留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁屏蔽导电涂料的研究与应用进展

李明展 李恩 潘亚敏 刘宪虎

李明展, 李恩, 潘亚敏, 等. 电磁屏蔽导电涂料的研究与应用进展[J]. 复合材料学报, 2024, 41(2): 572-591. doi: 10.13801/j.cnki.fhclxb.20230530.003
引用本文: 李明展, 李恩, 潘亚敏, 等. 电磁屏蔽导电涂料的研究与应用进展[J]. 复合材料学报, 2024, 41(2): 572-591. doi: 10.13801/j.cnki.fhclxb.20230530.003
LI Mingzhan, LI En, PAN Yamin, et al. Research and application of electromagnetic shielding conductive coating[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 572-591. doi: 10.13801/j.cnki.fhclxb.20230530.003
Citation: LI Mingzhan, LI En, PAN Yamin, et al. Research and application of electromagnetic shielding conductive coating[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 572-591. doi: 10.13801/j.cnki.fhclxb.20230530.003

电磁屏蔽导电涂料的研究与应用进展

doi: 10.13801/j.cnki.fhclxb.20230530.003
基金项目: 国家重点研发计划(2019 YFA0706802)
详细信息
    通讯作者:

    潘亚敏,博士,讲师,硕士生导师,研究方向为高分子材料的功能化成型加工研究 E-mail: yamin.pan@zzu.edu.cn

  • 中图分类号: TB34;TB33

Research and application of electromagnetic shielding conductive coating

Funds: National Key Research and Development Program (2019 YFA0706802)
  • 摘要: 为了深入了解电磁屏蔽导电涂料的制备与性能,促进高性能、低成本的电磁屏蔽导电涂料研究与应用发展,本文首先介绍了涂料的导电机制和电磁屏蔽基本原理。其次,以不同类别的导电填料和树脂基体为重点,系统介绍了各类材料结构、性能的差异对涂料整体性能的影响,综述了当前的研究进展及针对实际应用进行的多功能改良。最后,针对电磁屏蔽涂料目前在填料结构、填料合成、聚合物基体与填料的相容性的问题进行了总结及表达了对未来产业发展的展望。

     

  • 图  1  电磁波穿过材料的路径图

    Figure  1.  Path of electromagnetic wave through the material

    图  2  (a) 银片 “砖-泥”结构[34];(b) 银线密集网络[35];(c) 银球连接结构[36]

    AgNPs—Ag nanoparticles; GR—Graphene

    Figure  2.  (a) Silver sheet "brick-mud" structure[34]; (b) Silver line dense network[35]; (c) Silver ball connection structure[36]

    图  3  (a) 涂层表面铜粒子(CuNPs)排列密集网络结构[37];(b) 11vol%微米铜粉涂层在织物表面(i)及断面(ii)图[38];(c) 片状镀银铜粉排列结构[32]

    Figure  3.  (a) Copper particles (CuNPs) on the surface of the coating are arranged in a dense network structure[37]; (b) 11vol% micron copper powder coating on fabric surface (i) and cross section (ii)[38]; (c) Arrangement structure of flake silver-plated copper powder[32]

    图  4  (a) 渗流阈值时镍粉涂层的表面形貌[39];(b) 聚多巴胺(PDA)修饰Ni/还原氧化石墨烯(RGO)涂层表面形貌[40]

    Figure  4.  (a) Surface morphology of nickel powder coating at seepage threshold[39]; (b) Surface morphology of polydopamine (PDA) modified Ni/reduced graphene oxide (RGO) coatings[40]

    图  5  (a) 聚氯乙烯(PVC)基板上镓铟合金(GIN)涂层的表面形貌[42];(b) 80wt%液态金属(LM)在纤维素纳米纤维(CNF)层间导电结构[43]

    Figure  5.  (a) Surface morphology of gallium indium alloy (GIN) coating on polyvinyl chloride (PVC) substrate[42]; (b) 80wt% liquid metal (LM) conductive structure between cellulose nanofiber (CNF) layers[43]

    图  6  (a) 炭黑/聚酰亚胺(CB/PI)多孔涂层中的结构与分布[47];(b) CB导电油墨涂覆后聚酯棉表面光学显微镜图片(i)和SEM图像(ii)[48]

    Figure  6.  (a) Structure and distribution of carbon black/polyimide (CB/PI) porous coating[47]; (b) CB conductive ink coated polyester cotton surface optical microscope image (i) and SEM image (ii)[48]

    图  7  (a) 片状石墨粉在树脂基体分散状态[29];(b) 不同含量氧化石墨烯(GO)构建的导电网络[49];(c) 碳化涂层表面结构[50]

    Figure  7.  (a) Dispersion state of flake graphite powder in resin matrix[29]; (b) Conductive network constructed by different content of graphene oxide (GO)[49]; (c) Carbonized coating surface structure[50]

    图  8  (a) 表面沉积碳纳米管(CNTs)导电网络[53];(b) 内嵌Ag的CNTs导电网络结构[54]

    Figure  8.  (a) Carbon nanotubes (CNTs) conductive network deposited on the surface[53]; (b) Ag-embedded CNTs conductive network structure[54]

    图  9  (a) 不同填料Fe3O4 (i)和BaTiO3 (ii)分散在聚苯胺(PANI)基体的涂层形貌[62];(b) 铝掺杂氧化锌(AZO)/Ag/AZO薄膜AFM图像[61];(c) 9.0%锑掺杂氧化锡(ATO)互连导电网络结构[63]

    Figure  9.  (a) Coating morphology of different fillers Fe3O4 (i) and BaTiO3 (ii) dispersed in polyaniline (PANI) matrix[62]; (b) AFM images of aluminum-doped zinc oxide (AZO)/Ag/AZO films[61]; (c) 9.0% antimony doped tin oxide (ATO) interconnect conductive network structure[63]

    图  10  (a) MXene-银纳米线(AgNW)透明导电薄膜表面导电结构[65];(b) 磁性MXene-SiO2涂层表面层状网络及屏蔽原理[66]

    Figure  10.  (a) Surface conductive structure of MXene-silver nanowires (AgNW) transparent conductive film[65]; (b) Layered network and shielding principle of magnetic MXene-SiO2 coating surface[66]

    图  11  (a) 碳纤维无纺布涂层表面[71]:(i) 叶片型沸石咪唑酸盐框架(B-ZIFL)密集排列结构;(ii) 转化为CNTs后结构;(b) 碳纤维毡(CFelt)表面浸渍涂层[69]:(i) 负载ZIF-67;(ii) 导电网络接触结构

    Figure  11.  (a) Carbon fiber nonwoven coating surface[71]: (i) Leaf-type zeolite imidazolate framework (B-ZIFL) dense arrangement structure; (ii) Structure after conversion to CNTs; (b) Carbon fiber felt (CFelt) surface impregnated coating[69]: (i) Load ZIF-67; (ii) Conductive network contact structure

    图  12  涂层表面形貌[74]:(a) 纯环氧树脂涂层;(b) Ni0.6Zn0.4Fe2O4/Ti3C2Tx改性树脂涂层

    Figure  12.  Coating surface morphology[74]: (a) Pure epoxy resin coating; (b) Ni0.6Zn0.4Fe2O4/Ti3C2Tx modified resin coating

    图  13  (a) PI织物FeCoNiOx-PDA-RGO/水性聚氨酯(WPU)涂层[76];(b) 自愈合涂层[77]:(i) 划痕样品;(ii) 微波吸热后自愈合

    Figure  13.  (a) FeCoNiOx-PDA-rGO/waterborne polyurethane (WPU) coating on PI fabric[76]; (b) Self-healing coating[77]: (i) Scratch sample; (ii) Self-healing after microwave endothermic

    图  14  不同水性丙烯酸树脂∶银粉∶石墨∶炭黑质量比下涂层的表面形貌:(a) 5∶3∶2∶0.8;(b) 5∶3∶2∶1.2[80]

    Figure  14.  Coating surface morphology for different mass ratio of waterborne acrylic resin∶silver powder∶graphite∶carbon black: (a) 5∶3∶2∶0.8; (b) 5∶3∶2∶1.2[80]

  • [1] KOTSARENKO A, MOLCHANOV O, HAYAKAWA M, et al. Investigation of ULF magnetic anomaly during Izu earthquake swarm and Miyakejima volcano eruption at summer 2000, Japan[J]. Natural Hazards and Earth System Science,2005,5(5):63-69.
    [2] 金磊. 电磁辐射灾害及其安全设计对策初论[J]. 世界科技研究与发展, 2002(1):67-71.

    JIN Lei. Preliminary discussion on electromagnetic radiation disaster and its safety design counter measures[J]. World Sci-Tech R&D,2002(1):67-71(in Chinese).
    [3] 师昌绪. 材料大辞典[M]. 北京: 化学工业出版社, 1994: 130

    SHI Changxu. Materials dictionary[M]. Beijing: Chemical Industry Press, 1994.130(in Chinese).
    [4] 刘越洋. 银粉的表面改性及其导电涂料的耐盐雾性能研究[D]. 成都: 电子科技大学, 2020.

    LIU Yueyang. Study on surface modification of silver powder and salt spray resistance of conductive coatings[D]. Chengdu: University of Electronic Science and Technology of China, 2020(in Chinese).
    [5] 张晨洋, 张富勇, 刘元军, 等. 电磁屏蔽涂层织物的屏蔽机制及研究进展[J]. 纺织科学与工程学报, 2020, 37(2):91-98.

    ZHANG Chenyang, ZHANG Fuyong, LIU Yuanjun, et al. Shielding mechanism and research progress of electromagnetic shielding coated fabrics[J]. Journal of Textile Science and Engineering,2020,37(2):91-98(in Chinese).
    [6] 周双喜, 黄水梅, 邓文武, 等. 掺杂型电磁屏蔽导电涂料研究进展[J]. 硅酸盐通报, 2012, 31(3):604-608.

    ZHOU Shuangxi, HUANG Shuimei, DENG Wenwu, et al. Research progress of doped electromagnetic shielding conductive coatings[J]. Bulletin of the Chinese Ceramic Society,2012,31(3):604-608(in Chinese).
    [7] SHEN X, KIM J K. Graphene and MXene-based porous structures for multifunctional electromagnetic interference shielding[J]. Nano Research,2022,16(1):1387-1413.
    [8] 王惠娟. EMI屏蔽环氧树脂导电涂料的研究[D]. 太原: 太原科技大学, 2012.

    WANG Huijuan. Study on EMI shielding epoxy resin conductive coating[D]. Taiyuan: Taiyuan University of Science and Technology, 2012(in Chinese).
    [9] YUAN M, FEI Y, ZHANG H, et al. Electromagnetic asymmetric films comprise metal organic frameworks derived porous carbon for absorption-dominated electromagnetic interference shielding[J]. Composites Part B: Engineering,2022,233:109622. doi: 10.1016/j.compositesb.2022.109622
    [10] MA M, TAO W, LIAO X, et al. Cellulose nanofiber/MXene/FeCo composites with gradient structure for highly absorbed electromagnetic interference shielding[J]. Chemical Engineering Journal,2023,452:139471. doi: 10.1016/j.cej.2022.139471
    [11] XU Z, HUANG Y A, YANG Y, et al. Dispersion of iron nano-particles on expanded graphite for the shielding of electromagnetic radiation[J]. Journal of Magnetism and Magnetic Materials,2010,322(20):3084-3087. doi: 10.1016/j.jmmm.2010.05.034
    [12] HUANG Y, CHEN M, XIE A, et al. Recent advances in design and fabrication of nanocomposites for electromagnetic wave shielding and absorbing[J]. Materials (Basel),2021,14(15):4148. doi: 10.3390/ma14154148
    [13] 杨江, 熊政伟, 王雨, 等. 成型压力和脱模剂添加量对FeNiMo磁粉芯磁导率和损耗的影响[J]. 磁性材料及器件, 2023, 54(1):42-49. doi: 10.19594/j.cnki.09.19701.2023.01.008

    YANG Jiang, XIONG Zhengwei, WANG Yu, et al. Effects of molding pressure and release agent addition on permeability and loss of FeNiMo magnetic powder cores[J]. Journal of Magnetic Materials and Devices,2023,54(1):42-49(in Chinese). doi: 10.19594/j.cnki.09.19701.2023.01.008
    [14] ZHANG D Q, LIU T T, SHU J C, et al. Self-assembly construction of WS(2)-rGO architecture with green EMI shielding[J]. ACS Applied Materials& Interfaces,2019,11(30):26807-26816. doi: 10.1021/acsami.9b06509
    [15] YAN A, LIU Y, WU Z, et al. RGO reinforced Cu foam with enhanced mechanical and electromagnetic shielding pro-perties[J]. Journal of Materials Research and Technology,2022,21:2965-2975. doi: 10.1016/j.jmrt.2022.10.119
    [16] AL-SALEH M H, SUNDARARAJ U. Electromagnetic interference shielding mechanisms of CNT/polymer composites[J]. Carbon,2009,47(7):1738-1746. doi: 10.1016/j.carbon.2009.02.030
    [17] 陈锦宏, 李玮. 电磁屏蔽导电涂料[J]. 广州化学, 2002(1):44-47.

    CHEN Jinhong, LI Wei. Electromagnetic shielding conductive coatings[J]. Guangzhou Chemical,2002(1):44-47(in Chinese).
    [18] VALLÉS C, ZHANG X, CAO J, et al. Graphene/polyelectrolyte layer-by-layer coatings for electromagnetic interference shielding[J]. ACS Applied Nano Materials,2019,2(8):5272-5281. doi: 10.1021/acsanm.9b01126
    [19] OSKOUYI A B, MERTINY P. Monte Carlo model for the study of percolation thresholds in composites filled with circular conductive nano-disks[J]. Procedia Engineering,2011,10:403-408. doi: 10.1016/j.proeng.2011.04.068
    [20] ZARE Y, RHEE K Y. Simulation of percolation threshold, tunneling distance, and conductivity for carbon nanotube (CNT)-reinforced nanocomposites assuming effective CNT concentration[J]. Polymers (Basel),2020,12(1):114. doi: 10.3390/polym12010114
    [21] 庆奕良, 王国志, 刘文兴, 等. 导电涂料的简介及研究现状[J]. 现代涂料与涂装, 2020, 23(11):41-44.

    QING Yiliang, WANG Guozhi, LIU Wenxing, et al. Introduction and research status of conductive coatings[J]. Modern Coatings and Coatings,2020,23(11):41-44(in Chinese).
    [22] 李昕, 郭建喜. 导电涂料的作用机制及应用[J]. 天津化工, 2011, 25(3):12-16.

    LI Xin, GUO Jianxi. Mechanism and application of conductive coatings[J]. Tianjin Chemical Industry,2011,25(3):12-16(in Chinese).
    [23] 王帆, 张金才, 程芳琴. 电磁屏蔽涂料的研究进展[J]. 功能材料, 2022, 53(1):1033-1040.

    WANG Fan, ZHANG Jincai, CHENG Fangqin. Research progress of electromagnetic shielding coatings[J]. Journal of Functional Materials,2022,53(1):1033-1040(in Chinese).
    [24] 连宁, 范顺宝, 顾昌寅. 电磁屏蔽导电涂料[J]. 电子工艺技术, 1990(5):33-36, 42.

    LIAN Ning, FAN Shunbao, GU Changyin. Electromagnetic shielding conductive coatings[J]. Electronic Process Technology,1990(5):33-36, 42(in Chinese).
    [25] 刘发, 刘卓峰, 张为军, 等. 银粉含量及几何特征对银浆流变性能的影响[J]. 电子元件与材料, 2015, 34(8):65-68.

    LIU Fa, LIU Zhuofeng, ZHANG Weijun, et al. Effects of silver powder content and geometric characteristics on the rheological properties of silver paste[J]. Electronic Components and Materials,2015,34(8):65-68(in Chinese).
    [26] 陈红瑞, 孟昭辉, 邓长福, 等. 偶联剂在涂料中的应用[J]. 天津科技, 2013, 40(3):88-89.

    CHEN Hongrui, MENG Zhaohui, DENG Changfu, et al. Application of coupling agents in coatings[J]. Tianjin Science and Technology,2013,40(3):88-89(in Chinese).
    [27] 鲁琴, 吴宇, 张子卿, 等. 碳基复合环氧树脂导电涂层的制备与性能研究[J]. 有机硅材料, 2022, 36(4):1-6.

    LU Qin, WU Yu, ZHANG Ziqing, et al. Preparation and properties of carbon-based composite epoxy resin conductive coatings[J]. Silicon Materials,2022,36(4):1-6(in Chinese).
    [28] 杨波, 李爽, 张双红, 等. 不同偶联剂对复合纳米导电涂料性能的影响研究[J]. 涂料工业, 2020, 50(6):1-6.

    YANG Bo, LI Shuang, ZHANG Shuanghong, et al. Effects of different coupling agents on the properties of composite nano-conductive coatings[J]. Paint & Coatings Industry,2020,50(6):1-6(in Chinese).
    [29] 汪卫东, 徐青, 周双喜, 等. 水性石墨电磁屏蔽导电涂料的制备及性能研究[J]. 材料导报, 2013, 27(S1):29-32.

    WANG Weidong, XU Qing, ZHOU Shuangxi, et al. Preparation and properties of waterborne graphite electromagnetic shielding conductive coatings[J]. Materials Reports,2013,27(S1):29-32(in Chinese).
    [30] 陈雪峰, 祝媛, 王芳芳, 等. 丙烯酸酯导电涂料的制备与表征[J]. 中国粉体技术, 2019, 25(6):43-49.

    CHEN Xuefeng, ZHU Yuan, WANG Fangfang, et al. Preparation and characterization of acrylate conductive coatings[J]. China Powder Science and Technology,2019,25(6):43-49(in Chinese).
    [31] 管登高, 孙传敏, 孙遥, 等. 一种新研制的电磁屏蔽涂料及其在EMC中的应用[J]. 电讯技术, 2009, 49(12):43-46.

    GUAN Denggao, SUN Chuanmin, SUN Yao, et al. A newly developed electromagnetic shielding coating and its application in EMC[J]. Telecommunication Engineering,2009,49(12):43-46(in Chinese).
    [32] 管登高, 孙传敏, 孙遥, 等. 片状镀银铜粉/丙烯酸树脂电磁屏蔽复合涂料的研制[J]. 电镀与涂饰, 2011, 30(5):63-66.

    GUAN Denggao, SUN Chuanmin, SUN Yao, et al. Development of flake silver-plated copper powder/acrylic resin electromagnetic shielding composite coating[J]. Electroplating & Finishing,2011,30(5):63-66(in Chinese).
    [33] 束俊杰, 秦卫华, 汪洋, 等. 银导电涂料导电性能的影响因素[J]. 涂料工业, 2022, 52(6):83-88.

    SHU Junjie, QIN Weihua, WANG Yang, et al. Factors affecting the conductivity of silver conductive coatings[J]. Paint & Coatings Industry,2022,52(6):83-88(in Chinese).
    [34] JIA Y, SUN R, PAN Y, et al. Flexible and thin multifunctional waterborne polyurethane/Ag film for high-efficiency electromagnetic interference shielding, electro-thermal and strain sensing performances[J]. Composites Part B: Engineering,2021,210:108668. doi: 10.1016/j.compositesb.2021.108668
    [35] LI J, CUI M, WANG L, et al. Nonionic waterborne polyurethane/polypyrrole/silver nanowires coating film with high-efficient electromagnetic interference shielding[J]. Chemical Physics Letters,2022,804:139882. doi: 10.1016/j.cplett.2022.139882
    [36] LI X, QU Y, WANG X, et al. Flexible graphene/silver nanoparticles/aluminum film paper for high-performance electromagnetic interference shielding[J]. Materials & Design,2022,213:110296.
    [37] KIM K, HUH J Y, HONG Y C. Direct coating of copper nanoparticles on flexible substrates from copper precursors using underwater plasma and their EMI performance[J]. Materials Science and Engineering: B,2021,265:114995. doi: 10.1016/j.mseb.2020.114995
    [38] 张梦欣, 刘让同, 李亮, 等. 聚氨酯掺杂铜粉涂层的电磁特征及其涂层织物的吸波性能[J]. 中国塑料, 2022, 36(9):46-52.

    ZHANG Mengxin, LIU Rangtong, LI Liang, et al. Electromagnetic characteristics of polyurethane doped copper powder coatings and microwave absorbing properties of coated fabrics[J]. China Plastics,2022,36(9):46-52(in Chinese).
    [39] 张松, 李永, 倪余伟, 等. 水性镍基电磁屏蔽涂料的研究与应用[Z]//全国首届特种涂料及其应用研讨会论文集. 西安:《涂料工业》杂志社, 2007: 122-125.

    ZHANG Song, LI Yong, NI Yuwei, et al. Research and application of waterborne nickel-based electromagnetic shielding coatings[Z]//Proceedings of the First National Symposium on Special Coatings and Their Applications. Xi'an: 'Coating Industry' Magazine, 2007: 122-125(in Chinese).
    [40] ZHAI J, CUI C, REN E, et al. Facile synthesis of nickel/reduced graphene oxide-coated glass fabric for highly efficient electromagnetic interference shielding[J]. Journal of Materials Science: Materials in Electronics,2020,31(11):8910-8922. doi: 10.1007/s10854-020-03426-3
    [41] CHANG J, ZHAI H, HU Z, et al. Ultra-thin metal composites for electromagnetic interference shielding[J]. Composites Part B: Engineering,2022,246:110269. doi: 10.1016/j.compositesb.2022.110269
    [42] ZHANG M, ZHANG P, WANG Q, et al. Stretchable liquid metal electromagnetic interference shielding coating materials with superior effectiveness[J]. Journal of Materials Chemistry C,2019,7(33):10331-10337. doi: 10.1039/C9TC02887K
    [43] LIAO S Y, WANG X Y, LI X M, et al. Flexible liquid metal/cellulose nanofiber composites film with excellent thermal reliability for highly efficient and broadband EMI shielding[J]. Chemical Engineering Journal,2021,422:129962. doi: 10.1016/j.cej.2021.129962
    [44] 邱穆楠, 段磊, 温变英. 碳系填料填充聚合物基电磁屏蔽材料研究进展[J]. 高分子通报, 2015(11):20-27.

    QIU Munan, DUAN Lei, WEN Bianying. Research progress of carbon filler filled polymer-based electromagnetic shielding materials[J]. Chinese Polymer Bulletin,2015(11):20-27(in Chinese).
    [45] SANKARAN S, DESHMUKH K, AHAMED M B, et al. Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: A review[J]. Composites Part A: Applied Science and Manufacturing,2018,114:49-71. doi: 10.1016/j.compositesa.2018.08.006
    [46] 傅明利, 侯帅, 王磊, 等. 高压电缆半导电屏蔽料研究进展及关键技术分析[J]. 材料导报, 2023, 37(21): 68-74.

    FU Mingli, HOU Shuai, WANG Lei, et al. Research progress and key technology analysis of semi-conductive shielding materials for high-voltage cables[J]. Materials Reports, 2023, 37(21): 68-74(in Chinese).
    [47] KIM J, KIM G, KIM S Y, et al. Fabrication of highly flexible electromagnetic interference shielding polyimide carbon black composite using hot-pressing method[J]. Compo-sites Part B: Engineering,2021,221:109010. doi: 10.1016/j.compositesb.2021.109010
    [48] PUTRA V G V, MOHAMAD J N, ARIEF D R, et al. Surface modification of polyester-cotton (TC 70%) fabric by corona discharged plasma with tip-cylinder electrode configuration-assisted coating carbon black conductive ink for electromagnetic shielding fabric[J]. Arab Journal of Basic and Applied Sciences,2021,28(1):272-282. doi: 10.1080/25765299.2021.1889116
    [49] LAN C, ZOU L, WANG N, et al. Multi-reflection-enhanced electromagnetic interference shielding performance of conductive nanocomposite coatings on fabrics[J]. Journal of Colloid and Interface Science,2021,590:467-475. doi: 10.1016/j.jcis.2021.01.074
    [50] ZHENG T, SABET S M, PILLA S. Polydopamine coating improves electromagnetic interference shielding of delignified wood-derived carbon scaffold[J]. Journal of Materials Science,2021,56(18):10915-10925. doi: 10.1007/s10853-021-06007-9
    [51] 简彦红, 陈炳耀, 陈明毅. 碳纳米管在功能涂料中的应用与进展[J]. 山东工业技术, 2019(6):65.

    JIAN Yanhong, CHEN Bingyao, CHEN Mingyi. Application and progress of carbon nanotubes in functional coatings[J]. Shandong Industrial Technology,2019(6):65(in Chinese).
    [52] PARK G, KIM S, PARK G K, et al. Influence of carbon fiber on the electromagnetic shielding effectiveness of high-performance fiber-reinforced cementitious composites[J]. Journal of Building Engineering, 2021, 35: 101982.
    [53] YANG K, MEI H, HAN D, et al. Enhanced electromagnetic shielding property of C/SiC composites via electrophoretically-deposited CNTs onto SiC coating[J]. Ceramics International,2018,44(16):20187-20191. doi: 10.1016/j.ceramint.2018.08.001
    [54] HU L, KANG Z. Enhanced flexible polypropylene fabric with silver/magnetic carbon nanotubes coatings for electromagnetic interference shielding[J]. Applied Surface Science,2021,568:150845. doi: 10.1016/j.apsusc.2021.150845
    [55] ESLAMI-FARSANI R, FARHADIAN S, SHAREGHI B, et al. Structural insights into the binding behavior of NiO with myoglobin[J]. Journal of Molecular Liquids,2022,347:117999. doi: 10.1016/j.molliq.2021.117999
    [56] NG O T, SOH C B, LIU H F, et al. Reduction in EMI with BaTiO3 and Fe3O4 thin film grown by UBM sputtering[J]. Procedia Engineering, 2017, 216: 111-126.
    [57] PENG Q, MA M, CHEN S, et al. Magnetic-conductive bi-gradient structure design of CP/PGFF/Fe3O4 composites for highly absorbed EMI shielding and balanced mechanical strength[J]. Journal of Materials Science & Technology,2023,133:102-110.
    [58] YANG Y, KULANDAIVEL A, MEHREZ S, et al. Developing a high-performance electromagnetic microwave absorber using BaTiO3/CoS2/CNTs triphase hybrid[J]. Ceramics International,2023,49(2):2557-2569. doi: 10.1016/j.ceramint.2022.09.235
    [59] 秋颖, 王彩丽, 王志学, 等. 纳米锑掺杂氧化锡@粉煤灰抗静电复合粉体的制备及机制[J]. 煤炭学报, 2022, 47(9):3483-3492.

    QIU Ying, WANG Caili, WANG Zhixue, et al. Preparation and mechanism of nano antimony doped tin oxide@fly ash antistatic composite powder[J]. Journal of China Coal Society,2022,47(9):3483-3492(in Chinese).
    [60] 张昕宇. AZO/Ni/Ag/AZO薄膜的光电性能及其稳定性研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    ZHANG Xinyu. Photoelectric properties and stability of AZO/Ni/Ag/AZO films[D]. Harbin: Harbin Institute of Technology, 2020(in Chinese).
    [61] CHOI H J, PARK B J, EOM J H, et al. Simultaneous realization of electromagnetic interference shielding, hydrophobic qualities, and strong antibacterial activity for transparent electronic devices[J]. Current Applied Physics,2016,16(12):1642-1648. doi: 10.1016/j.cap.2016.10.005
    [62] SAINI P, CHOUDHARY V, VIJAYAN N, et al. Improved electromagnetic interference shielding response of poly(aniline)-coated fabrics containing dielectric and magnetic nanoparticles[J]. The Journal of Physical Chemistry C,2012,116(24):13403-13412. doi: 10.1021/jp302131w
    [63] KOEBEL M M, NADARGI D Y, JIMENEZ-CADENA G, et al. Transparent, conducting ATO thin films by epoxide-initiated sol-gel chemistry: A highly versatile route to mixed-metal oxide films[J]. ACS Applied Materials & Interfaces,2012,4(5):2464-2473. doi: 10.1021/am300143z
    [64] 李俊, 徐丽慧, 卢光明, 等. 过渡金属碳化物Ti3C2Tx的制备及其电磁屏蔽性能研究[J]. 功能材料, 2023, 54(1):1097-1103.

    LI Jun, XU Lihui, LU Guangming, et al. Preparation and electromagnetic shielding properties of transition metal carbide Ti3C2Tx[J]. Functional Materials,2023,54(1):1097-1103(in Chinese).
    [65] BAI S, GUO X, ZHANG X, et al. Ti3C2Tx MXene-AgNW composite flexible transparent conductive films for EMI shielding[J]. Composites Part A: Applied Science and Manufacturing,2021,149:106545. doi: 10.1016/j.compositesa.2021.106545
    [66] MA C, MA W, WANG T, et al. An MXene coating with electromagnetic wave absorbing performance[J]. Inorganic Chemistry Communications,2023,151:110565. doi: 10.1016/j.inoche.2023.110565
    [67] LI K, HAN L, WANG X, et al. MOF-derived CoNC@rGO/amine-rich@rGO/fluorinated-epoxy nanocomposites with EMI shielding, mechanical robustness, superamphiphobicity and long-term anticorrosion properties[J]. Chemical Engineering Journal,2023,455:140542. doi: 10.1016/j.cej.2022.140542
    [68] UR REHMAN S, WANG J, LUO Q, et al. Starfish-like C/CoNiO2 heterostructure derived from ZIF-67 with tunable microwave absorption properties[J]. Chemical Engi-neering Journal,2019,373:122-130. doi: 10.1016/j.cej.2019.05.040
    [69] YAN Y, WU B, QIAN G, et al. Ultra-wideband electromagnetic interference shielding effectiveness composite with elevated thermal conductivity[J]. Composites Part A: Applied Science and Manufacturing,2023,167:107430. doi: 10.1016/j.compositesa.2023.107430
    [70] WANG Y, SHENG L, ZHANG X, et al. Hybrid carbon molecular sieve membranes having ordered Fe3O4@ZIF-8-derived microporous structure for gas separation[J]. Journal of Membrane Science,2023,666:121127. doi: 10.1016/j.memsci.2022.121127
    [71] WU B, QIAN G, YAN Y, et al. Design of interconnected carbon fiber thermal management composites with effective EMI shielding activity[J]. ACS Applied Materials & Interfaces,2022,14(43):49082-49093. doi: 10.1021/acsami.2c13433
    [72] 徐伟杰, 陈宏峰, 李言, 等. 导电环氧树脂基电磁屏蔽材料的制备与性能研究[J]. 中国胶粘剂, 2021, 30(3):19-22.

    XU Weijie, CHEN Hongfeng, LI Yan, et al. Preparation and properties of conductive epoxy resin-based electromagnetic shielding materials[J]. China Adhesive,2021,30(3):19-22(in Chinese).
    [73] 李祝. 包覆型导电填料的制备及其对环氧树脂的导电性能影响[D]. 广州: 广东工业大学, 2016.

    LI Zhu. Preparation of coated conductive filler and its effect on the conductivity of epoxy resin[D]. Guangzhou: Guangdong University of Technology, 2016(in Chinese).
    [74] LI Y, GUAN H, BAO Y, et al. Ni0.6Zn0.4Fe2O4/Ti3C2Tx nanocomposite modified epoxy resin coating for improved microwave absorption and impermeability on cement mortar[J]. Construction and Building Materials,2021,310:125213. doi: 10.1016/j.conbuildmat.2021.125213
    [75] 杨东福, 张兵, 杨子林. 聚氨酯基电磁屏蔽复合材料的研究进展[J]. 塑料科技, 2021, 49(11):114-118.

    YANG Dongfu, ZHANG Bing, YANG Zilin. Research progress of polyurethane-based electromagnetic shielding composites[J]. Plastic Science and Technology,2021,49(11):114-118(in Chinese).
    [76] QU Z, WANG Y, WANG W, et al. Hierarchical FeCoNiOx-PDA-rGO/WPU layers constructed on the polyimide fabric by screen printing with high microwave absorption performance[J]. Applied Surface Science,2021,562:150190. doi: 10.1016/j.apsusc.2021.150190
    [77] MENON A V, MADRAS G, BOSE S. Ultrafast self-healable interfaces in polyurethane nanocomposites designed using Diels-Alder "Click" as an efficient microwave absorber[J]. ACS Omega,2018,3(1):1137-1146. doi: 10.1021/acsomega.7b01845
    [78] 羌伟, 赵玉媛, 陈立庄, 等. 水性丙烯酸树脂涂料的改性及应用研究进展[J]. 江苏科技大学学报(自然科学版), 2020, 34(2):80-89.

    QIANG Wei, ZHAO Yuyuan, CHEN Lizhuang, et al. Research progress on modification and application of waterborne acrylic resin coatings[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition),2020,34(2):80-89(in Chinese).
    [79] 张书弟, 徐阳, 何欢欢, 等. 有机硅改性环氧丙烯酸树脂的制备及性能[J]. 电镀与涂饰, 2022, 41(16):1129-1135.

    ZHANG Shudi, XU Yang, HE Huanhuan, et al. Preparation and properties of silicone modified epoxy acrylic resin[J]. Electroplating & Finishing,2022,41(16):1129-1135(in Chinese).
    [80] 赵海霞, 夏金童, 夏霖, 等. 碳系复合涂料的制备及其电磁屏蔽性能研究[J]. 涂料工业, 2015, 45(8):21-24, 45. doi: 10.3969/j.issn.0253-4312.2015.08.004

    ZHAO Haixia, XIA Jintong, XIA Lin, et al. Preparation and electromagnetic shielding properties of carbon-based composite coatings[J]. Paint & Coatings Industry,2015,45(8):21-24, 45(in Chinese). doi: 10.3969/j.issn.0253-4312.2015.08.004
    [81] 孙宇楠, 张朵, 毛英坤, 等. 直升机红外隐身涂料的应用研究[J]. 上海涂料, 2022, 60(6):1-4.

    SUN Yunan, ZHANG Duo, MAO Yingkun, et al. Application of helicopter infrared stealth coatings[J]. Shanghai Coatings,2022,60(6):1-4(in Chinese).
    [82] 荆凡, 刘洋, 陈安强. 固化剂对阴极电泳涂料性能的影响研究[J]. 涂层与防护, 2022, 43(2):14-19. doi: 10.3969/j.issn.1672-2418.2022.2.tljsywz202202003

    JING Fan, LIU Yang, CHEN Anqiang. Effect of curing agent on the performance of cathodic electrophoretic coatings[J]. Coating and Protection,2022,43(2):14-19(in Chinese). doi: 10.3969/j.issn.1672-2418.2022.2.tljsywz202202003
    [83] LI M, ZAREI M, GALANTE A J, et al. Stretchable and wash durable reactive silver ink coatings for electromagnetic interference shielding, Joule heating, and strain sensing textiles[J]. Progress in Organic Coatings,2023,179:107506. doi: 10.1016/j.porgcoat.2023.107506
    [84] LAN C, JIA H, QIU M, et al. Ultrathin MXene/polymer coatings with an alternating structure on fabrics for enhanced electromagnetic interference shielding and fire-resistant protective performances[J]. ACS Applied Materials & Interfaces,2021,13(32):38761-38772. doi: 10.1021/acsami.1c11638
    [85] XIE Y, LIU S, HUANG K, et al. Ultra-broadband strong electromagnetic interference shielding with ferromagnetic graphene quartz fabric[J]. Advanced Materials,2022,34(30):e2202982. doi: 10.1002/adma.202202982
    [86] LI L, CUI Y, ZHANG Z, et al. Preparation of graphene/Fe3O4 composite varnish with excellent corrosion-resistant and electromagnetic shielding properties[J]. Ceramics International,2020,46(14):22876-22882. doi: 10.1016/j.ceramint.2020.06.060
  • 加载中
图(14)
计量
  • 文章访问数:  1050
  • HTML全文浏览量:  623
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-06
  • 修回日期:  2023-05-11
  • 录用日期:  2023-05-24
  • 网络出版日期:  2023-05-31
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回