Preparation process and bending properties of CFRP/stainless steel ultra-thin strip fiber metal laminates
-
摘要: 不锈钢极薄带这一新型精密带材具有质量轻(厚度仅为0.01~0.1 mm)、强度高、易成型、耐腐蚀等诸多优点,是一种极具应用前景的轻质高强材料。为了探讨不锈钢极薄带作为纤维金属层板组分材料的可行性及评估其力学性能优劣,通过对比6种不同的不锈钢极薄带表面处理工艺,探明了6种工艺中机械打磨+丙酮清洗+10wt%氢氧化钠溶液腐蚀+1wt%偶联剂是不锈钢极薄带与碳纤维预浸料复合的最优表面处理工艺,其单搭接拉伸剪切强度值为21.3 MPa。基于该工艺,采用T700碳纤维单向预浸料、T300编织布预浸料及0.1 mm厚软态、半硬态与硬态不锈钢极薄带分别制备出含不同层数与不同类型不锈钢极薄带的纤维金属层板。并通过三点弯曲实验对所制层板的弯曲性能与变形失效机制进行了系统研究。结果表明:碳纤维/不锈钢极薄带纤维金属层板弯曲失效模式主要受钢带强韧性变化影响,弯曲变形主要受钢带含量影响。Abstract: A new type of foil material of stainless steel ultra-thin strip with light mass (thickness only 0.01-0.1 mm), high strength, easy to form, corrosion resistance and many other advantages, is a kind of light and high strength material with great application prospects. In order to investigate the feasibility of stainless steel ultra-thin strip as a component material of fiber metal laminates and evaluate its mechanical properties, six different surface treatment processes of stainless steel ultra-thin strip were compared. It is proved that mechanical grinding + acetone cleaning + 10wt% sodium hydroxide solution corrosion + 1wt% coupling agent is the best surface treatment technology for the composite of stainless steel ultra-thin strip and carbon fiber prepreg, the single lap tensile shear strength is 21.3 MPa. Based on this technology, fiber metal laminates containing different layers and different types of stainless steel ultra-thin strips were prepared by using T700 carbon fiber unidirectional prepreg, T300 plain braid prepreg and soft, semi-hard and hard stainless steel ultra-thin strips with thickness of 0.1 mm. The bending properties and deformation failure mechanism of the laminates were systematically studied by three-point bending experiments. The results show that the bending failure mode of carbon fiber/stainless steel ultra-thin strip fiber metal laminates is mainly affected by the change of steel strip strength and toughness, the bending deformation is mainly affected by the content of steel strip.
-
图 6 碳纤维/不锈钢极薄带层板制备工艺流程:(a) 裁剪不锈钢极薄带;(b) 裁剪碳纤维预浸料;(c) 砂纸打磨钢带;(d) 无尘纸清洁钢带;(e) 丙酮清洁钢带表面;(f) 氢氧化钠溶液腐蚀;(g) 配制偶联剂;(h) 偶联剂附着;(i) 铺层;(j) 真空包裹;(k) 热压罐热压固化;(l) 碳纤维/不锈钢极薄带层板
Figure 6. Preparation process of carbon fiber/stainless steel ultra-thin strip laminates: (a) Cutting stainless steel ultra-thin strip; (b) Cutting carbon fiber prepreg; (c) Grinding steel strip with sandpaper; (d) Clean steel strip with dust-free paper; (e) Clean the surface of steel strip with acetone; (f) Sodium hydroxide solution corrosion; (g) Prepare coupling agent; (h) Coupling agent adhesion; (i) Layup; (j) Vacuum wrapping; (k) Hot press curing with autoclave; (l) Carbon fibre/stainless steel ultra-thin strip laminates
图 7 工装设计:(a) 真空袋;(b) 透气毡;(c) 无孔隔离膜;(d) 透气毡;(e) 有孔隔离膜;(f) 耐高温胶条;(g) 透气毡;(h) 碳纤维预浸料/不锈钢极薄带叠层;(i) 脱模布;(j) 玻璃板
Figure 7. Tooling design: (a) Empty bag; (b) Breathable felt; (c) Non porous isolation film; (d) Breathable felt; (e) Porous isolation film; (f) High temperature resistant adhesive tape; (g) Breathable felt; (h) Carbon fiber prepreg/stainless steel ultra-thin tape lamination; (i) Release cloth; (j) Glass plate
表 1 T700单向碳纤维预浸料性能参数
Table 1. Performance parameters of T700 unidirectional carbon fiber prepreg
Fiber area density/(g·m−2) Resin content/% Bending strength/MPa Interlaminar shear strength/MPa Tensile strength/MPa 200 40 1350 75 2000 表 2 T300碳纤维平纹织物预浸料性能参数
Table 2. Performance parameters of T300 carbon fiber plain fabric prepreg
Fiber area density/(g·m−2) Resin content/% Bending strength/MPa Interlaminar shear strength/MPa Tensile strength/MPa 200 40 850 65 650 表 3 304不锈钢极薄带的化学成分 (wt%)
Table 3. Chemical composition of 304 stainless steel ultra-thin strip (wt%)
C Cr Ni Mo Si Mn P S 0.048 18.250 8.103 0.042 0.459 1.060 0.030 0.004 表 4 不锈钢极薄带表面处理工艺
Table 4. Surface treatment process of stainless steel ultra-thin strip
Method Surface treatment process a Sanding + Acetone cleanout + 0.5wt% coupling agent b Sanding + Acetone cleanout + 1wt% coupling agent c Sanding + Acetone cleanout + 5wt% coupling agent d Sanding + Acetone cleanout + 10wt% sodium hydroxide solution corrosion + 0.5wt% coupling agent e Sanding + Acetone cleanout + 10wt% sodium hydroxide solution corrosion + 1wt% coupling agent f Sanding + Acetone cleanout + 10wt% sodium hydroxide solution corrosion + 5wt% coupling agent 表 5 6种试验件剪切强度测试结果
Table 5. Shear strength test results of six test pieces
Specimen Tensile shear
strength/
MPaa 15.5 b 14.0 c 10.6 d 20.4 e 21.3 f 11.3 表 6 碳纤维预浸料/不锈钢极薄带纤维金属层板(FMLs)铺层方案
Table 6. Lay-up scheme of carbon fiber prepreg/stainless steel ultra-thin strip fiber metal laminates (FMLs)
Paving scheme Total thickness/mm Type E [W/[G/0/G/90]2/$\bar {\rm{G}} $]s 2.55 Type F [W/[0/90/G]2/90/0/$\bar {\rm{G} } $]s 2.75 Notes: W—Carbon fiber plain fabric prepreg; G—Stainless steel ultra-thin strip; $\bar {\rm{G} } $—Interlayer. 表 7 E类层板在I、II变形阶段时的峰值载荷
Table 7. Peak load of type E laminated plates at different deformation stages
Type of specimen FI max/N FII max/N Soft laminated plate 562 533 Semi hard laminated plate 539 545 Hard laminated plate 532 559 Notes: FI max—Peak load of stage I; FII max—Peak load of stage II. 表 8 F类层板所承受的峰值载荷
Table 8. Peak load of type F laminated plate
Type of test piece Fmax/N Soft laminated plate 738 Semi hard laminated plate 786 Hard laminated plate 805 Note: Fmax—Peak load. -
[1] SINMAZCELIK T, AVCU E, BORA M O, et al. A review: Fibre metal laminates, background, bonding types and applied test methods[J]. Materials & Design,2011,32(7):3671-3685. [2] MORINIERE F D, ALDERLIESTEN R C, SADIGHI M, et al. An integrated study on the low-velocity impact response of the GLARE fibre-metal laminate[J]. Composite Structures,2013,100(6):89-103. [3] 刘建光, 张嘉振, 岳广全, 等. 纤维金属层板曲面零件成形技术研究[J]. 航空制造技术, 2019, 62(16):46-52.LIU Jianguang, ZHANG Jiazhen, YUE Guangquan, et al. Research on forming technology of fiber metal laminate curved parts[J]. Aeronautical Manufacturing Technology,2019,62(16):46-52(in Chinese). [4] VOGELESANG L B, VLOT A. Development of fibre metal laminates for advanced aerospace structures[J]. Journal of Materials Processing Technology,2000,103(1):1-5. doi: 10.1016/S0924-0136(00)00411-8 [5] 贾新强, 郎利辉. 纤维金属层板制备成形的研究现状及发展趋势[J]. 精密成形工程, 2017, 9(2):1-6.JIA Xinqiang, LANG Lihui. Research status and development trend of fiber metal laminates forming[J]. Journal of Netshape Forming Engineering,2017,9(2):1-6(in Chinese). [6] CORTES P, CANTWELL W J. The prediction of tensile failure in titanium-based thermoplastic fibre-metal laminates[J]. Composites Science and Technology,2006,66(13):2306-2316. doi: 10.1016/j.compscitech.2005.11.031 [7] ASUNDI A, CHOI A. Fiber metal laminates: An advanced material for future aircraft[J]. Journal of Materials Processing Technology,1997,63(1):384-394. [8] VERMEEREN C A J R. An historic overview of the development of fibre metal laminates[J]. Applied Composite Materials,2003,10(4-5):189-205. [9] MULLER B, HAGENBEEK M, SINKE J. Thermal cycling of (heated) fibre metal laminates[J]. Composite Structures,2016,152(9):106-116. [10] 吴素君, 解晓伟, 晋会锦, 等. 纤维金属层板力学性能的研究现状[J]. 复合材料学报, 2018, 35(4):733-747.WU Sujun, XIE Xiaowei, JIN Huijin, et al. Mechanical pro-perties of fiber metal laminates: A review[J]. Acta Materiae Compositae Sinica,2018,35(4):733-747(in Chinese). [11] SHIM D J, ALDERLIESTEN R C, SPEARING S M, et al. Fatigue crack growth prediction in GLARE hybrid lami-nates[J]. Composites Science & Technology,2003,63(12):1759-1767. [12] BOTELHO E C, SILVA R A, PARDINI L C, et al. A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures[J]. Materials Research,2006,9(3):247-256. doi: 10.1590/S1516-14392006000300002 [13] 吴志恩. 纤维金属层板在飞机制造中的应用及工艺性分析[J]. 航空制造技术, 2013(1):137-139.WU Zhi'en. Application and property analysis of fiber-metal laminate for aircraft manufacturing[J]. Aeronautical Manufacturing Technology,2013(1):137-139(in Chinese). [14] DURING D, PETERSEN E, STEFANIAK D, et al. Damage resistance and low-velocity impact behaviour of hybrid composite laminates with multiple thin steel and elastomer layers[J]. Composite Structures,2020,238(C):111851. [15] PARNANEN T, KANERVA M, SARLIN E, et al. Debonding and impact damage in stainless steel fibre metal laminates prior to metal fracture[J]. Composite Structures, 2015, 119: 777-786. [16] BOOSE Y, KAPPEL E, STEFANIAK D, et al. Phenomenological investigation on crash characteristics of thin layered CFRP-steel laminates[J]. International Journal of Crashworthiness,2020,27(1):1-10. [17] STUDER J, KELLER A, LEONE F, et al. Local reinforcement of aerospace structures using co-curing RTM of metal foil hybrid composites[J]. Production Engineering,2018,12(2):195-201. doi: 10.1007/s11740-018-0794-3 [18] BENEDIKT K, KARSTEN J, JOHANN K, et al. CFRP thin-ply fibre metal laminates: Influences of ply thickness and metal layers on open hole tension and compression properties[J]. Materials,2020,13(4):910. doi: 10.3390/ma13040910 [19] 尹志岚, 袁媛, 刘昌胜. 硅烷偶联剂对不锈钢表面膜基结合强度的影响[J]. 功能高分子学报, 2004, 17(2):298-302, 306. doi: 10.3969/j.issn.1008-9357.2004.02.027YIN Zhilan, YUAN Yuan, LIU Changsheng. Effect of silane coupling agent on bonding strength of polymer film to 316L stainless steel[J]. Journal of Functional Polymers,2004,17(2):298-302, 306(in Chinese). doi: 10.3969/j.issn.1008-9357.2004.02.027 [20] JUSSULA P, ALILOYTTY H, LAHTONEN K, et al. Effect of surface hydroxyl concentration on the bonding and morphology of aminopropylsilane thin films on austenitic stainless steel[J]. Surface & Interface Analysis,2010,42(3):157-164. [21] HOIKKANEN M, HONKANEN M, VIPPOLA M, et al. Effect of silane treatment parameters on the silane layer formation and bonding to thermoplastic urethane[J]. Progress in Organic Coatings,2011,72(4):716-723. doi: 10.1016/j.porgcoat.2011.08.002 [22] 赵宗, 郑兴伟, 钱仁飞, 等. 纤维稀土镁合金超混杂层板弯曲性能及其失效机理[J]. 航空材料学报, 2021, 41(4):157-166. doi: 10.11868/j.issn.1005-5053.2020.000163ZHAO Zong, ZHENG Xingwei, QIAN Renfei, et al. Bending properties and failure mechanism of fiber rare earth magnesium alloy super hybrid laminates[J]. Journal of Aeronautical Materials,2021,41(4):157-166(in Chinese). doi: 10.11868/j.issn.1005-5053.2020.000163 [23] LI H G, HU Y B, FU X L, et al. Effect of adhesive quantity on failure behavior and mechanical properties of fiber metal laminates based on the aluminum-lithium alloy[J]. Composite Structures,2016,152(9):687-692. [24] 陶杰, 李华冠, 潘蕾, 等. 纤维金属层板的研究与发展趋势[J]. 南京航空航天大学学报, 2015, 47(5):626-636.TAO Jie, LI Huaguan, PAN Lei, et al. Review on research and development of fiber metal laminates[J]. Journal of Nanjing University of Aeronautics & Astronautics,2015,47(5):626-636(in Chinese). [25] DHALIWAL G S, NEWAZ G M. Experimental and numerical investigation of flexural behavior of carbon fiber reinforced aluminum laminates[J]. Journal of Reinforced Plastics and Composites,2016,35(12):945-956. doi: 10.1177/0731684416632606 [26] LIU C, DU D, LI H, et al. Interlaminar failure behavior of GLARE laminates under short-beam three-point-bending load[J]. Composites Part B: Engineering,2016,97(7):361-367. [27] LI H G, XU Y W, HUA X G, et al. Bending failure mechanism and flexural properties of GLARE laminates with different stacking sequences[J]. Composite Structures,2017,187(3):354-363. [28] SADIGHI M, DARIUSHI S. An experimental study of the fibre orientation and laminate sequencing effects on mechanical properties of Glare[J]. Proceedings of the Institution of Mechanical Engineers Part G: Journal of Aerospace Engineering,2008,222(7):1015-1024. doi: 10.1243/09544100JAERO353 [29] YOGESH S, MADHU S. Mechanical properties evaluation of the Al reinforced CFRP fiber metal laminate[J]. Materials Today: Proceedings,2020,33(1):44-47. [30] KHALILI S M R, DAGHIGH V, ESLAMI F R. Mechanical behavior of basalt fiber-reinforced and basalt fiber metal laminate composites under tensile and bending loads[J]. Journal of Reinforced Plastics & Composites,2011,30(8):647-659. [31] HU Y B, ZHANG Y N, FU X L, et al. Mechanical properties of Ti/CF/PMR polyimide fiber metal laminates with various layup configurations[J]. Composite Structures,2019,229(12):111408. [32] LAWCOCK G, YE L, MAI Y W, et al. The effect of adhesive bonding between aluminum and composite prepreg on the mechanical properties of carbon-fiber-reinforced metal laminates[J]. Composites Science & Technology,1997,57(1):35-45. [33] HU Y B, LI H G, CAI L, et al. Preparation and properties of fibre-metal laminates based on carbon fibre reinforced PMR polyimide[J]. Composites Part B: Engineering,2015,69(2):587-591. [34] 中国国家标准化管理委员会. 胶粘剂 拉伸剪切强度的测定(刚性材料对刚性材料): GB/T 7124—2008[S]. 北京: 中国标准出版社, 2008.Standardization Administration of the People's Republic of China. Adhesives—Determination of tensile lap-shear strength of rigid-to-rigid bonded assemblies: GB/T 7124—2008[S]. Beijing: China Standards Press, 2008(in Chinese). [35] ASTM. Standard test method for flexural properties of polymer matrix composite materials: ASTM D7264/D7264 M—2007[S]. West Conshohocken: ASTM International, 2007. [36] FIORE V, BELLA G D, VALENZA A. Glass-basalt/epoxy hybrid composites for marine applications[J]. Materials & Design,2011,32(4):2091-2099. [37] VASUMATHI M, MURALI V. Effect of alternate metals for use in natural fibre reinforced fibre metal laminates under bending, impact and axial loadings[J]. Procedia Engineering,2013,64:562-570. doi: 10.1016/j.proeng.2013.09.131 [38] 朱伟. Al/CFRP/Al层板界面调控机理及性能研究[D]. 秦皇岛: 燕山大学, 2021.ZHU Wei. Mechanism and properties of interface control of Al/CFRP/Al laminates[D]. Qinhuangdao: Yanshan University, 2021(in Chinese).