留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

泡沫混凝土填充旋转薄壁多胞方管负泊松比结构面内压缩性能

刘浩 周宏元 王小娟 张宏

刘浩, 周宏元, 王小娟, 等. 泡沫混凝土填充旋转薄壁多胞方管负泊松比结构面内压缩性能[J]. 复合材料学报, 2024, 41(2): 839-857. doi: 10.13801/j.cnki.fhclxb.20230531.001
引用本文: 刘浩, 周宏元, 王小娟, 等. 泡沫混凝土填充旋转薄壁多胞方管负泊松比结构面内压缩性能[J]. 复合材料学报, 2024, 41(2): 839-857. doi: 10.13801/j.cnki.fhclxb.20230531.001
LIU Hao, ZHOU Hongyuan, WANG Xiaojuan, et al. In-plane compression properties of negative Poisson's ratio structure of rotating thin-walled multi-cell square tubes with foam concrete filler[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 839-857. doi: 10.13801/j.cnki.fhclxb.20230531.001
Citation: LIU Hao, ZHOU Hongyuan, WANG Xiaojuan, et al. In-plane compression properties of negative Poisson's ratio structure of rotating thin-walled multi-cell square tubes with foam concrete filler[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 839-857. doi: 10.13801/j.cnki.fhclxb.20230531.001

泡沫混凝土填充旋转薄壁多胞方管负泊松比结构面内压缩性能

doi: 10.13801/j.cnki.fhclxb.20230531.001
基金项目: 国家自然科学基金(52278477;52178096);北京理工大学爆炸科学与技术国家重点实验室开放基金(KFJJ23-12 M)
详细信息
    通讯作者:

    周宏元,博士,教授,博士生导师,研究方向为吸能材料、结构防护、结构抗爆设计 E-mail: hzhou@bjut.edu.cn

  • 中图分类号: TB301;TB333

In-plane compression properties of negative Poisson's ratio structure of rotating thin-walled multi-cell square tubes with foam concrete filler

Funds: National Natural Science Foundation of China (52278477; 52178096); Open Foundation of State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology (KFJJ23-12 M)
  • 摘要: 为改善薄壁金属管件的力学及吸能性能,提出了一种泡沫混凝土填充旋转薄壁多胞方管负泊松比结构(RSTFC)。对薄壁多胞方管(TMST)、旋转薄壁多胞方管(RTMST)和RSTFC试件进行准静态面内压缩试验,研究了3类不同试件的变形模式、载荷-位移曲线和吸能性能。试验结果表明:TMST、RTMST和RSTFC试件均表现为压缩破坏;对比于TMST试件,RTMST试件因发生旋转变形可有效降低载荷峰值,同时吸收更多能量,压溃力效率和能量吸收分别增大了73.2%和33.6%;泡沫混凝土的存在促使铝管在试件旋转过程中发生了一定程度的变形及泡沫混凝土不断压缩变形,因此填充有200 kg/m3泡沫混凝土RSTFC试件的压溃力效率和能量吸收较RTMST试件分别增大了22.5%和8.9%。基于试验验证的数值结果表明:铝管和泡沫混凝土之间承载能力的相互匹配决定了RSTFC试件的力学及吸能性能,可通过调整泡沫混凝土密度、铝管壁厚和泡沫混凝土填充方式等实现对RSTFC试件变形模式、载荷传递与吸能性能的调控。因两个周期性结构试件具有相对更高的比吸能和压溃力效率,建议在实际工程中应用。

     

  • 图  1  试件设计 (单位: mm)

    Figure  1.  Design of the specimen (Unit: mm)

    图  2  泡沫混凝土填充旋转薄壁多胞方管(RSTFC)试件的制作过程

    Figure  2.  Fabrication process of rotating thin-walled multi-cell square tubes with foam concrete filler (RSTFC) specimen

    图  3  名义应力-应变曲线

    Figure  3.  Nominal stress-strain curves

    图  4  准静态压缩试验装置

    Figure  4.  Quasi-static compressive test set-up

    图  5  试件的变形模式

    δ—Compression displacement

    Figure  5.  Deformation mode of specimens

    图  6  试件的载荷-位移曲线

    Figure  6.  Load-displacement curves of specimens

    图  7  试件的能量吸收效率(Ee)-位移曲线

    δD—Densification displacement

    Figure  7.  Energy absorption efficiency (Ee)-displacement curves of specimens

    图  8  RSTFC试件在准静态压缩下的数值模型

    Figure  8.  Numerical model of RSTFC specimen subjected to quasi-static compression

    图  9  RSTFC试件在准静态压缩下的网格敏感性分析

    Figure  9.  Mesh sensitivity analysis of RSTFC specimen under quasi-static compression

    图  10  试验和数值模拟中试件在准静态压缩下变形模式的比较

    Figure  10.  Comparison of the deformation mode of specimens in the test and numerical simulation under quasi-static compression

    图  11  试验和数值模拟中试件在准静态压缩下载荷-位移曲线的比较

    Figure  11.  Comparison of the load-displacement curves of specimens in the test and numerical simulation under quasi-static compression

    图  12  不同密度泡沫混凝土的名义应力-应变曲线

    Figure  12.  Nominal stress-strain curves of foam concrete with different densities

    图  13  填充不同密度泡沫混凝土RSTFC试件的变形模式

    The numbers following RSTFC indicate the density of foam concrete, the thickness of aluminum tube, and the filling mode of foam concrete, respectively; P1 means the number of periodic structures is 1

    Figure  13.  Deformation mode of RSTFC specimens with different densities of foam concrete filler

    图  14  填充不同密度泡沫混凝土RSTFC试件的载荷-位移曲线

    Figure  14.  Load-displacement curves of RSTFC specimens with different densities of foam concrete filler

    图  15  填充不同密度泡沫混凝土RSTFC试件的比吸能(Es)和压溃力效率(Ef)

    Figure  15.  Specific energy absorption (Es) and crushing force efficiency (Ef) of RSTFC specimens with different densities of foam concrete filler

    图  16  不同铝管壁厚RSTFC试件的变形模式

    Figure  16.  Deformation mode of RSTFC specimens with different thicknesses of aluminum tube

    图  17  不同铝管壁厚RSTFC试件的载荷-位移曲线

    Figure  17.  Load-displacement curves of RSTFC specimens with different thicknesses of aluminum tube

    图  18  不同铝管壁厚RSTFC试件的EsEf

    Figure  18.  Es and Ef of RSTFC specimens with different thicknesses of aluminum tube

    图  19  不同泡沫混凝土填充方式RSTFC试件的变形模式

    Figure  19.  Deformation mode of RSTFC specimens with different filling modes of foam concrete

    图  20  不同泡沫混凝土填充方式RSTFC试件的载荷-位移曲线

    Figure  20.  Load-displacement curves of RSTFC specimens with different filling modes of foam concrete

    图  21  不同泡沫混凝土填充方式RSTFC试件的EsEf

    Figure  21.  Es and Ef of RSTFC specimens with different filling modes of foam concrete

    图  22  不同周期性结构数目RSTFC试件的变形模式

    Figure  22.  Deformation mode of RSTFC specimens with different numbers of periodic structures

    图  23  不同周期性结构数目RSTFC试件的载荷-位移曲线

    Figure  23.  Load-displacement curves of RSTFC specimens with different numbers of periodic structures

    图  24  不同周期性结构数目RSTFC试件的EsEf

    Figure  24.  Es and Ef of RSTFC specimens with different numbers of periodic structures

    表  1  试件质量和几何参数

    Table  1.   Mass and geometry parameters of specimens

    Specimen
    Mass
    /kg
    Height
    /mm
    Bottom area
    /mm2
    Density of foam
    concrete/(kg·m−3)
    TMST0.280 816521
    RTMST0.4901199543
    RSTFC0.5181209616193.5
    Notes: TMST—Thin-walled multi-cell square tubes; RTMST—Rotating thin-walled multi-cell square tubes.
    下载: 导出CSV

    表  2  铝、钢和泡沫混凝土的力学性能

    Table  2.   Mechanical properties of aluminum, steel and foam concrete

    Material $\rho $/(kg·m3)$ E $/GPa${\sigma _{\text{y}}}$/MPa${\sigma _{\text{u}}}$/MPa${\sigma _{\text{p}}}$/MPa
    Aluminum2710 69.9276.7324.4
    Steel7930242.3246.3627.6
    Foam concrete 193.5 0.30.2
    Notes: $\rho $—Density; $ E $—Young's modulus; ${\sigma _{\text{y}}}$ and ${\sigma _{\text{u}}}$—Yield and ultimate strength, respectively; ${\sigma _{\text{p}}}$—Plateau stress of foam concrete.
    下载: 导出CSV

    表  3  试件的吸能性能参数

    Table  3.   Energy absorption performance parameters of specimens

    SpecimenδD
    /mm
    Ea
    /J
    Es
    /(J·kg–1)
    Fp
    /kN
    Fm
    /kN
    Ef
    TMST47.0675.62412.975.914.40.190
    RTMST85.1902.41841.632.210.60.329
    RSTFC85.9982.51896.728.411.40.403
    Notes: Ea—Energy absorption; Es—Specific energy absorption; Fp—Peak crushing force; Fm—Mean crushing force; Ef—Crushing force efficiency.
    下载: 导出CSV

    表  4  填充不同密度泡沫混凝土RSTFC试件的数值结果汇总

    Table  4.   Summary of numerical results of RSTFC specimens with different densities of foam concrete filler

    SpecimenFp/kNδD/mmEa/JEs/(J·kg–1)Fm/kNEf
    RSTFC200-1.0-4-P1 29.9 91.1 951.3 1836.4 10.4 0.350
    RSTFC400-1.0-4-P1 31.5 91.6 1017.4 1863.3 11.1 0.352
    RSTFC600-1.0-4-P1 21.6 89.1 808.5 1408.6 9.1 0.419
    RSTFC800-1.0-4-P1 11.7 82.8 610.0 1013.4 7.4 0.631
    RSTFC1000-1.0-4-P1 11.2 81.8 603.1 957.3 7.4 0.656
    RSTFC200-0.5-4-P1 2.3 81.2 133.8 347.9 1.6 0.720
    RSTFC200-1.5-4-P1 70.1 88.7 1830.5 2839.4 20.6 0.295
    RSTFC200-1.0-5-P1 27.7 88.3 961.2 1830.9 10.9 0.393
    RSTFC200-1.0-9-P1 15.0 78.9 670.3 1212.1 8.5 0.568
    RSTFC200-1.0-4-P2 29.3 89.9 1306.6 2437.7 14.5 0.496
    RSTFC200-1.0-4-P3 28.1 87.9 1180.6 2178.3 13.4 0.478
    RSTFC200-1.0-4-P4 26.5 75.0 910.8 1671.2 12.1 0.458
    Notes: The letter P in the specimen index represent single periodic structure in different numbers of periodic structures; The number of periodic structures is also specified following the letter P.
    下载: 导出CSV
  • [1] BAROUTAJI A, SAJJIA M, OLABI A G. On the crashworthiness performance of thin-walled energy absorbers: Recent advances and future developments[J]. Thin-Walled Structures,2017,118:137-163. doi: 10.1016/j.tws.2017.05.018
    [2] LU G X, YU T X. Energy absorption of structures and materials[M]. Cambridge: Woodhead Publishing LTD., 2003.
    [3] GAO Z P, ZHANG H, ZHAO J, et al. The axial crushing performance of bio-inspired hierarchical multi-cell hexagonal tubes[J]. International Journal of Mechanical Sciences,2023,239:107880. doi: 10.1016/j.ijmecsci.2022.107880
    [4] HA N S, PHAM T M, CHEN W S, et al. Crashworthiness analysis of bio-inspired fractal tree-like multi-cell circular tubes under axial crushing[J]. Thin-Walled Structures,2021,169:108315. doi: 10.1016/j.tws.2021.108315
    [5] XIONG J, ZHANG Y, SU L, et al. Experimental and numerical study on mechanical behavior of hybrid multi-cell structures under multi-crushing loads[J]. Thin-Walled Structures,2022,170:108588. doi: 10.1016/j.tws.2021.108588
    [6] ZHANG H, GAO Z P, RUAN D. Square tubes with graded wall thickness under oblique crushing[J]. Thin-Walled Structures,2023,183:110429. doi: 10.1016/j.tws.2022.110429
    [7] LUO Y H, FAN H L. Investigation of lateral crushing behaviors of hierarchical quadrangular thin-walled tubular structures[J]. Thin-Walled Structures,2018,125:100-106. doi: 10.1016/j.tws.2018.01.016
    [8] TRAN T N, TON T N T. Lateral crushing behaviour and theoretical prediction of thin-walled rectangular and square tubes[J]. Composite Structures,2016,154:374-384. doi: 10.1016/j.compstruct.2016.07.068
    [9] TRAN T N. Crushing analysis of multi-cell thin-walled rectangular and square tubes under lateral loading[J]. Composite Structures,2017,160:734-747. doi: 10.1016/j.compstruct.2016.10.106
    [10] WU F, CHEN Y T, ZHAO S Q, et al. Mechanical properties and energy absorption of composite bio-inspired multi-cell tubes[J]. Thin-Walled Structures,2023,184:110451. doi: 10.1016/j.tws.2022.110451
    [11] CHAHARDOLI S, NIA A A, ASADI M. A parametric study of the mechanical behavior of nested multi tube structures under quasi-static loading[J]. Archives of Civil and Mechanical Engineering,2019,19(4):943-957. doi: 10.1016/j.acme.2019.03.006
    [12] TRAN T N. A study on nested two-tube structures subjected to lateral crushing[J]. Thin-Walled Structures,2018,129:418-428. doi: 10.1016/j.tws.2018.04.022
    [13] YAO S G, TIAN Y X, LI Z X, et al. Crushing characteristic of polygonal tubes with hierarchical triangular cells[J]. Thin-Walled Structures,2020,157:107031. doi: 10.1016/j.tws.2020.107031
    [14] REN X, DAS R, TRAN P, et al. Auxetic metamaterials and structures: A review[J]. Smart Materials and Structures,2018,27(2):023001. doi: 10.1088/1361-665X/aaa61c
    [15] 于靖军, 谢岩, 裴旭. 负泊松比超材料研究进展[J]. 机械工程学报, 2018, 54(13):1-14. doi: 10.3901/JME.2018.13.001

    YU Jingjun, XIE Yan, PEI Xu. State-of-art of metamaterials with negative Poisson's ratio[J]. Journal of Mechanical Engineering,2018,54(13):1-14(in Chinese). doi: 10.3901/JME.2018.13.001
    [16] 任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展[J]. 力学学报, 2019, 51(3):656-687. doi: 10.6052/0459-1879-18-381

    REN Xin, ZHANG Xiangyu, XIE Yimin. Research progress in auxetic materials and structures[J]. Chinese Journal of Theoretical and Applied Mechanics,2019,51(3):656-687(in Chinese). doi: 10.6052/0459-1879-18-381
    [17] 尤泽华, 肖俊华, 王美芬. 弧边内凹蜂窝负泊松比结构的力学性能[J]. 复合材料学报, 2022, 39(7):3570-3580.

    YOU Zehua, XIAO Junhua, WANG Meifen. Mechanical properties of arc concave honeycomb structure with negative Poisson's ratio[J]. Acta Materiae Compositae Sinica,2022,39(7):3570-3580(in Chinese).
    [18] ZHOU H Y, JIA K C, WANG X J, et al. Experimental and numerical investigation of low velocity impact response of foam concrete filled auxetic honeycombs[J]. Thin-Walled Structures,2020,154:106898. doi: 10.1016/j.tws.2020.106898
    [19] 王雪松, 刘卫东, 刘典. 新型反四手性蜂窝结构的面内拉伸弹性[J]. 复合材料学报, 2023, 40(8):4849-4861.

    WANG Xuesong, LIU Weidong, LIU Dian. In-plane tensile elasticity of a novel anti-tetrachiral cellular structure[J]. Acta Materiae Compositae Sinica,2023,40(8):4849-4861(in Chinese).
    [20] JIAO C X, YAN G. Design and elastic mechanical response of a novel 3D-printed hexachiral helical structure with negative Poisson's ratio[J]. Materials & Design,2021,212:110219.
    [21] 卢子兴, 王欢, 杨振宇, 等. 星型-箭头蜂窝结构的面内动态压溃行为[J]. 复合材料学报, 2019, 36(8):1893-1900. doi: 10.13801/j.cnki.fhclxb.20180908.001

    LU Zixing, WANG Huan, YANG Zhenyu, et al. In-plane dynamic crushing of star-arrowhead honeycomb structure[J]. Acta Materiae Compositae Sinica,2019,36(8):1893-1900(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180908.001
    [22] 杨泽水, 薛玉祥, 刘爱荣. 三维负泊松比星型结构冲击动力学研究[J]. 工程力学, 2022, 39(S1):356-363.

    YANG Zeshui, XUE Yuxiang, LIU Airong. Study on the impact dynamics of three-dimensional starshaped structure with negative Poisson's ratio[J]. Engineering Mechanics,2022,39(S1):356-363(in Chinese).
    [23] 刘彦佐, 李振羽, 杨金水. 碳纤维复合材料双箭头波纹拉胀结构的振动行为及减振性能[J]. 复合材料学报, 2022, 39(8):4117-4128.

    LIU Yanzuo, LI Zhenyu, YANG Jinshui. Vibration behavior and damping performance of carbon fiber composite double-arrow corrugated auxetic structures[J]. Acta Materiae Compositae Sinica,2022,39(8):4117-4128(in Chinese).
    [24] GUO M F, YANG H, ZHOU Y M, et al. Mechanical properties of 3D hybrid double arrow-head structure with tunable Poisson's ratio[J]. Aerospace Science and Technology,2021,119:107177. doi: 10.1016/j.ast.2021.107177
    [25] GALEA R, FARRUGIA P S, DUDEK K K, et al. A novel design method to produce 3D auxetic metamaterials with continuous pores exemplified through 3D rotating auxetic systems[J]. Materials & Design,2023,226:111596.
    [26] 孙龙, 任鑫, 张毅, 等. 一种刚度可调控的负泊松比管状结构[J]. 复合材料学报, 2022, 39(4):1813-1823.

    SUN Long, REN Xin, ZHANG Yi, et al. An auxetic tubular structure with tuneable stiffness[J]. Acta Materiae Compositae Sinica,2022,39(4):1813-1823(in Chinese).
    [27] 周宏元, 贾昆程, 王小娟, 等. 负泊松比三明治结构填充泡沫混凝土的面内压缩性能[J]. 复合材料学报, 2020, 37(8):2005-2014. doi: 10.13801/j.cnki.fhclxb.20191207.001

    ZHOU Hongyuan, JIA Kuncheng, WANG Xiaojuan, et al. In-plane compression properties of negative Poisson's ratio sandwich structure filled with foam concrete[J]. Acta Materiae Compositae Sinica,2020,37(8):2005-2014(in Chinese). doi: 10.13801/j.cnki.fhclxb.20191207.001
    [28] 刘彦, 王百川, 闫俊伯, 等. 侵彻作用下负泊松比蜂窝夹芯结构动态响应研究[J]. 兵工学报, 2023, 44(7): 1938-1953..

    LIU Yan, WANG Baichuan, YAN Junbo, et al. Study on dynamic response of honeycomb sandwich plate with negative Poisson's ratio under penetration[J]. Acta Armentarii, 2023, 44(7): 1938-1953(in Chinese).
    [29] REN X, ZHANG Y, HAN C Z, et al. Mechanical properties of foam-filled auxetic circular tubes: Experimental and numerical study[J]. Thin-Walled Structures,2022,170:108584. doi: 10.1016/j.tws.2021.108584
    [30] 宋强, 张鹏, 鲍玖文, 等. 泡沫混凝土的研究进展与应用[J]. 硅酸盐学报, 2021, 49(2):398-410. doi: 10.14062/j.issn.0454-5648.20200316

    SONG Qiang, ZHANG Peng, BAO Jiuwen, et al. Research progress and application of foam concrete[J]. Journal of the Chinese Ceramic Society,2021,49(2):398-410(in Chinese). doi: 10.14062/j.issn.0454-5648.20200316
    [31] 周宏元, 樊家乐, 王小娟, 等. 填充泡沫混凝土铝管组合挂板的吸能性能[J]. 复合材料学报, 2023, 40(5):2860-2871.

    ZHOU Hongyuan, FAN Jiale, WANG Xiaojuan, et al. Energy absorption of foam concrete filled aluminum tube composite cladding[J]. Acta Materiae Compositae Sinica,2023,40(5):2860-2871(in Chinese).
    [32] WANG Y H, ZHANG B Y, LU J Y, et al. Quasi-static crushing behaviour of the energy absorbing connector with polyurethane foam and multiple pleated plates[J]. Engineering Structures,2020,211:110404. doi: 10.1016/j.engstruct.2020.110404
    [33] 应文剑, 王永辉, 翟希梅. 冲击荷载作用下内嵌泡沫铝耗能节点试验[J]. 哈尔滨工业大学学报, 2018, 50(12):171-177. doi: 10.11918/j.issn.0367-6234.201802056

    YING Wenjian, WANG Yonghui, ZHAI Ximei. Experimental study of aluminum foam filled energy absorption connectors under impact loading[J]. Journal of Harbin Institute of Technology,2018,50(12):171-177(in Chinese). doi: 10.11918/j.issn.0367-6234.201802056
    [34] 杨姝, 陈鹏宇, 江峰, 等. 内凹弧形蜂窝夹芯板低速弹道冲击试验与数值仿真[J]. 振动与冲击, 2023, 42(6):255-262, 297.

    YANG Shu, CHEN Pengyu, JIANG Feng, et al. Low-speed ballistic impact test and numerical simulation on re-entrant circular honeycomb sandwich panels[J]. Journal of Vibration and Shock,2023,42(6):255-262, 297(in Chinese).
    [35] WANG B, CHEN Y S, FAN H L, et al. Investigation of low-velocity impact behaviors of foamed concrete material[J]. Composites Part B: Engineering,2019,162:491-499. doi: 10.1016/j.compositesb.2019.01.021
  • 加载中
图(24) / 表(4)
计量
  • 文章访问数:  410
  • HTML全文浏览量:  168
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-10
  • 修回日期:  2023-05-06
  • 录用日期:  2023-05-18
  • 网络出版日期:  2023-05-31
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回