留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛表面PAMAM-PQQ功能层构建及对心内壁细胞生物学行为的影响

王义隆 黄金全 袁娅婷 宋思齐 陈俊英

王义隆, 黄金全, 袁娅婷, 等. 钛表面PAMAM-PQQ功能层构建及对心内壁细胞生物学行为的影响[J]. 复合材料学报, 2024, 41(2): 1011-1020. doi: 10.13801/j.cnki.fhclxb.20230607.002
引用本文: 王义隆, 黄金全, 袁娅婷, 等. 钛表面PAMAM-PQQ功能层构建及对心内壁细胞生物学行为的影响[J]. 复合材料学报, 2024, 41(2): 1011-1020. doi: 10.13801/j.cnki.fhclxb.20230607.002
WANG Yilong, HUANG Jinquan, YUAN Yating, et al. Construction of PAMAM-PQQ functional layer on titanium surface and its effect on biological behavior of endocardial cells[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 1011-1020. doi: 10.13801/j.cnki.fhclxb.20230607.002
Citation: WANG Yilong, HUANG Jinquan, YUAN Yating, et al. Construction of PAMAM-PQQ functional layer on titanium surface and its effect on biological behavior of endocardial cells[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 1011-1020. doi: 10.13801/j.cnki.fhclxb.20230607.002

钛表面PAMAM-PQQ功能层构建及对心内壁细胞生物学行为的影响

doi: 10.13801/j.cnki.fhclxb.20230607.002
基金项目: 国家自然科学基金(32271377;31870955)
详细信息
    通讯作者:

    陈俊英,博士,教授,博士生导师,研究方向为材料表面工程 E-mail: chenjy@263.net

  • 中图分类号: R318.08;TB333

Construction of PAMAM-PQQ functional layer on titanium surface and its effect on biological behavior of endocardial cells

Funds: National Natural Science Foundation of China (32271377; 31870955)
  • 摘要: 植/介入手术是心血管疾病最主要的治疗手段。器械植入时与血液直接接触及对植入部位造成损伤,从而引起血栓和炎症等并发症。对材料进行表面改性是提高材料生物相容性的主要方法之一。本文通过在碱活化Ti表面固定树状大分子聚酰胺胺(Polyamido amine,PAMAM),利用PAMAM的氨基基团接枝抗炎、抗氧化分子吡咯喹啉醌(Pyrroloquinoline quinone, PQQ),构建了PAMAM-PQQ功能层,并探究了不同浓度PQQ对材料表面生物相容性的影响。FTIR、XPS和氨基定量证明了PQQ成功接枝到材料表面。SEM、水接触角检测证明了材料表面具有多孔网状结构和高度亲水性。血液实验显示功能层降低了血小板的粘附数量和激活程度,表现出较好的抗凝血能力,其中PQQ浓度为300 nmol/mL时效果最优。细胞静态培养结果显示功能层均提高了内皮细胞和心肌细胞的活性及促进两种细胞的增殖与迁移。氧化损伤实验显示功能层能降低H2O2对内皮细胞和心肌细胞损伤,当PQQ浓度为300 nmol/mL时对两种细胞保护效果最佳。综上所述,在钛表面成功构建了PAMAM-PQQ功能层,该功能层具有良好的血液相容性、细胞相容性及抗氧化损伤能力,有望用于心内植入器械表面改性的研发及应用。

     

  • 图  1  聚酰胺胺(PAMAM)-吡咯喹啉醌(PQQ)功能层的制备过程

    EDC—1-ethyl-(3-dimethylaminopropyl)carbamide diimide; NHS—N-hydroxysuccinimide

    Figure  1.  Preparation process of polyamido amine (PAMAM)-pyrroloquinoline quinone (PQQ) functional layer

    图  2  各样品FTIR图谱

    Figure  2.  FTIR spectra of samples

    图  3  各样品XPS全谱

    Figure  3.  XPS spectra of samples

    图  4  样品表面氨基量

    **—Probability p<0.01; ***—p<0.001

    Figure  4.  Amino content on sample surface

    图  5  各样品表面SEM图像

    Figure  5.  SEM images of the sample surface

    图  6  各样品的水接触角

    *—p<0.05

    Figure  6.  Water contact angle of samples

    图  7  改性后样品TiPP300表面PQQ释放量

    Figure  7.  Release of PQQ from the modified TiPP300 sample surface

    图  8  各样品表面血小板荧光及数量统计结果

    Figure  8.  Results of platelet fluorescence and number on the sample surface

    图  9  样品表面血小板微观形貌的SEM图像

    Figure  9.  SEM images of platelets on the sample surface

    图  10  样品表面30 min和45 min凝血结果

    Figure  10.  Coagulation results at 30 min and 45 min on the sample surface

    OD—Optical density

    图  11  各样品内皮细胞静态培养结果

    CCK-8—Cell counting kit-8; ECs—Endothelial cells

    Figure  11.  Results of endothelial cell culture of samples

    图  12  各样品心肌细胞静态培养结果

    MCs—Myocardial cells

    Figure  12.  Results of myocardial cells culture of samples

    图  13  各样品内皮细胞活死染色结果

    Figure  13.  Results of live and dead staining of endothelial cells of samples

    图  14  各样品内皮细胞内活性氧(ROS)含量检测结果

    DCFH-DA—2, 7-dichlorodihydrofluorescein diacetate

    Figure  14.  Results of reactive oxide species (ROS) content in endothelial cells of samples

    图  15  各样品H2O2损伤后心肌细胞荧光图片

    Figure  15.  Fluorescence images of myocardial cells of samples after H2O2 injury

    图  16  各样品H2O2损伤下心肌细胞检测结果

    LDH—Lactate dehydrogenase; SOD—Superoxide dismutase; MDA—Malonaldehyde

    Figure  16.  Results of myocardial cells detection of samples under H2O2 injury

    表  1  各样品编号

    Table  1.   Marking of each sample

    Sample PAMAM/(mg·mL−1) PQQ/(mg·mL−1)
    TiPP200 1 200
    TiPP250 1 250
    TiPP300 1 300
    下载: 导出CSV

    表  2  各样品表面元素原子含量

    Table  2.   Atomic proportion of each elementon the sample surface

    SampleC/%N/%O/%C/N
    TiOH45.2 2.252.620.4
    TiP52.412.235.4 4.3
    TiPP60.412.427.3 4.9
    下载: 导出CSV
  • [1] 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2021概要[J]. 中国循环杂志, 2022, 37(6):553-578.

    Chinese Cardiovascular Health and Disease Reporting Group. Summary of China cardiovascular health and disease report 2021[J]. Chinese Journal of Circulation,2022,37(6):553-578(in Chinese).
    [2] TU Z X, ZHONG Y L, HU H Z, et al. Design of therapeutic biomaterials to control inflammation[J]. Nature Reviews Materials,2022,7(7):557-574. doi: 10.1038/s41578-022-00426-z
    [3] BENDER E C, KRAYNAK C A, HUANG W B, et al. Cell-inspired biomaterials for modulating inflammation[J]. Tissue Engineering Part B: Reviews,2022,28(2):279-294. doi: 10.1089/ten.teb.2020.0276
    [4] BEKMURZAYEVA A, DUNCANSON W J, AZEVEDO H S, et al. Surface modification of stainless steel for biomedical applications: Revisiting a century-old material[J]. Materials Science & Engineering C: Materials for Biological Applications,2018,93:1073-1089.
    [5] ONTANEDA A, ANNICH G M. Novel surfaces in extracorporeal membrane oxygenation circuits[J]. Front Med-Lausanne,2018,5:321. doi: 10.3389/fmed.2018.00321
    [6] FAN Y Q, LI X, YANG R J. The surface modification methods for constructing polymer-coated stents[J]. International Journal of Polymer Science,2018,2018:3891686.
    [7] LI Z K, WU Z S, LU T, et al. Materials and surface modification for tissue engineered vascular scaffolds[J]. Journal of Biomaterials Science,2016,27(15):1534-1552. doi: 10.1080/09205063.2016.1217607
    [8] WONG K H, GUO Z P, LAW M K, et al. Functionalized PAMAM constructed nanosystems for biomacromolecule delivery[J]. Biomaterials Science,2023,11(5):1589-1606. doi: 10.1039/D2BM01677J
    [9] KHARWADE R, MORE S, WAROKAR A, et al. Starburst pamam dendrimers: Synthetic approaches, surface modifications, and biomedical applications[J]. Arabian Journal of Chemistry,2020,13(7):6009-6039. doi: 10.1016/j.arabjc.2020.05.002
    [10] LI L, WEI L, WANG H R, et al. Proactive hemocompatibility platform initiated by PAMAM dendrimer adapting to key components in coagulation system[J]. Molecular Pharmaceutics,2022,19(12):4685-4695. doi: 10.1021/acs.molpharmaceut.2c00736
    [11] WEN H, HE Y, ZHANG K, et al. Mini-review: Functions and action mechanisms of PQQ in osteoporosis and neuro injury[J]. Current Stem Cell Research & Therapy,2020,15(1):32-36.
    [12] WU Y H, ZHAO M L, LIN Z H. Pyrroloquinoline quinone (PQQ) alleviated sepsis-induced acute liver injury, inflammation, oxidative stress and cell apoptosis by downregulating CUL3 expression[J]. Bioengineered,2021,12(1):2459-2468. doi: 10.1080/21655979.2021.1935136
    [13] JIANG X X, ZHOU Y F, ZHANG Y, et al. Hepatoprotective effect of pyrroloquinoline quinone against alcoholic liver injury through activating Nrf2-mediated antioxidant and inhibiting TLR4-mediated inflammation responses[J]. Process Biochemistry,2020,92:303-312. doi: 10.1016/j.procbio.2020.01.023
    [14] SHI C Y, XU S, HUANG C Y, et al. Pyrroloquinoline quinone regulates enteric neurochemical plasticity of weaned rats challenged with lipopolysaccharide[J]. Front Neurosci,2022,16:878541. doi: 10.3389/fnins.2022.878541
    [15] ZHOU J B, YU T, WU G J, et al. Pyrroloquinoline quinone modulates YAP-related anti-ferroptotic activity to protect against myocardial hypertrophy[J]. Frontiers in Pharmacology,2022,13:977385. doi: 10.3389/fphar.2022.977385
    [16] QU X F, ZHAI B Z, HU W L, et al. Pyrroloquinoline quinone ameliorates diabetic cardiomyopathy by inhibiting the pyroptosis signaling pathway in C57 BL/6 mice and AC16 cells[J]. European Journal of Nutrition,2020,61:1823-1836.
    [17] XU X, CHEN C, LU W J, et al. Pyrroloquinoline quinone can prevent chronic heart failure by regulating mitochondrial function[J]. Cardiovascular Diagnosis and Therapy,2020,10(3):453-469. doi: 10.21037/cdt-20-129
    [18] DAI X L, YI X J, WANG Y F, et al. PQQ dietary supplementation prevents alkylating agent-induced ovarian dysfunction in mice[J]. Front Endocrinol (Lausanne),2022,13:781404. doi: 10.3389/fendo.2022.781404
    [19] HWANG P S, MACHEK S B, CARDACI T D, et al. Effects of pyrroloquinoline quinone (PQQ) supplementation on aerobic exercise performance and indices of mitochondrial biogenesis in untrained men[J]. Journal of the American College of Nutrition,2020,39(6):547-556. doi: 10.1080/07315724.2019.1705203
    [20] JONSCHER K R, STEWART M S, ALFONSO-GARCIA A, et al. Early PQQ supplementation has persistent long-term protective effects on developmental programming of hepatic lipotoxicity and inflammation in obese mice[J]. FASEB Journal,2017,31(4):1434-1448. doi: 10.1096/fj.201600906R
    [21] MATTERN J, GEMMELL A, ALLEN P E, et al. Oral pyrroloquinoline quinone (PQQ) during pregnancy increases cardiomyocyte endowment in spontaneous IUGR guinea pigs[J]. Journal of Developmental Origins of Health and Disease,2023,14:321-324. doi: 10.1017/S2040174423000053
    [22] PARHIZKAR P, MOHAMMADI R, SHAHROUZ R, et al. Effects of pyrroloquinoline quinone (PQQ) on ischemia-reperfusion injury in rat ovaries: Histological and biochemical assessments[J]. Bulletin of Emergency and Trauma,2019,7(1):35-40. doi: 10.29252/beat-070105
    [23] ZHOU X Q, CAI G M, MAO S S, et al. Modulating NMDA receptors to treat MK-801-induced schizophrenic cognition deficit: Effects of clozapine combining with PQQ treatment and possible mechanisms of action[J]. BMC Psychiatry,2020,20(1):106. doi: 10.1186/s12888-020-02509-z
    [24] ZHOU X Q, LIU D, ZHANG R J, et al. Modulation of glycine sites enhances social memory in rats using PQQ combined with D-serine[J]. Behavioural Brain Research,2016,308:217-221. doi: 10.1016/j.bbr.2016.04.034
    [25] REGGENTE M, MASSON P, DOLLINGER C, et al. Novel alkali activation of titanium substrates to grow thick and covalently bound PMMA layers[J]. ACS Applied Materials & Interfaces,2018,10(6):5967-5977.
    [26] KIM C, KENDALL M R, MILLER M A, et al. Comparison of titanium soaked in 5 M NaOH or 5 M KOH solutions[J]. Materials Science & Engineering C-Materials for Biological Applications,2013,33(1):327-339.
    [27] TATESHIMA S, KANEKO N, YAMADA M, et al. Increased affinity of endothelial cells to NiTi using ultraviolet irradiation: An in vitro study[J]. Journal of Biomedical Materials Research Part A,2018,106(4):1034-1038. doi: 10.1002/jbm.a.36304
    [28] MISRA H S, RAJPUROHIT Y S, KHAIRNAR N P. Pyrroloquinoline-quinone and its versatile roles in biological processes[J]. Journal of Biosciences,2012,37(2):313-325. doi: 10.1007/s12038-012-9195-5
    [29] GE Y W, CHU M, ZHU Z Y, et al. Nacre-inspired magnetically oriented micro-cellulose fibres/nano-hydroxyapatite/chitosan layered scaffold enhances pro-osteogenesis and angiogenesis[J]. Materials Today Bio,2022,16:100439. doi: 10.1016/j.mtbio.2022.100439
    [30] ZANOTELLI M R, RAHMAN-ZAMAN A, VANDERBURGH J A, et al. Energetic costs regulated by cell mechanics and confinement are predictive of migration path during decision-making[J]. Nature Communications,2019,10(1):4185. doi: 10.1038/s41467-019-12155-z
    [31] MUKAI K Z, OUCHI A Y, NAGAOKA S I, et al. Pyrroloquinoline quinone (PQQ) is reduced to pyrroloquinoline quinol (PQQH2) by vitamin C, and PQQH2 produced is recycled to PQQ by air oxidation in buffer solution at pH 7.4[J]. Bioscience, Biotechnology, and Biochemistry,2016,80(1):178-187. doi: 10.1080/09168451.2015.1072462
    [32] AKAGAWA M, MINEMATSU K, SHIBATA T, et al. Identification of lactate dehydrogenase as a mammalian pyrroloquinoline quinone (PQQ)-binding protein[J]. Scientific Reports,2016,6(1):26723. doi: 10.1038/srep26723
    [33] LIN X H, YANG F, HUANG J, et al. Ameliorate effect of pyrroloquinoline quinone against cyclophosphamide-induced nephrotoxicity by activating the Nrf2 pathway and inhibiting the NLRP3 pathway[J]. Life Sciences,2020,256:117901. doi: 10.1016/j.lfs.2020.117901
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  571
  • HTML全文浏览量:  221
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-17
  • 修回日期:  2023-05-09
  • 录用日期:  2023-05-17
  • 网络出版日期:  2023-06-08
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回