/g),从而提高了混凝土的抗冻性能;此外,掺入n-C-S-H-PCE后,混凝土孔隙率降低,且随着矿粉掺量的增加,铝酸钙相和Ca2+的浓度降低,混凝土抗硫酸盐侵蚀能力提高。该研究为免蒸养、低收缩、高耐久、高强混凝土制备与应用提供了理论依据。

     

  • 图  1  混凝土毛细管负压试验

    Figure  1.  Test of negative capillary pressure of concrete

    图  2  试验设备

    Figure  2.  Test equipment

    图  3  不同纳米水化硅酸钙-聚羧酸醚(n-C-S-H-PCE)掺量的混凝土抗压强度

    Figure  3.  Compressive strength of concrete with different nano-hydrated calcium silicate polycarboxylate ether (n-C-S-H-PCE) contents

    图  4  混凝土28天抗压强度与胶凝材料总量(a)和水胶比B/W (b)的关系

    Figure  4.  Compressive strength of concrete in 28 days as functions of amount of cementitious material (a) and water-to binder ratio B/W (b)

    图  5  不同n-C-S-H-PCE掺量的水泥-矿粉净浆的水化速率(a)和累积放热量(b)

    Figure  5.  Hydration rate (a) and cumulative heat release (b) of cement-slag with different n-C-S-H-PCE contents

    图  6  不同n-C-S-H-PCE掺量的混凝土孔径分布

    Figure  6.  Pore size distribution of concrete with different n-C-S-H-PCE contents

    dV/d(lgD)—Pore volume differentiation

    图  7  不同矿粉掺量的混凝土孔径分布

    Figure  7.  Pore size distribution of concrete with different slag contents

    图  8  不同n-C-S-H-PCE掺量的混凝土毛细孔负压

    Figure  8.  Negative capillary pressure of concrete with different n-C-S-H-PCE content

    图  9  不同n-C-S-H-PCE掺量的混凝土0~30天的自收缩-湿度曲线

    Figure  9.  Autogenous shrinkage and relative humidity of concrete with different n-C-S-H-PCE content during 0-30 days

    图  10  混凝土自收缩与相对湿度(lnRH)的关系

    Figure  10.  Relationship between of autogenous shrinkage of concrete and relative humidity (lnRH)

    图  11  不同n-C-S-H-PCE掺量的混凝土氯离子扩散系数

    Figure  11.  Coefficient of chloride diffusion of concrete with different n-C-S-H-PCE contents

    图  12  混凝土50~100 nm孔径的孔累计体积

    Figure  12.  Cumulative volume of pores with diameter of 50-100 nm of concrete

    图  13  混凝土28天氯离子扩散系数D28归一化

    Figure  13.  Normalized 28 days coefficient of chloride diffusion D28 of concrete

    图  14  胶凝材料总量、W/B与混凝土D28之间的关系

    Figure  14.  Relationship among D28 of concrete, the quantity of cementitious material and W/B

    图  15  不同n-C-S-H-PCE掺量的混凝土的相对动弹性模量

    Figure  15.  Relative dynamic modulus of elasticity of concrete with different n-C-S-H-PCE contents

    图  16  不同n-C-S-H-PCE掺量的混凝土的质量损失

    Figure  16.  Mass loss of concrete with different n-C-S-H-PCE content

    图  17  混凝土孔径与冻融温度的关系

    Figure  17.  Relationship between pore diameter of concrete and freezing temperature

    图  18  孔径>14 nm的孔累计体积

    Figure  18.  Cumulative volume of pores with diameter large than 14 nm

    图  19  不同n-C-S-H-PCE掺量的混凝土的相对动弹性模量

    Figure  19.  Relative dynamic modulus of elasticity of concrete with different n-C-S-H-PCE contents

    图  20  不同n-C-S-H-PCE掺量的混凝土的质量损失

    Figure  20.  Mass loss of concrete with different n-C-S-H-PCE contents

    图  21  不同n-C-S-H-PCE掺量的混凝土的相对抗压强度

    Figure  21.  Relative compressive strength of concrete with different n-C-S-H-PCE contents

    表  1  水泥和矿粉的化学组成

    Table  1.   Chemical composition of cement and slag

    MaterialSiO2/wt%Al2O3/wt%Fe2O3/wt%CaO/wt%TiO2/wt%K2O/wt%MgO/wt%SO3/wt%Na2O/wt%
    Cement19.94 4.842.9365.710.360.812.932.280.23
    Slag30.1415.530.4341.920.840.467.852.260.56
    下载: 导出CSV

    表  2  混凝土配合比

    Table  2.   Mix proportion of concrete

    Content
    of slag
    Specimen IDBinder/ (kg·m−3)Cement/ (kg·m−3)Slag/
    (kg·m−3)
    n-C-S-H-PCE/
    (kg·m−3)
    Sand/ (kg·m−3)Aggregate/ (kg·m−3)Water-reducing
    agent/(kg·m−3)
    Water-to binder ratio
    20% R-450-20% 450 360 90 0 657 1169 6.75 0.275
    R-500-20% 500 400 100 0 637 1133 7.50 0.260
    R-550-20% 550 440 110 0 616 1095 8.25 0.252
    R-600-20% 600 480 120 0 595 1058 9.00 0.245
    30% R-450-30% 450 315 135 0 657 1169 6.75 0.275
    R-500-30% 500 350 150 0 637 1133 7.50 0.260
    R-550-30% 550 385 165 0 616 1095 8.25 0.252
    R-600-30% 600 420 180 0 595 1058 9.00 0.245
    20% N-450-20% 450 360 90 18 657 1169 5.40 0.275
    N-500-20% 500 400 100 20 637 1133 6.00 0.260
    N-550-20% 550 440 110 22 616 1095 6.60 0.252
    N-600-20% 600 480 120 24 595 1058 7.20 0.245
    30% N-450-30% 450 315 135 18 657 1169 5.40 0.275
    N-500-30% 500 350 150 20 637 1133 6.00 0.260
    N-550-30% 550 385 165 22 616 1095 6.60 0.252
    N-600-30% 600 420 180 24 595 1058 7.20 0.245
    Notes: n-C-S-H-PCE—Nano-hydrated calcium silicate polycarboxylate ether; R-450-20% refers to the mix proportion where the amount of cementitious material is 450 kg/m3, the content of slag is 20%, and n-C-S-H-PCE is not added; N-450-30% refers to the mix proportion where the amount of cementitious material is 450 kg/m3, the content of slag is 30%, and 4%n-C-S-H-PCE is added; The representation method of other mix proportion with different the amount of cementitious material is similar to the above.
    下载: 导出CSV

    表  3  不同n-C-S-H-PCE掺量的混凝土自收缩零点

    Table  3.   Time zero of autogenous shrinkage of concrete with different n-C-S-H-PCE contents

    Specimen ID Time zero
    R-450-20% 6.4
    R-600-20% 7.2
    R-450-30% 6.2
    R-600-30% 7.6
    N-450-20% 4.0
    N-600-20% 4.6
    N-450-30% 4.8
    N-600-30% 6.1
    下载: 导出CSV

    表  4  不同n-C-S-H-PCE 掺量的混凝土氯离子扩散系数的拟合参数h和相关性参数R2

    Table  4.   Fitting parameter h and relevance parameter R2 of coefficient of chloride diffusion of concrete with different n-C-S-H-PCE contents

    Sample ID h R2 Sample ID h R2
    N-450-20% 0.293 0.989 R-450-20% 0.296 0.992
    N-500-20% 0.296 0.992 R-500-20% 0.282 0.991
    N-550-20% 0.310 0.983 R-550-20% 0.246 0.982
    N-600-20% 0.369 0.985 R-600-20% 0.343 0.999
    N-450-30% 0.391 0.985 R-450-30% 0.369 0.997
    N-500-30% 0.433 0.986 R-500-30% 0.387 0.982
    N-550-30% 0.521 0.999 R-550-30% 0.384 0.981
    N-600-30% 0.534 0.997 R-600-30% 0.483 0.999
    下载: 导出CSV
  • [1] 王鹏刚, 付华, 郭腾飞, 等. 蒸汽养护混凝土变形行为及开裂风险评估[J]. 材料导报, 2022, 36(24):86-93.

    WANG Penggang, FU Hua, GUO Tengfei, et al. Deformation behavior and cracking risk assessment of steam-cured concrete[J]. Materials Reports,2022,36(24):86-93(in Chinese).
    [2] LIU J P, TIAN Q, WANG Y, et al. Evaluation method and mitigation strategies for shrinkage cracking of modern concrete[J]. Engineering,2021,7(3):348-357. doi: 10.1016/j.eng.2021.01.006
    [3] SUN D, WANG Z, MA R, et al. Autoclave-free ultra-early strength concrete preparation using an early strength agent and microstructure properties[J]. RSC Advances,2021,11(28):17369-17376. doi: 10.1039/D1RA01611C
    [4] TAN H B, LI M G, HE X Y, et al. Preparation for micro-lithium slag via wet grinding and its application as accelerator in portland cement[J]. Journal of Cleaner Production,2020,250:119528. doi: 10.1016/j.jclepro.2019.119528
    [5] 余鑫, 于诚, 姜骞, 等. 采用原位XRD研究早强剂对水泥早期水化的影响[J]. 材料导报, 2020, 34(2):2058-2062. doi: 10.11896/cldb.19010051

    YU Xin, YU Cheng, JIANG Sai, et al. Study on the effect of early strength agent on early hydration of cement by in-situ XRD[J]. Materials Reports,2020,34(2):2058-2062(in Chinese). doi: 10.11896/cldb.19010051
    [6] NGUYEN H A, CHANG T P, THYMOTIE A. Enhancement of early engineering characteristics of modified slag cement paste with alkali silicate and sulfate[J]. Construction and Building Materials,2020,230:117013. doi: 10.1016/j.conbuildmat.2019.117013
    [7] HOU P K, KAWASHIMA S H, KONG D Y, et al. Modification effects of colloidal nano SiO2 on cement hydration and its gel property[J]. Composites Part B: Engineering,2013,45(1):440-448. doi: 10.1016/j.compositesb.2012.05.056
    [8] ZOU F B, HU C L, WANG F Z. Enhancement of early-age strength of the high content fly ash blended cement paste by sodium sulfate and C-S-H seeds towards a greener binder[J]. Journal of Cleaner Production,2020,244:118566. doi: 10.1016/j.jclepro.2019.118566
    [9] KANCHANASON V, PLANK J. Effect of calcium silicate hydrate-polycarboxylate ether (C-S-H-PCE) nanocomposite as accelerating admixture on early strength enhancement of slag and calcined clay blended cements[J]. Cement and Concrete Research,2019,119:44-50. doi: 10.1016/j.cemconres.2019.01.007
    [10] WYRZYKOWSKI M, ASSMANN A, HESSE C, et al. Microstructure development and autogenous shrinkage of mortars with C-S-H seeding and internal curing[J]. Cement and Concrete Research,2020,129:105967. doi: 10.1016/j.cemconres.2019.105967
    [11] LI X, BIZZOZERO J, HESSE C. Impact of C-S-H seeding on hydration and strength of slag blended cement[J]. Cement and Concrete Research,2022,161:106935. doi: 10.1016/j.cemconres.2022.106935
    [12] 中国建筑材料联合会. 预应力高强混凝土管桩免压蒸生产技术要求: T/CBMF 64—2019[S]. 北京: 中国建筑工业出版社, 2019.

    China Building Materials Federation. Technical requirements for the no-autoclave curing production process of prestressed high-strength concrete pipe pile: T/CBMF 64—2019[S]. Beijing: China Construction Industry Press, 2019(in Chinese).
    [13] 中华人民共和国住房和城乡建设部. 混凝土结构耐久性设计标准: GB/T 50476—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for durability design of concrete structures: GB/T 50476—2019[S]. Beijing: China Construction Industry Press, 2019(in Chinese).
    [14] 严涵, 杨斌, 杨勇, 等. 一种水化硅酸钙早强剂及其制备方法: 中国专利, ZL 201911281804.2[P]. 2022-09-20.

    YAN Han, YANG Bin, YANG Yong, et al. A hydrated calcium silicate early strength agent and its preparation method: Chinese patent, ZL 201911281804.2[P]. 2022-09-20(in Chinese).
    [15] ZHAO H T, JIANG K D, YANG R, et al. Experimental and theoretical analysis on coupled effect of hydration, temperature and humidity in early-age cement-based materials[J]. International Journal of Heat and Mass Transfer,2020,146:118748.
    [16] ZHAO H T, WU X, HUANG Y Y, et al. Investigation of moisture transport in cement-based materials using low-field nuclear magnetic resonance imaging[J]. Magazine of Concrete Research,2021,73(5):252-270. doi: 10.1680/jmacr.19.00211
    [17] SHE A M, YAO W, YUAN W C. Evolution of distribution and content of water in cement paste by low field nuclear magnetic resonance[J]. Journal of Central South University,2013,20(4):1109-1114. doi: 10.1007/s11771-013-1591-y
    [18] 中华人民共和国住房和城乡建设部. 普通混凝土力学性能试验方法标准: GB/T 50081—2002[S]. 北京: 中国建筑工业出版社, 2002.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of mechanical properties of ordinary concrete: GB/T 50081—2002[S]. Beijing: China Construction Industry Press, 2002(in Chinese).
    [19] 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for long-term performance and durability test method of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Construction Industry Press, 2009(in Chinese).
    [20] 王晓飞, 李秋义, 罗健林, 等. 不同品质再生粗骨料混凝土的力学性能及鲍罗米公式拟合[J]. 混凝土, 2016(3):60-64.

    WANG Xiaofei, LI Qiuyi, LUO Jianlin, et al. Mechanical properties and Bowromi formula regression for recycled coarse aggregate concrete with different quality[J]. Concrete,2016(3):60-64(in Chinese).
    [21] QIN L, GAO X J, SU A S, et al. Effect of carbonation curing on sulfate resistance of cement-coal gangue paste[J]. Journal of Cleaner Production,2021,278:123897. doi: 10.1016/j.jclepro.2020.123897
    [22] KANCHANASON V, PLANK J. Effectiveness of a calcium silicate hydrate-polycarboxylate ether (CSH-PCE) nanocomposite on early strength development of fly ash cement[J]. Construction and Building Materials,2018,169:20-27. doi: 10.1016/j.conbuildmat.2018.01.053
    [23] EBRAHIMI K, DAIEZADEH M J, ZAKERTABRIZI M, et al. A review of the impact of micro-and nanoparticles on freeze-thaw durability of hardened concrete: Mechanism perspective[J]. Construction and Building Materials,2018,186:1105-1113. doi: 10.1016/j.conbuildmat.2018.08.029
    [24] LI J, KAUNDA R B, ZHOU K. Experimental investigations on the effects of ambient freeze-thaw cycling on dynamic properties and rock pore structure deterioration of sandstone[J]. Cold Regions Science and Technology,2018,154:133-141. doi: 10.1016/j.coldregions.2018.06.015
    [25] JENSEN O M. Thermodynamic limitation of self-desiccation[J]. Cement and Concrete Research,1995,25(1):157-164. doi: 10.1016/0008-8846(94)00123-G
    [26] JENSEN O M, HANSEN P F. Influence of temperature on autogenous deformation and relative humidity change in hardening cement paste[J]. Cement and Concrete Research,1999,29(4):567-575. doi: 10.1016/S0008-8846(99)00021-6
    [27] WANG P, FU H, GUO T, et al. Volume deformation of steam-cured concrete with fly ash during and after steam curing[J]. Construction and Building Materials,2021,306:124854. doi: 10.1016/j.conbuildmat.2021.124854
    [28] ZUO W, FENG P, ZHONG P, et al. Effects of a novel polymer-type shrinkage-reducing admixture on early age microstructure evolution and transport properties of cement pastes[J]. Cement and Concrete Composites,2019,95:33-41. doi: 10.1016/j.cemconcomp.2018.10.011
    [29] 缪昌文, 田倩, 刘加平, 等. 基于毛细管负压技术测试混凝土最早期的自干燥效应[J]. 硅酸盐学报, 2007, 35(4):509-516.

    MIAO Changwen, TIAN Qian, LIU Jiaping, et al. Very early age self-desiccation effect measurement based on meniscus depression technology for concrete[J]. Journal of Chinese Ceramic Society,2007,35(4):509-516(in Chinese).
    [30] DANISH A, MOSABERPANAH M A, SALIM M U. Robust evaluation of superabsorbent polymers as an internal curing agent in cementitious composites[J]. Journal of Materials Science,2021,56(1):136-172. doi: 10.1007/s10853-020-05131-2
    [31] WITTMANN F. On the action of capillary pressure in fresh concrete[J]. Cement and Concrete Research,1976,6(1):49-56. doi: 10.1016/0008-8846(76)90050-8
    [32] SLOWIK V, SCHMIDT M, FRITZSCH R. Capillary pressure in fresh cement-based materials and identification of the air entry value[J]. Cement and Concrete Composites,2008,30(7):557-565. doi: 10.1016/j.cemconcomp.2008.03.002
    [33] YE H L, RADLINSKA A. Shrinkage mitigation strategies in alkali-activated slag[J]. Cement and Concrete Research,2017,101:131-143. doi: 10.1016/j.cemconres.2017.08.025
    [34] VLAHINIC I, JENNINGS H M, THOMAS J J. A constitutive model for drying of a partially saturated porous material[J]. Mechanics of Materials,2009,41(3):319-328. doi: 10.1016/j.mechmat.2008.10.011
    [35] CHOI S W, JANG B S, KIM J H, et al. Durability characteristics of fly ash concrete containing lightly-burnt MgO[J]. Construction and Building Materials,2014,58:77-84. doi: 10.1016/j.conbuildmat.2014.01.080
    [36] ZHAO L, CHENG G D, DING Y J. Studies on frozen ground of China[J]. Journal of Geographical Sciences,2004,14(4):411-416. doi: 10.1007/BF02837484
    [37] POWERS T C. Freezing effects in concrete[J]. Special Publication,1975,47:1-12.
    [38] POWERS T C, HELMUTH R A. A tribute to "Theory of volume changes in hardened portland-cement paste during freezing"[J]. Special Publication,2008,249:141-160.
    [39] SCHERER G W. Crystallization in pores[J]. Cement and Concrete Research,1999,29(8):1347-1358. doi: 10.1016/S0008-8846(99)00002-2
    [40] XIAO Z, LAI Y, ZHANG M. Study on the freezing temperature of saline soil[J]. Acta Geotechnica,2018,13(1):195-205. doi: 10.1007/s11440-017-0537-1
    [41] IDIART A E, LOPEZ C M, CAROL I. Chemo-mechanical analysis of concrete cracking and degradation due to external sulfate attack: A meso-scale model[J]. Cement and Concrete Composites,2011,33(3):411-423. doi: 10.1016/j.cemconcomp.2010.12.001
    [42] SUN D, WU K, SHI H, et al. Effect of interfacial transition zone on the transport of sulfate ions in concrete[J]. Construction and Building Materials,2018,192:28-37. doi: 10.1016/j.conbuildmat.2018.10.140
    [43] TAYLOR H F. Cement chemistry[M]. New York: Thomas Telford London, 1997: 235-297.
  • 加载中
图(21) / 表(4)
计量
  • 文章访问数:  642
  • HTML全文浏览量:  263
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-08
  • 修回日期:  2023-05-15
  • 录用日期:  2023-05-27
  • 网络出版日期:  2023-06-13
  • 刊出日期:  2024-01-01

目录

    /

    返回文章
    返回