Damping performance of a new chiral negative Poisson's ratio structure
-
摘要: 负泊松比结构作为一种典型的超材料结构,凭借其独特的变形机制与吸能特性,在航空航天、汽车交通等领域被广泛应用,但关于其减振特性的研究相对较少,研发同时具有高承载和优异缓冲吸能、阻尼减振等性能的多功能负泊松比结构的研究则更稀缺。受星形及内凹形负泊松比结构启发,提出了一种新型手性负泊松比结构,设计并使用3D打印技术制备了4种不同几何参数的构型。在前期的研究中,已发现该新型结构表现出优异的静力学性能及能量吸收特性。基于此,本文通过实验与数值模拟相结合的方式表征新型结构的减振性能,并与传统非手性负泊松比结构进行了对比。研究结果表明:该新型手性负泊松比结构负泊松比效应越强,减振性能越优。相关结果与规律可为新型手性负泊松比减振结构的设计提供理论指导。Abstract: As a typical metamaterial, negative Poisson's ratio structures have been widely used in aerospace, automotive, and other fields due to their unique deformation mechanism and energy absorption characteristics. However, there is relatively little research on its vibration damping characteristics. Research on the development of multifunctional negative Poisson's ratio structures with simultaneous excellent load-bearing, energy-absorbing and vibration-damping properties is even more scarce. Inspired by the star-shaped and inner-concave negative Poisson's ratio structure, a novel chiral negative Poisson's ratio structure is proposed. Four configurations with different geometric parameters are designed and prepared by 3D printing technology. In the previous study, it has been found that the novel structure exhibits excellent static properties and energy absorption characteristics. Based on this, the damping performances of novel structures are demonstrated by combination of experiments and numerical simulations, which are compared with that of the conventional non-chiral negative Poisson's ratio structure. The results show that the stronger the negative Poisson's ratio effect of novel chiral negative Poisson's ratio structure, the better the vibration damping performance. The results and laws can provide theoretical guidance for the design of the novel chiral negative Poisson's ratio vibration damping structure.
-
图 2 胞元几何参数[20]
Figure 2. Geometrical parameters of unit cells[20]
R1—Inner diameter of star-shaped cell; R2—Outer diameter of star-shaped cell; H—Side length of star-shaped cell; L—Side length of hexagon cell; K—Length between star-shaped cell and hexagon cell; t—Thickness; θ—Angle of star-shaped cell; γ—The ratio of t to R2
表 1 N01的基本力学参数
Table 1. Performance parameters of configuration N01
Specimen lable $ {v}_{12} $ $ {\rho }_{\mathrm{r}} $ $ {{E}_{1}^{*}}/{{E}_{\mathrm{s}}} $ N01 0 2.260γ 0.5γ Notes: $ {v}_{12} $—Poisson's ratio; $ {\rho }_{\mathrm{r}} $—Relative density; $ {E}_{1}^{*} $—Young's modulus of the structure; $ {E}_{\mathrm{s}} $—Young's modulus of the material. 表 2 新型由星形与内凹六边形组合在一起中心对称而成的蜂窝结构(WSH)的几何参数[20]
Table 2. Geometrical parameters of windmill-like configuration composed of stars and hexagons (WSH) auxetic configurations[20]
Specimen label λ γ t/mm Size/mm3 N01 0 0.152 1 125×125×63 N12 1/2 N23 2/3 N11 1 Note: λ—The ratio of R1 to R2. Specimen
labelLength of
unit cell/mmAngle of
unit cell/(°)t/mm Size/
mm3S 16.0 36.8 1 125×125×63 H 16.3 63.4 Notes: S—Star; H—Hexagon. Parameter Es/MPa v $ {\rho }_{\mathrm{s}} $/(kg·m−3) Value 1358 0.33 940 Notes: v—Poisson's ratio; $ {\rho }_{\mathrm{s}} $—Material density. 表 5 不同网格密度的尺寸及数量
Table 5. Size and quantity of different mesh
Average size/mm Mesh quantity Coarse mesh 4.75 157638 Normal mesh 3.00 304943 Finer mesh 1.70 765621 -
[1] ZHANG J J, LU G X, YOU Z. Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review[J]. Composites Part B: Engineering,2020,201:108340. doi: 10.1016/j.compositesb.2020.108340 [2] JIN F, WU D J, PAN Z Z, et al. Magnetic anisotropy of high-entropy oxides with negative Poisson's ratio[J]. Ceramics International, 2023, 49(11): 16625-16629. [3] 于雅琳, 李健芳, 黄智彬, 等. 复合材料负泊松比格栅结构设计及力学性能评价[J]. 复合材料学报, 2021, 38(4):1107-1114. doi: 10.13801/j.cnki.fhclxb.20200623.002YU Yalin, LI Jianfang, HUANG Zhibin, et al. Structural design and mechanical characterization of an auxetic advanced grid structure composite[J]. Acta Materiae Compositae Sinica,2021,38(4):1107-1114(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200623.002 [4] XIAO D B, KANG X, LI Y, et al. Insight into the negative Poisson's ratio effect of metallic auxetic reentrant honeycomb under dynamic compression[J]. Materials Science and Engineering: A,2019,763:138151. doi: 10.1016/j.msea.2019.138151 [5] AI L, GAO X L. Metamaterials with negative Poisson's ratio and non-positive thermal expansion[J]. Composite Structures,2017,162:70-84. doi: 10.1016/j.compstruct.2016.11.056 [6] LIN H B, LIU H T, AN M R. In-plane dynamic impact behaviors of a self-similar concentric star honeycomb with negative Poisson’s ratio[J]. Materials Today Communications,2022,33:104474. doi: 10.1016/j.mtcomm.2022.104474 [7] LAN X Q, MENG L, ZHAO J, et al. Mechanical properties and damage characterizations of 3D double-arrowhead auxetic structure with high-relative-density realized via selective laser melting[J]. European Journal of Mechanics—A/Solids,2021,90:104386. doi: 10.1016/j.euromechsol.2021.104386 [8] JIANG Y Y, LI Y. Novel 3D-printed hybrid auxetic mechanical metamaterial with chirality-induced sequential cell opening mechanisms[J]. Advanced Engineering Materials,2018,20(2):1700744. doi: 10.1002/adem.201700744 [9] SCHAEDLER T A, CARTER W B. Architected cellular materials[J]. Annual Review of Materials Research, 2016, 46: 187-210. [10] ZHANG Y, CAI D A, PENG J F, et al. On low-velocity impact behavior of sandwich composites with negative Poisson's ratio lattice cores[J]. Composite Structures,2022,299:116078. doi: 10.1016/j.compstruct.2022.116078 [11] LI Q Q, ZHAN L Y, MIAO X J, et al. Morning glory-inspired lattice structure with negative Poisson's ratio effect[J]. International Journal of Mechanical Sciences,2022,232:107643. doi: 10.1016/j.ijmecsci.2022.107643 [12] WANG S A, DENG C, OLANREWAJU O, et al. Design and modeling of a novel three dimensional auxetic reentrant honeycomb structure for energy absorption[J]. Composite Structures,2022,280:114882. doi: 10.1016/j.compstruct.2021.114882 [13] 孙龙, 任鑫, 张毅, 等. 一种刚度可调控的负泊松比管状结构[J]. 复合材料学报, 2022, 39(4):1813-1823. doi: 10.13801/j.cnki.fhclxb.20210531.001SUN Long, REN Xin, ZHANG Yi, et al. An auxetic tubular structure with tuneable stiffness[J]. Acta Materiae Compositae Sinica,2022,39(4):1813-1823(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210531.001 [14] LI D, YIN J H, DONG L, et al. Strong re-entrant cellular structures with negative Poisson's ratio[J]. Journal of Materials Science,2018,53(5):3493-3499. doi: 10.1007/s10853-017-1809-8 [15] 吴文旺, 肖登宝, 孟嘉旭, 等. 负泊松比结构力学设计、抗冲击性能及在车辆工程应用与展望[J]. 力学学报, 2021, 53(3):611-638. doi: 10.6052/0459-1879-20-333WU Wenwang, XIAO Dengbao, MENG Jiaxu, et al. Mechanical design, impact energy absorption and applications of auxetic structures in automobile lightweight engi-neering[J]. Chinese Journal of Theoretical and Applied Mechanics,2021,53(3):611-638(in Chinese). doi: 10.6052/0459-1879-20-333 [16] 吴文旺, 夏热. 轻质点阵超结构设计及多功能力学性能调控方法[J]. 力学进展, 2022, 52(3):673-718. doi: 10.6052/1000-0992-22-002WU Wenwang, XIA Re. Design of lightweight lattice meta-structures and approaches to manipulate their multi-functional mechanical properties[J]. Advances in Mechanics,2022,52(3):673-718(in Chinese). doi: 10.6052/1000-0992-22-002 [17] ZHANG Y, FAN X L, LI J Q, et al. Low-frequency vibration insulation performance of the pyramidal lattice sandwich metamaterial beam[J]. Composite Structures,2021,278:114719. doi: 10.1016/j.compstruct.2021.114719 [18] TIAN X Y, CHEN W J, GAO R J, et al. Merging bragg and local resonance bandgaps in perforated elastic metamaterials with embedded spiral holes[J]. Journal of Sound and Vibration,2021,500:116036. doi: 10.1016/j.jsv.2021.116036 [19] 王东涛, 朱大巍, 黄修长. 局域共振子对手性覆盖层振动和声辐射抑制的影响[J]. 噪声与振动控制, 2015, 35(6):22-25, 46.WANG Dongtao, ZHU Dawei, HUANG Xiuchang. Influences of internal resonances on the vibration and sound reduction of chiral layer coating[J]. Noise and Vibration Control,2015,35(6):22-25, 46(in Chinese). [20] ZHANG W M, LI Z Y, YANG J S, et al. A lightweight rotationally arranged auxetic structure with excellent energy absorption performance[J]. Mechanics of Materials,2022,166:104244. doi: 10.1016/j.mechmat.2022.104244