留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新型手性负泊松比结构的减振性能

刘旭畅 李爽 杨金水

刘旭畅, 李爽, 杨金水. 一种新型手性负泊松比结构的减振性能[J]. 复合材料学报, 2024, 41(1): 477-484. doi: 10.13801/j.cnki.fhclxb.20230609.001
引用本文: 刘旭畅, 李爽, 杨金水. 一种新型手性负泊松比结构的减振性能[J]. 复合材料学报, 2024, 41(1): 477-484. doi: 10.13801/j.cnki.fhclxb.20230609.001
LIU Xuchang, LI Shuang, YANG Jinshui. Damping performance of a new chiral negative Poisson's ratio structure[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 477-484. doi: 10.13801/j.cnki.fhclxb.20230609.001
Citation: LIU Xuchang, LI Shuang, YANG Jinshui. Damping performance of a new chiral negative Poisson's ratio structure[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 477-484. doi: 10.13801/j.cnki.fhclxb.20230609.001

一种新型手性负泊松比结构的减振性能

doi: 10.13801/j.cnki.fhclxb.20230609.001
基金项目: 国家自然科学基金项目(12172098);哈尔滨工程大学青年科学家培育基金(79000012/010)
详细信息
    通讯作者:

    杨金水,博士,副教授,博士生导师,研究方向为轻质多功能复合材料结构力学 E-mail: yangjinshui@hrbeu.edu.cn

  • 中图分类号: TB330.1

Damping performance of a new chiral negative Poisson's ratio structure

Funds: National Natural Science Foundation of China (12172098); Young Scientist Cultivation Foundation of Harbin Engineering University (79000012/010)
  • 摘要: 负泊松比结构作为一种典型的超材料结构,凭借其独特的变形机制与吸能特性,在航空航天、汽车交通等领域被广泛应用,但关于其减振特性的研究相对较少,研发同时具有高承载和优异缓冲吸能、阻尼减振等性能的多功能负泊松比结构的研究则更稀缺。受星形及内凹形负泊松比结构启发,提出了一种新型手性负泊松比结构,设计并使用3D打印技术制备了4种不同几何参数的构型。在前期的研究中,已发现该新型结构表现出优异的静力学性能及能量吸收特性。基于此,本文通过实验与数值模拟相结合的方式表征新型结构的减振性能,并与传统非手性负泊松比结构进行了对比。研究结果表明:该新型手性负泊松比结构负泊松比效应越强,减振性能越优。相关结果与规律可为新型手性负泊松比减振结构的设计提供理论指导。

     

  • 图  1  胞元组合方式[20]

    Figure  1.  Unit cell combination mode[20]

    图  2  胞元几何参数[20]

    Figure  2.  Geometrical parameters of unit cells[20]

    R1—Inner diameter of star-shaped cell; R2—Outer diameter of star-shaped cell; H—Side length of star-shaped cell; L—Side length of hexagon cell; K—Length between star-shaped cell and hexagon cell; t—Thickness; θ—Angle of star-shaped cell; γ—The ratio of t to R2

    图  3  N01中心节点连接方式

    Figure  3.  Center connection of configuration N01

    图  4  不同λ值的WSH结构

    Figure  4.  WSH configurations with different λ

    图  5  实验装置

    Figure  5.  Experimental devices

    图  6  试件安装示意图

    Figure  6.  Installation diagram of specimens

    图  7  各结构时域响应曲线

    Figure  7.  Time domain response curves of different structures

    T—Loading time

    图  8  所有结构实验所得加速度振级落差(VLD)

    Figure  8.  Vibration level drop (VLD) curves of different structures obtained from experiments

    图  9  不同结构平均振级落差与泊松比的变化关系

    Figure  9.  Variation of the average VLD with Poisson's ratio for different structures

    图  10  S构型3D模型

    Figure  10.  3D model of S in simulation

    图  11  网格收敛性分析

    Figure  11.  Mesh convergence analysis

    图  12  各构型仿真与实验结果对比

    Figure  12.  Comparison of experimental and simulated results for all configurations

    表  1  N01的基本力学参数

    Table  1.   Performance parameters of configuration N01

    Specimen lable$ {v}_{12} $$ {\rho }_{\mathrm{r}} $$ {{E}_{1}^{*}}/{{E}_{\mathrm{s}}} $
    N0102.260γ0.5γ
    Notes: $ {v}_{12} $—Poisson's ratio; $ {\rho }_{\mathrm{r}} $—Relative density; $ {E}_{1}^{*} $—Young's modulus of the structure; $ {E}_{\mathrm{s}} $—Young's modulus of the material.
    下载: 导出CSV

    表  2  新型由星形与内凹六边形组合在一起中心对称而成的蜂窝结构(WSH)的几何参数[20]

    Table  2.   Geometrical parameters of windmill-like configuration composed of stars and hexagons (WSH) auxetic configurations[20]

    Specimen labelλγt/mmSize/mm3
    N0100.1521125×125×63
    N121/2
    N232/3
    N111
    Note: λ—The ratio of R1 to R2.
    下载: 导出CSV

    表  3  传统负泊松比结构的几何参数[20]

    Table  3.   Geometrical parameters of conventional auxetic configurations[20]

    Specimen
    label
    Length of
    unit cell/mm
    Angle of
    unit cell/(°)
    t/mmSize/
    mm3
    S16.036.81125×125×63
    H16.363.4
    Notes: S—Star; H—Hexagon.
    下载: 导出CSV

    表  4  3D打印母材尼龙PA12的材料参数[20]

    Table  4.   Material properties of nylon PA12 for 3D printing[20]

    ParameterEs/MPav$ {\rho }_{\mathrm{s}} $/(kg·m−3)
    Value13580.33940
    Notes: v—Poisson's ratio; $ {\rho }_{\mathrm{s}} $—Material density.
    下载: 导出CSV

    表  5  不同网格密度的尺寸及数量

    Table  5.   Size and quantity of different mesh

    Average size/mmMesh quantity
    Coarse mesh4.75157638
    Normal mesh3.00304943
    Finer mesh1.70765621
    下载: 导出CSV
  • [1] ZHANG J J, LU G X, YOU Z. Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review[J]. Composites Part B: Engineering,2020,201:108340. doi: 10.1016/j.compositesb.2020.108340
    [2] JIN F, WU D J, PAN Z Z, et al. Magnetic anisotropy of high-entropy oxides with negative Poisson's ratio[J]. Ceramics International, 2023, 49(11): 16625-16629.
    [3] 于雅琳, 李健芳, 黄智彬, 等. 复合材料负泊松比格栅结构设计及力学性能评价[J]. 复合材料学报, 2021, 38(4):1107-1114. doi: 10.13801/j.cnki.fhclxb.20200623.002

    YU Yalin, LI Jianfang, HUANG Zhibin, et al. Structural design and mechanical characterization of an auxetic advanced grid structure composite[J]. Acta Materiae Compositae Sinica,2021,38(4):1107-1114(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200623.002
    [4] XIAO D B, KANG X, LI Y, et al. Insight into the negative Poisson's ratio effect of metallic auxetic reentrant honeycomb under dynamic compression[J]. Materials Science and Engineering: A,2019,763:138151. doi: 10.1016/j.msea.2019.138151
    [5] AI L, GAO X L. Metamaterials with negative Poisson's ratio and non-positive thermal expansion[J]. Composite Structures,2017,162:70-84. doi: 10.1016/j.compstruct.2016.11.056
    [6] LIN H B, LIU H T, AN M R. In-plane dynamic impact behaviors of a self-similar concentric star honeycomb with negative Poisson’s ratio[J]. Materials Today Communications,2022,33:104474. doi: 10.1016/j.mtcomm.2022.104474
    [7] LAN X Q, MENG L, ZHAO J, et al. Mechanical properties and damage characterizations of 3D double-arrowhead auxetic structure with high-relative-density realized via selective laser melting[J]. European Journal of Mechanics—A/Solids,2021,90:104386. doi: 10.1016/j.euromechsol.2021.104386
    [8] JIANG Y Y, LI Y. Novel 3D-printed hybrid auxetic mechanical metamaterial with chirality-induced sequential cell opening mechanisms[J]. Advanced Engineering Materials,2018,20(2):1700744. doi: 10.1002/adem.201700744
    [9] SCHAEDLER T A, CARTER W B. Architected cellular materials[J]. Annual Review of Materials Research, 2016, 46: 187-210.
    [10] ZHANG Y, CAI D A, PENG J F, et al. On low-velocity impact behavior of sandwich composites with negative Poisson's ratio lattice cores[J]. Composite Structures,2022,299:116078. doi: 10.1016/j.compstruct.2022.116078
    [11] LI Q Q, ZHAN L Y, MIAO X J, et al. Morning glory-inspired lattice structure with negative Poisson's ratio effect[J]. International Journal of Mechanical Sciences,2022,232:107643. doi: 10.1016/j.ijmecsci.2022.107643
    [12] WANG S A, DENG C, OLANREWAJU O, et al. Design and modeling of a novel three dimensional auxetic reentrant honeycomb structure for energy absorption[J]. Composite Structures,2022,280:114882. doi: 10.1016/j.compstruct.2021.114882
    [13] 孙龙, 任鑫, 张毅, 等. 一种刚度可调控的负泊松比管状结构[J]. 复合材料学报, 2022, 39(4):1813-1823. doi: 10.13801/j.cnki.fhclxb.20210531.001

    SUN Long, REN Xin, ZHANG Yi, et al. An auxetic tubular structure with tuneable stiffness[J]. Acta Materiae Compositae Sinica,2022,39(4):1813-1823(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210531.001
    [14] LI D, YIN J H, DONG L, et al. Strong re-entrant cellular structures with negative Poisson's ratio[J]. Journal of Materials Science,2018,53(5):3493-3499. doi: 10.1007/s10853-017-1809-8
    [15] 吴文旺, 肖登宝, 孟嘉旭, 等. 负泊松比结构力学设计、抗冲击性能及在车辆工程应用与展望[J]. 力学学报, 2021, 53(3):611-638. doi: 10.6052/0459-1879-20-333

    WU Wenwang, XIAO Dengbao, MENG Jiaxu, et al. Mechanical design, impact energy absorption and applications of auxetic structures in automobile lightweight engi-neering[J]. Chinese Journal of Theoretical and Applied Mechanics,2021,53(3):611-638(in Chinese). doi: 10.6052/0459-1879-20-333
    [16] 吴文旺, 夏热. 轻质点阵超结构设计及多功能力学性能调控方法[J]. 力学进展, 2022, 52(3):673-718. doi: 10.6052/1000-0992-22-002

    WU Wenwang, XIA Re. Design of lightweight lattice meta-structures and approaches to manipulate their multi-functional mechanical properties[J]. Advances in Mechanics,2022,52(3):673-718(in Chinese). doi: 10.6052/1000-0992-22-002
    [17] ZHANG Y, FAN X L, LI J Q, et al. Low-frequency vibration insulation performance of the pyramidal lattice sandwich metamaterial beam[J]. Composite Structures,2021,278:114719. doi: 10.1016/j.compstruct.2021.114719
    [18] TIAN X Y, CHEN W J, GAO R J, et al. Merging bragg and local resonance bandgaps in perforated elastic metamaterials with embedded spiral holes[J]. Journal of Sound and Vibration,2021,500:116036. doi: 10.1016/j.jsv.2021.116036
    [19] 王东涛, 朱大巍, 黄修长. 局域共振子对手性覆盖层振动和声辐射抑制的影响[J]. 噪声与振动控制, 2015, 35(6):22-25, 46.

    WANG Dongtao, ZHU Dawei, HUANG Xiuchang. Influences of internal resonances on the vibration and sound reduction of chiral layer coating[J]. Noise and Vibration Control,2015,35(6):22-25, 46(in Chinese).
    [20] ZHANG W M, LI Z Y, YANG J S, et al. A lightweight rotationally arranged auxetic structure with excellent energy absorption performance[J]. Mechanics of Materials,2022,166:104244. doi: 10.1016/j.mechmat.2022.104244
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  908
  • HTML全文浏览量:  431
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-29
  • 修回日期:  2023-05-23
  • 录用日期:  2023-06-02
  • 网络出版日期:  2023-06-13
  • 刊出日期:  2024-01-01

目录

    /

    返回文章
    返回