Pore structure and mechanical properties of foam concrete under freeze-thaw environment
-
摘要: 对4种不同密度的泡沫混凝土试样进行了冻融循环试验,借助X-CT设备扫描了泡沫混凝土的孔隙结构,并使用声发射装置测试了泡沫混凝土单轴压缩过程中的声发射特征。结果表明:泡沫混凝土在单轴压缩过程中的应力-应变关系曲线具有明显的阶段性,单轴压缩过程中的声发射事件主要集中在接触期和陡增期。冻融循环后,泡沫混凝土的孔隙率和平均孔隙直径均增大,孔径分布更离散,孔隙壁厚度不断减小,引起力学性能的下降;冻融循环降低了试样的脆性,使其声发射累计振铃计数曲线更光滑,信号的活跃度随冻融次数的增加而降低;密度为1000 kg/m3的试样在冻融循环100次后,其大部分孔径在1000 μm以下,抗压强度只降低了23.7%,具有良好的抵抗冻融侵蚀的能力。Abstract: The freeze-thaw tests of four kinds of foam concrete samples with different density were carried out. The pore structure of foam concrete was scanned with X-CT equipment, and the acoustic emission characteristics of foam concrete during uniaxial compression were tested by acoustic emission device. The results show that obvious stages exist in the process of uniaxial compression test and the acoustic emission events in the process of uniaxial compression are mainly concentrated in the contact period and steep growth period. After freeze-thaw cycles, the porosity and average pore diameter of foam concrete increase, the pore size distribution is more discrete, and the thickness of pore wall decreases, which leads to the decrease of mechanical properties. The freeze-thaw cycle reduces the brittleness of the samples, and the cumulative ring count curve of acoustic emission is smoother. Besides, the signal activity decreases with the increase of freeze-thaw times. After 100 freeze-thaw cycles, most of the pore size of the sample with 1000 kg/m3 density is less than 1000 μm, and the compressive strength is only reduced by 23.7%. It has a good ability to resist freeze-thaw erosion.
-
Key words:
- foam concrete /
- freeze-thaw cycles /
- uniaxial compression /
- acoustic emission /
- pore structure
-
表 1 泡沫混凝土的配合比及实测特征值
Table 1. Mixture proportion and measured characteristic value of foam concrete
Density level Cement
/(kg·m−3)Foam
/(kg·m−3)Water
/(kg·m−3)Wet density
/(kg·m−3)Dry density
/(kg·m−3)Porosity
/%A05 364.0 36.85 218.4 619.0 524.6 68.8 A06 430.7 33.55 258.4 722.4 642.1 58.5 A08 564.1 26.40 338.5 929.2 853.8 52.5 A10 697.6 19.80 418.6 1136.0 1054.6 46.3 表 2 各密度泡沫混凝土的声发射(AE)累计振铃计数
Table 2. Cumulative acoustic emission (AE) ringing count of foam concrete with different densities
Freeze-thaw cycle A05 A06 A08 A10 0 66652 58324 21028 15946 25 49069 51653 16002 16021 50 35845 37752 15673 13875 75 27061 38847 14583 12601 100 31698 17542 12097 11792 表 3 A06与A10试样的孔隙结构参数
Table 3. Pore structure parameters of A06 and A10 samples
Density level Freeze-thaw cycle Porosity
/%Pore number Average pore
wall thickness
/μmPore diameter/μm Max. Min. Average A06 0 58.5 117468 107 3157 41 907 50 64.1 74341 92 3811 40 1262 100 78.8 62159 74 5384 41 1403 A10 0 46.3 176610 248 1208 42 238 50 52.8 125782 185 2105 41 355 100 57.3 102647 154 2357 41 527 Notes: Limited by the resolution and testing accuracy of X-CT equipment, the minimum pore size calculated by three-dimensional reconstruction is about 40 μm; But in fact, the minimum pore size of foam concrete should be smaller than 40 μm and different from each other. -
[1] 袁志颖, 陈波, 陈家林, 等. 泡沫混凝土孔结构表征及其对力学性能的影响[J]. 复合材料学报, 2023, 40(7): 4117-4127.YUAN Zhiying, CHEN Bo, CHEN Jialin, et al. Characterization of pore structure of foamed concrete and its influence on performance[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4117-4127(in Chinese). [2] 张文华, 杨冯皓, 吕毓静, 等. 泡沫混凝土的稳泡措施和机理研究进展[J]. 硅酸盐学报, 2021, 49(10):2266-2275.ZHANG Wenhua, YANG Fenghao, LYU Yujing, et al. Research progress on foam stabilization method and mechanism of foamed concrete[J]. Journal of the Chinese Ceramic Society,2021,49(10):2266-2275(in Chinese). [3] 张磊, 杨鼎宜. 轻质泡沫混凝土的研究及应用现状[J]. 混凝土, 2005(8):44-48.ZHANG Lei, YANG Dingyi. State of study and application of light weight foam concrete[J]. Concrete,2005(8):44-48(in Chinese). [4] AMRAN Y H M, FARZADNIA N, ALI A A A. Properties and applications of foamed concrete: A review[J]. Construction and Building Materials,2015,101:990-1005. doi: 10.1016/j.conbuildmat.2015.10.112 [5] SHE W, CHEN Y Q, ZHANG Y S, et al. Characterization and simulation of microstructure and thermal properties of foamed concrete[J]. Construction and Building Materials,2013,47:1278-1291. doi: 10.1016/j.conbuildmat.2013.06.027 [6] 高志涵, 陈波, 陈家林, 等. 基于X-CT的泡沫混凝土孔隙结构与导热性能研究[J]. 建筑材料学, 2023, 26(7): 723-730.GAO Zhihan, CHEN Bo, CHEN Jialin, et al. Study on pore structure and thermal conductivity of foam concrete based on X-CT[J]. Journal of Building Materials, 2023, 26(7): 723-730(in Chinese). [7] 李凌洁, 穆彦虎, 明锋, 等. 循环冻融下寒区工程常用保温材料性能变化试验研究[J]. 冰川冻土, 2022, 44(2):693-707.LI Lingjie, MU Yanhu, MING Feng, et al. Laboratory tests on impacts of cyclic freeze-thaw on properties of thermal insulation materials used in cold regions engineering[J]. Journal of Glaciology and Geocryology,2022,44(2):693-707(in Chinese). [8] WANG R, GAO P W, TIAN M H, et al. Experimental study on mechanical and waterproof performance of lightweight foamed concrete mixed with crumb rubber[J]. Construction and Building Materials,2019,209:655-664. doi: 10.1016/j.conbuildmat.2019.03.157 [9] 叶林杰, 夏新华, 吴迪高, 等. 基于冻融循环和疲劳荷载共同作用下泡沫混凝土的微观力学性能研究[J]. 混凝土, 2022(9):56-61.YE Linjie, XIA Xinhua, WU Digao, et al. Study on the micro-mechanical properties of foam concrete under the combination of freeze-thaw cycle and fatigue load[J]. Concrete,2022(9):56-61(in Chinese). [10] 宋强, 张鹏, 鲍玖文, 等. 泡沫混凝土的研究进展与应用[J]. 硅酸盐学报, 2021, 49(2):398-410.SONG Qiang, ZHANG Peng, BAO Jiuwen, et al. Research progress and application of foam concrete[J]. Journal of the Chinese Ceramic Society,2021,49(2):398-410(in Chinese). [11] GENCEL O, NODEHI M, BAYRAKTAR O Y, et al. Basalt fiber-reinforced foam concrete containing silica fume: An experimental study[J]. Construction and Building Materials,2022,326:126861. doi: 10.1016/j.conbuildmat.2022.126861 [12] 方永浩, 王锐, 庞二波, 等. 水泥–粉煤灰泡沫混凝土抗压强度与气孔结构的关系[J]. 硅酸盐学报, 2010, 38(4):621-626.FANG Yonghao, WANG Rui, PANG Erbo, et al. Relationship between compressive strength and air-void structure of foamed cement-fly ash concrete[J]. Journal of the Chinese Ceramic Society,2010,38(4):621-626(in Chinese). [13] 李升涛, 陈徐东, 张锦华, 等. 不同密度等级泡沫混凝土的单轴压缩破坏特征[J]. 建筑材料学报, 2021, 24(6):1146-1153. doi: 10.3969/j.issn.1007-9629.2021.06.004LI Shengtao, CHEN Xudong, ZHANG Jinhua, et al. Failure characteristics of foam concrete with different density under uniaxial compression[J]. Journal of Building Materials,2021,24(6):1146-1153(in Chinese). doi: 10.3969/j.issn.1007-9629.2021.06.004 [14] 胡艳丽, 郝晋高, 赵向敏, 等. 泡沫轻质混凝土性能与孔结构关系研究[J]. 南京理工大学学报, 2019, 43(3):363-366.HU Yanli, HAO Jingao, ZHAO Xiangmin, et al. Relationship between properties and pore structure of foamed lightweight concrete[J]. Journal of Nanjing University of Science and Technology,2019,43(3):363-366(in Chinese). [15] 刘一飞, 李天成, 曾雪花, 等. 纤维增强泡沫混凝土的力学强度及吸水性能[J]. 土木与环境工程学报, 2019, 41(3):120-126.LIU Yifei, LI Tiancheng, ZENG Xuehua, et al. Mechanical strength and water absorption capability of fiber-reinforced foamed concrete[J]. Journal of Civil and Environmental Engineering,2019,41(3):120-126(in Chinese). [16] 张亚梅, 孙超, 王申, 等. 不同密度等级泡沫混凝土的性能和孔结构[J]. 重庆大学学报, 2020, 43(8):54-63.ZHANG Yamei, SUN Chao, WANG Shen, et al. Performance and pore structure of foam concrete with different density grades[J]. Journal of Chongqing University,2020,43(8):54-63(in Chinese). [17] 王小娟, 刘路, 贾昆程, 等. 陶粒泡沫混凝土的力学性能及吸能特性[J]. 建筑材料学报, 2021, 24(1):207-215.WANG Xiaojuan, LIU Lu, JIA Kuncheng, et al. Mechanical properties and energy absorption characteristics of ceramsite foam concrete[J]. Journal of Building Materials,2021,24(1):207-215(in Chinese). [18] 陈波, 陈家林, 强晟, 等. 冻融环境下蒸养混凝土声发射试验研究[J]. 华中科技大学学报(自然科学版), 2023, 51(8): 41-46.CHEN Bo, CHEN Jialin, QIANG Sheng, et al. Experimental study on the acoustic emission of steam cured concrete in freeze-thaw environment[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51(8): 41-46(in Chinese). [19] JONES M R, MCCARTHY A. Utilising unprocessed low-lime coal fly ash in foamed concrete[J]. Fuel,2005,84(11):1398-1409. doi: 10.1016/j.fuel.2004.09.030 [20] 中华人民共和国住房和城乡建设部. 泡沫混凝土: JG/T 266—2011[S]. 北京: 中国标准出版社, 2011.Ministry of Housing and Urban-Rural Development of the People's Republic of China. Foamed concrete: JG/T 266—2011[S]. Beijing: Standards Press of China, 2011(in Chinese). [21] 中华人民共和国水利部. 水工混凝土试验规程: SL/T 352—2020[S]. 北京: 中国标准出版社, 2020.Ministry of Water Resources of the People's Republic of China. Test code for hydraulic concrete: SL/T 352—2020[S]. Beijing: Standards Press of China, 2020(in Chinese). [22] 周宏元, 王业斌, 王小娟, 等. 泡沫混凝土压缩性能尺寸效应研究[J]. 材料导报, 2021, 35(18):18076-18082, 18095. doi: 10.11896/cldb.20090009ZHOU Hongyuan, WANG Yebin, WANG Xiaojuan, et al. Size effect of foam concrete subjected to quasi-static compression[J]. Materials Report,2021,35(18):18076-18082, 18095(in Chinese). doi: 10.11896/cldb.20090009 [23] 周程涛, 陈波, 高志涵. 冻融环境下泡沫混凝土的单轴压缩特性[J]. 硅酸盐通报, 2023, 42(4):1233-1241.ZHOU Chengtao, CHEN Bo, GAO Zhihan, et al. Uniaxial compression characteristics of foamed concrete under freeze-thaw environment[J]. Bulletin of the Chinese Ceramic Society,2023,42(4):1233-1241(in Chinese). [24] 朱兴一, 张启帆, 于越, 等. 基于离散元的EMAS泡沫混凝土贯入力学性能研究[J]. 建筑材料学报, 2023, 26(2):122-128.ZHU Xingyi, ZHANG Qifan, YU Yue, et al. Penetration mechanical properties of EMAS foam concrete based on discrete element simulation[J]. Journal of Building Materials,2023,26(2):122-128(in Chinese). [25] 黄海健, 宫能平, 穆朝民, 等. 泡沫混凝土动态力学性能及本构关系[J]. 建筑材料学报, 2020, 23(2):466-472.HUANG Haijian, GONG Nengping, MU Chaomin, et al. Dynamic mechanical properties and constitutive relation of foam concrete[J]. Journal of Building Materials,2020,23(2):466-472(in Chinese). [26] CHEN B, CHEN J, CHEN X, et al. Experimental study on compressive strength and frost resistance of steam cured concrete with mineral admixtures[J]. Construction and Building Materials,2022,325:126725. doi: 10.1016/j.conbuildmat.2022.126725 [27] CARNÌ D L, SCURO C, LAMONACA F, et al. Damage analysis of concrete structures by means of acoustic emissions technique[J]. Composites Part B: Engineering,2017,115:79-86. doi: 10.1016/j.compositesb.2016.10.031 [28] NOR N M, ABDULLAH S, SALIAH S N M. On the need to determine the acoustic emission trend for reinforced concrete beam fatigue damage[J]. International Journal of Fatigue,2021,152:106421. doi: 10.1016/j.ijfatigue.2021.106421 [29] BENABOUD S, TAKARLI M, POUTEAU B, et al. Fatigue process analysis of aged asphalt concrete from two-point bending test using acoustic emission and curve fitting techniques[J]. Construction and Building Materials,2021,301:124109. doi: 10.1016/j.conbuildmat.2021.124109 [30] DE SMEDT M, VRIJDAGHS R, VAN STEEN C, et al. Damage analysis in steel fibre reinforced concrete under monotonic and cyclic bending by means of acoustic emission monitoring[J]. Cement & Concrete Composites,2020,114:103765. [31] LI S T, CHEN X D, ZHANG J H. Acoustic emission characteristics in deterioration behavior of dam concrete under post-peak cyclic test[J]. Construction and Building Materials,2021,292:123324. doi: 10.1016/j.conbuildmat.2021.123324 [32] 陈波, 袁志颖, 陈家林, 等. 冻融循环后蒸养混凝土损伤-声发射特性研究[J]. 建筑材料学报, 2023, 26(2):143-149. doi: 10.3969/j.issn.1007-9629.2023.02.005CHEN Bo, YUAN Zhiying, CHEN Jialin, et al. Damage-acoustic emission characteristics of steam-cured concrete after freeze-thaw cycles[J]. Journal of Building Materials,2023,26(2):143-149(in Chinese). doi: 10.3969/j.issn.1007-9629.2023.02.005 [33] 甘一雄, 吴顺川, 任义, 等. 基于声发射上升时间/振幅与平均频率值的花岗岩劈裂破坏评价指标研究[J]. 岩土力学, 2020, 41(7):2324-2332.GAN Yixiong, WU Shunyi, REN Yi, et al. Evaluation indexes of granite splitting failure based on RA and AF of AE parameters[J]. Rock and Soil Mechanics,2020,41(7):2324-2332(in Chinese). [34] MAGBOOL H M, ZEYAD A M. The effect of various steel fibers and volcanic pumice powder on fracture characteristics of self-compacting concrete[J]. Construction and Building Materials,2021,312:125444. doi: 10.1016/j.conbuildmat.2021.125444 [35] MARKESET G, HILLERBORG A. Softening of concrete in compression—Localization and size effects[J]. Cement and Concrete Research,1995,25(4):702-708. doi: 10.1016/0008-8846(95)00059-L [36] MURALIDHARA S, PRASAD B K R, ESKANDARI H, et al. Fracture process zone size and true fracture energy of concrete using acoustic emission[J]. Construction and Building Materials,2010,24(4):479-486. doi: 10.1016/j.conbuildmat.2009.10.014 [37] 庞超明, 王少华. 泡沫混凝土孔结构的表征及其对性能的影响[J]. 建筑材料学报, 2017, 20(1):93-98.PANG Chaoming, WANG Shaohua. Void characterization and effect on properties of foam concrete[J]. Journal of Building Materials,2017,20(1):93-98(in Chinese). [38] 高志浩, 王玲, 王振地, 等. 基于数字图像处理的单面盐冻轻骨料混凝土孔隙和微裂纹定量分析[J]. 硅酸盐学报, 2023, 51(8): 1908-1919.GAO Zhihao, WANG Ling, WANG Zhendi, et al. Quantification of salt freeze-thaw-induced pores and microcracks in lightweight aggregate concrete using digital image processing[J]. Journal of the Chinese Ceramic Society, 2023, 51(8): 1908-1919(in Chinese).