留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冻融环境下泡沫混凝土的孔结构与力学性能

高志涵 陈波 陈家林 袁志颖

高志涵, 陈波, 陈家林, 等. 冻融环境下泡沫混凝土的孔结构与力学性能[J]. 复合材料学报, 2024, 41(2): 827-838. doi: 10.13801/j.cnki.fhclxb.20230608.001
引用本文: 高志涵, 陈波, 陈家林, 等. 冻融环境下泡沫混凝土的孔结构与力学性能[J]. 复合材料学报, 2024, 41(2): 827-838. doi: 10.13801/j.cnki.fhclxb.20230608.001
GAO Zhihan, CHEN Bo, CHEN Jialin, et al. Pore structure and mechanical properties of foam concrete under freeze-thaw environment[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 827-838. doi: 10.13801/j.cnki.fhclxb.20230608.001
Citation: GAO Zhihan, CHEN Bo, CHEN Jialin, et al. Pore structure and mechanical properties of foam concrete under freeze-thaw environment[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 827-838. doi: 10.13801/j.cnki.fhclxb.20230608.001

冻融环境下泡沫混凝土的孔结构与力学性能

doi: 10.13801/j.cnki.fhclxb.20230608.001
基金项目: 国家自然科学基金面上项目(52079049);国家自然科学基金重点项目(51739003);国家重点实验室基本科研业务费(522012272)
详细信息
    通讯作者:

    陈波,博士,教授,博士生导师,研究方向为水工混凝土新材料 E-mail: chenbo@hhu.edu.cn

  • 中图分类号: TU528.44;TB332

Pore structure and mechanical properties of foam concrete under freeze-thaw environment

Funds: General Program of National Natural Science Foundation of China (52079049); Key Program of National Natural Science Foundation of China (51739003); Basic Scientific Research Business Expenses of National Key Laboratories (522012272)
  • 摘要: 对4种不同密度的泡沫混凝土试样进行了冻融循环试验,借助X-CT设备扫描了泡沫混凝土的孔隙结构,并使用声发射装置测试了泡沫混凝土单轴压缩过程中的声发射特征。结果表明:泡沫混凝土在单轴压缩过程中的应力-应变关系曲线具有明显的阶段性,单轴压缩过程中的声发射事件主要集中在接触期和陡增期。冻融循环后,泡沫混凝土的孔隙率和平均孔隙直径均增大,孔径分布更离散,孔隙壁厚度不断减小,引起力学性能的下降;冻融循环降低了试样的脆性,使其声发射累计振铃计数曲线更光滑,信号的活跃度随冻融次数的增加而降低;密度为1000 kg/m3的试样在冻融循环100次后,其大部分孔径在1000 μm以下,抗压强度只降低了23.7%,具有良好的抵抗冻融侵蚀的能力。

     

  • 图  1  试验仪器示意图

    AE-MTS—Acoustic emission-uniaxial compression

    Figure  1.  Schematic diagram of test instrument

    图  2  各密度泡沫混凝土的应力-应变关系曲线

    Figure  2.  Stress-strain curves of foam concrete with different densities

    图  3  泡沫混凝土的受压特征图

    Figure  3.  Compression characteristic of foam concrete

    图  4  A06与A10的声发射特征

    F-T—Freeze-thaw

    Figure  4.  Acoustic emission characteristics of A06 and A10

    图  5  冻融循环后泡沫混凝土的三维扫描图

    Figure  5.  Three-dimensional scanning map of foam concrete after freeze-thaw cycle

    图  6  两试样在冻融循环前后的孔隙网络模型

    Figure  6.  Pore network models of two samples before and after freeze-thaw cycle

    图  7  A06与A10试样的孔隙分布特征

    Figure  7.  Pore distribution characteristics of A06 and A10 samples

    表  1  泡沫混凝土的配合比及实测特征值

    Table  1.   Mixture proportion and measured characteristic value of foam concrete

    Density levelCement
    /(kg·m−3)
    Foam
    /(kg·m−3)
    Water
    /(kg·m−3)
    Wet density
    /(kg·m−3)
    Dry density
    /(kg·m−3)
    Porosity
    /%
    A05364.036.85218.4 619.0 524.668.8
    A06430.733.55258.4 722.4 642.158.5
    A08564.126.40338.5 929.2 853.852.5
    A10697.619.80418.61136.01054.646.3
    下载: 导出CSV

    表  2  各密度泡沫混凝土的声发射(AE)累计振铃计数

    Table  2.   Cumulative acoustic emission (AE) ringing count of foam concrete with different densities

    Freeze-thaw cycleA05A06A08A10
    066652583242102815946
    2549069516531600216021
    5035845377521567313875
    7527061388471458312601
    10031698175421209711792
    下载: 导出CSV

    表  3  A06与A10试样的孔隙结构参数

    Table  3.   Pore structure parameters of A06 and A10 samples

    Density levelFreeze-thaw cyclePorosity
    /%
    Pore numberAverage pore
    wall thickness
    /μm
    Pore diameter/μm
    Max.Min.Average
    A06 0 58.5 117468 107 3157 41 907
    50 64.1 74341 92 3811 40 1262
    100 78.8 62159 74 5384 41 1403
    A10 0 46.3 176610 248 1208 42 238
    50 52.8 125782 185 2105 41 355
    100 57.3 102647 154 2357 41 527
    Notes: Limited by the resolution and testing accuracy of X-CT equipment, the minimum pore size calculated by three-dimensional reconstruction is about 40 μm; But in fact, the minimum pore size of foam concrete should be smaller than 40 μm and different from each other.
    下载: 导出CSV
  • [1] 袁志颖, 陈波, 陈家林, 等. 泡沫混凝土孔结构表征及其对力学性能的影响[J]. 复合材料学报, 2023, 40(7): 4117-4127.

    YUAN Zhiying, CHEN Bo, CHEN Jialin, et al. Characterization of pore structure of foamed concrete and its influence on performance[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4117-4127(in Chinese).
    [2] 张文华, 杨冯皓, 吕毓静, 等. 泡沫混凝土的稳泡措施和机理研究进展[J]. 硅酸盐学报, 2021, 49(10):2266-2275.

    ZHANG Wenhua, YANG Fenghao, LYU Yujing, et al. Research progress on foam stabilization method and mechanism of foamed concrete[J]. Journal of the Chinese Ceramic Society,2021,49(10):2266-2275(in Chinese).
    [3] 张磊, 杨鼎宜. 轻质泡沫混凝土的研究及应用现状[J]. 混凝土, 2005(8):44-48.

    ZHANG Lei, YANG Dingyi. State of study and application of light weight foam concrete[J]. Concrete,2005(8):44-48(in Chinese).
    [4] AMRAN Y H M, FARZADNIA N, ALI A A A. Properties and applications of foamed concrete: A review[J]. Construction and Building Materials,2015,101:990-1005. doi: 10.1016/j.conbuildmat.2015.10.112
    [5] SHE W, CHEN Y Q, ZHANG Y S, et al. Characterization and simulation of microstructure and thermal properties of foamed concrete[J]. Construction and Building Materials,2013,47:1278-1291. doi: 10.1016/j.conbuildmat.2013.06.027
    [6] 高志涵, 陈波, 陈家林, 等. 基于X-CT的泡沫混凝土孔隙结构与导热性能研究[J]. 建筑材料学, 2023, 26(7): 723-730.

    GAO Zhihan, CHEN Bo, CHEN Jialin, et al. Study on pore structure and thermal conductivity of foam concrete based on X-CT[J]. Journal of Building Materials, 2023, 26(7): 723-730(in Chinese).
    [7] 李凌洁, 穆彦虎, 明锋, 等. 循环冻融下寒区工程常用保温材料性能变化试验研究[J]. 冰川冻土, 2022, 44(2):693-707.

    LI Lingjie, MU Yanhu, MING Feng, et al. Laboratory tests on impacts of cyclic freeze-thaw on properties of thermal insulation materials used in cold regions engineering[J]. Journal of Glaciology and Geocryology,2022,44(2):693-707(in Chinese).
    [8] WANG R, GAO P W, TIAN M H, et al. Experimental study on mechanical and waterproof performance of lightweight foamed concrete mixed with crumb rubber[J]. Construction and Building Materials,2019,209:655-664. doi: 10.1016/j.conbuildmat.2019.03.157
    [9] 叶林杰, 夏新华, 吴迪高, 等. 基于冻融循环和疲劳荷载共同作用下泡沫混凝土的微观力学性能研究[J]. 混凝土, 2022(9):56-61.

    YE Linjie, XIA Xinhua, WU Digao, et al. Study on the micro-mechanical properties of foam concrete under the combination of freeze-thaw cycle and fatigue load[J]. Concrete,2022(9):56-61(in Chinese).
    [10] 宋强, 张鹏, 鲍玖文, 等. 泡沫混凝土的研究进展与应用[J]. 硅酸盐学报, 2021, 49(2):398-410.

    SONG Qiang, ZHANG Peng, BAO Jiuwen, et al. Research progress and application of foam concrete[J]. Journal of the Chinese Ceramic Society,2021,49(2):398-410(in Chinese).
    [11] GENCEL O, NODEHI M, BAYRAKTAR O Y, et al. Basalt fiber-reinforced foam concrete containing silica fume: An experimental study[J]. Construction and Building Materials,2022,326:126861. doi: 10.1016/j.conbuildmat.2022.126861
    [12] 方永浩, 王锐, 庞二波, 等. 水泥–粉煤灰泡沫混凝土抗压强度与气孔结构的关系[J]. 硅酸盐学报, 2010, 38(4):621-626.

    FANG Yonghao, WANG Rui, PANG Erbo, et al. Relationship between compressive strength and air-void structure of foamed cement-fly ash concrete[J]. Journal of the Chinese Ceramic Society,2010,38(4):621-626(in Chinese).
    [13] 李升涛, 陈徐东, 张锦华, 等. 不同密度等级泡沫混凝土的单轴压缩破坏特征[J]. 建筑材料学报, 2021, 24(6):1146-1153. doi: 10.3969/j.issn.1007-9629.2021.06.004

    LI Shengtao, CHEN Xudong, ZHANG Jinhua, et al. Failure characteristics of foam concrete with different density under uniaxial compression[J]. Journal of Building Materials,2021,24(6):1146-1153(in Chinese). doi: 10.3969/j.issn.1007-9629.2021.06.004
    [14] 胡艳丽, 郝晋高, 赵向敏, 等. 泡沫轻质混凝土性能与孔结构关系研究[J]. 南京理工大学学报, 2019, 43(3):363-366.

    HU Yanli, HAO Jingao, ZHAO Xiangmin, et al. Relationship between properties and pore structure of foamed lightweight concrete[J]. Journal of Nanjing University of Science and Technology,2019,43(3):363-366(in Chinese).
    [15] 刘一飞, 李天成, 曾雪花, 等. 纤维增强泡沫混凝土的力学强度及吸水性能[J]. 土木与环境工程学报, 2019, 41(3):120-126.

    LIU Yifei, LI Tiancheng, ZENG Xuehua, et al. Mechanical strength and water absorption capability of fiber-reinforced foamed concrete[J]. Journal of Civil and Environmental Engineering,2019,41(3):120-126(in Chinese).
    [16] 张亚梅, 孙超, 王申, 等. 不同密度等级泡沫混凝土的性能和孔结构[J]. 重庆大学学报, 2020, 43(8):54-63.

    ZHANG Yamei, SUN Chao, WANG Shen, et al. Performance and pore structure of foam concrete with different density grades[J]. Journal of Chongqing University,2020,43(8):54-63(in Chinese).
    [17] 王小娟, 刘路, 贾昆程, 等. 陶粒泡沫混凝土的力学性能及吸能特性[J]. 建筑材料学报, 2021, 24(1):207-215.

    WANG Xiaojuan, LIU Lu, JIA Kuncheng, et al. Mechanical properties and energy absorption characteristics of ceramsite foam concrete[J]. Journal of Building Materials,2021,24(1):207-215(in Chinese).
    [18] 陈波, 陈家林, 强晟, 等. 冻融环境下蒸养混凝土声发射试验研究[J]. 华中科技大学学报(自然科学版), 2023, 51(8): 41-46.

    CHEN Bo, CHEN Jialin, QIANG Sheng, et al. Experimental study on the acoustic emission of steam cured concrete in freeze-thaw environment[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51(8): 41-46(in Chinese).
    [19] JONES M R, MCCARTHY A. Utilising unprocessed low-lime coal fly ash in foamed concrete[J]. Fuel,2005,84(11):1398-1409. doi: 10.1016/j.fuel.2004.09.030
    [20] 中华人民共和国住房和城乡建设部. 泡沫混凝土: JG/T 266—2011[S]. 北京: 中国标准出版社, 2011.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Foamed concrete: JG/T 266—2011[S]. Beijing: Standards Press of China, 2011(in Chinese).
    [21] 中华人民共和国水利部. 水工混凝土试验规程: SL/T 352—2020[S]. 北京: 中国标准出版社, 2020.

    Ministry of Water Resources of the People's Republic of China. Test code for hydraulic concrete: SL/T 352—2020[S]. Beijing: Standards Press of China, 2020(in Chinese).
    [22] 周宏元, 王业斌, 王小娟, 等. 泡沫混凝土压缩性能尺寸效应研究[J]. 材料导报, 2021, 35(18):18076-18082, 18095. doi: 10.11896/cldb.20090009

    ZHOU Hongyuan, WANG Yebin, WANG Xiaojuan, et al. Size effect of foam concrete subjected to quasi-static compression[J]. Materials Report,2021,35(18):18076-18082, 18095(in Chinese). doi: 10.11896/cldb.20090009
    [23] 周程涛, 陈波, 高志涵. 冻融环境下泡沫混凝土的单轴压缩特性[J]. 硅酸盐通报, 2023, 42(4):1233-1241.

    ZHOU Chengtao, CHEN Bo, GAO Zhihan, et al. Uniaxial compression characteristics of foamed concrete under freeze-thaw environment[J]. Bulletin of the Chinese Ceramic Society,2023,42(4):1233-1241(in Chinese).
    [24] 朱兴一, 张启帆, 于越, 等. 基于离散元的EMAS泡沫混凝土贯入力学性能研究[J]. 建筑材料学报, 2023, 26(2):122-128.

    ZHU Xingyi, ZHANG Qifan, YU Yue, et al. Penetration mechanical properties of EMAS foam concrete based on discrete element simulation[J]. Journal of Building Materials,2023,26(2):122-128(in Chinese).
    [25] 黄海健, 宫能平, 穆朝民, 等. 泡沫混凝土动态力学性能及本构关系[J]. 建筑材料学报, 2020, 23(2):466-472.

    HUANG Haijian, GONG Nengping, MU Chaomin, et al. Dynamic mechanical properties and constitutive relation of foam concrete[J]. Journal of Building Materials,2020,23(2):466-472(in Chinese).
    [26] CHEN B, CHEN J, CHEN X, et al. Experimental study on compressive strength and frost resistance of steam cured concrete with mineral admixtures[J]. Construction and Building Materials,2022,325:126725. doi: 10.1016/j.conbuildmat.2022.126725
    [27] CARNÌ D L, SCURO C, LAMONACA F, et al. Damage analysis of concrete structures by means of acoustic emissions technique[J]. Composites Part B: Engineering,2017,115:79-86. doi: 10.1016/j.compositesb.2016.10.031
    [28] NOR N M, ABDULLAH S, SALIAH S N M. On the need to determine the acoustic emission trend for reinforced concrete beam fatigue damage[J]. International Journal of Fatigue,2021,152:106421. doi: 10.1016/j.ijfatigue.2021.106421
    [29] BENABOUD S, TAKARLI M, POUTEAU B, et al. Fatigue process analysis of aged asphalt concrete from two-point bending test using acoustic emission and curve fitting techniques[J]. Construction and Building Materials,2021,301:124109. doi: 10.1016/j.conbuildmat.2021.124109
    [30] DE SMEDT M, VRIJDAGHS R, VAN STEEN C, et al. Damage analysis in steel fibre reinforced concrete under monotonic and cyclic bending by means of acoustic emission monitoring[J]. Cement & Concrete Composites,2020,114:103765.
    [31] LI S T, CHEN X D, ZHANG J H. Acoustic emission characteristics in deterioration behavior of dam concrete under post-peak cyclic test[J]. Construction and Building Materials,2021,292:123324. doi: 10.1016/j.conbuildmat.2021.123324
    [32] 陈波, 袁志颖, 陈家林, 等. 冻融循环后蒸养混凝土损伤-声发射特性研究[J]. 建筑材料学报, 2023, 26(2):143-149. doi: 10.3969/j.issn.1007-9629.2023.02.005

    CHEN Bo, YUAN Zhiying, CHEN Jialin, et al. Damage-acoustic emission characteristics of steam-cured concrete after freeze-thaw cycles[J]. Journal of Building Materials,2023,26(2):143-149(in Chinese). doi: 10.3969/j.issn.1007-9629.2023.02.005
    [33] 甘一雄, 吴顺川, 任义, 等. 基于声发射上升时间/振幅与平均频率值的花岗岩劈裂破坏评价指标研究[J]. 岩土力学, 2020, 41(7):2324-2332.

    GAN Yixiong, WU Shunyi, REN Yi, et al. Evaluation indexes of granite splitting failure based on RA and AF of AE parameters[J]. Rock and Soil Mechanics,2020,41(7):2324-2332(in Chinese).
    [34] MAGBOOL H M, ZEYAD A M. The effect of various steel fibers and volcanic pumice powder on fracture characteristics of self-compacting concrete[J]. Construction and Building Materials,2021,312:125444. doi: 10.1016/j.conbuildmat.2021.125444
    [35] MARKESET G, HILLERBORG A. Softening of concrete in compression—Localization and size effects[J]. Cement and Concrete Research,1995,25(4):702-708. doi: 10.1016/0008-8846(95)00059-L
    [36] MURALIDHARA S, PRASAD B K R, ESKANDARI H, et al. Fracture process zone size and true fracture energy of concrete using acoustic emission[J]. Construction and Building Materials,2010,24(4):479-486. doi: 10.1016/j.conbuildmat.2009.10.014
    [37] 庞超明, 王少华. 泡沫混凝土孔结构的表征及其对性能的影响[J]. 建筑材料学报, 2017, 20(1):93-98.

    PANG Chaoming, WANG Shaohua. Void characterization and effect on properties of foam concrete[J]. Journal of Building Materials,2017,20(1):93-98(in Chinese).
    [38] 高志浩, 王玲, 王振地, 等. 基于数字图像处理的单面盐冻轻骨料混凝土孔隙和微裂纹定量分析[J]. 硅酸盐学报, 2023, 51(8): 1908-1919.

    GAO Zhihao, WANG Ling, WANG Zhendi, et al. Quantification of salt freeze-thaw-induced pores and microcracks in lightweight aggregate concrete using digital image processing[J]. Journal of the Chinese Ceramic Society, 2023, 51(8): 1908-1919(in Chinese).
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  745
  • HTML全文浏览量:  257
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-24
  • 修回日期:  2023-05-31
  • 录用日期:  2023-06-03
  • 网络出版日期:  2023-06-09
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回