Experiment of bonding performance of inclined embedded section of RC structure reinforced with near-end enhanced embeded CFRP strip
-
摘要: 端部嵌贴预应力碳纤维增强复合材料(CFRP)板加固混凝土结构是一种高效经济的新型混凝土结构加固方法,端部嵌贴段的CFRP与混凝土的粘结性能是锚固预应力CFRP、确保加固效果充分发挥的关键因素。为确定端部嵌贴段中斜向嵌贴段CFRP-混凝土的界面粘结性能,本文开展9个单剪拔出试验,研究了斜嵌段的粘结性能。通过设计混凝土棱柱试件,研究了斜槽角度、CFRP板埋深、CFRP板粘结长度对斜向嵌贴界面粘结性能的影响,并基于试验结果构建了CFRP板-混凝土局部界面的粘结-滑移关系模型。试验结果表明:随斜槽角度增大,试件的承载力及CFRP-混凝土局部界面断裂能也在逐渐增大。CFRP-混凝土界面粘结性能随CFRP埋深比增加而明显增加,并在埋深比为50%时达到最大,此后不再明显变化。基于试验结果所建立的粘结-滑移模型能较准确地模拟出CFRP板在混凝土斜槽中的受力过程。Abstract: Near-end enhanced embedment (NEEE) prestressed carbon fibre reinforced polymer (CFRP) strip is an innovative, efficient and economical technique to reinforce the concrete structure. The CFRP-concrete interfacial bonding performance in NEEE section is the key factor to anchor prestressed CFRP and ensure high efficiency of reinforcement. To clarify the bonding performance of CFRP-concrete interface in the inclined embedded section, which is a part of the NEEE section, nine single-shear pull-out tests with respect to concrete prism specimens were carried out. Factors such as the angle of oblique grooves, embedded depth of CFRP strips and bond length of strengthened region were investigated. Additionally, a bond-slip model of the local interface was presented. The test results show that the load-bearing capacity and fracture energy of specimens increase with the increase of oblique groove angle. The interfacial bonding performance has a positive correlation with the embedded depth of CFRP strips and reaches a maximum with the embedment ratio of 50%, and do not change significantly thereafter. The proposed bond-slip model based on test results could accurately predict the debonding process of CFRP strips in the inclined embedded section.
-
表 1 试验参数设计
Table 1. Design parameters of specimens
Specimen D/mm L/mm P/mm C/% β/(°) D30L5 30 5 300 50 4.8 D40L5 40 5 300 50 6.7 D50L5 50 5 300 50 8.6 D60L5 60 5 300 50 10.5 D70L5 70 5 300 50 12.4 D28L5P200* 28 5 200 50 6.7 D52L5P400* 52 5 400 50 6.7 D40L5C30 40 5 300 30 6.7 D40L5C70 40 5 300 70 6.7 D25L25* 25 25 300 50 0.0 Notes: D—Depth of deep groove; L—Depth of low groove; P—Bonding length; C—Depth ratio; β—Angle of inclined groove; D25L25*—Concrete groove depth of 25 mm horizontal mounted control specimen. 表 2 材料性能
Table 2. Properties of materials
Material Rm/MPa E/GPa δ/% CFRP 2625.50 180.00 1.70 Sika-30CN 31.90 2.63 1.47 Notes: Rm—Tensile strength; E—Elasticity modulus; δ—Elongation. 表 3 CFRP与混凝土界面粘结性能试验结果
Table 3. Test results of interfacial bonding behavior between CFRP and concrete
Specimen β/(°) P/mm C/% Ultimate bearing capacity/kN Failure mode D30L5 4.8 300 50 96 B D40L5 6.7 300 50 114 B D50L5 8.6 300 50 112 A D60L5 10.5 300 50 128 B D70L5 12.4 300 50 138 A D28L5P200* 6.7 200 50 72 B D52L5P400* 6.7 400 50 142 A D40L5C30 6.7 300 30 72 A D40L5C70 6.7 300 70 110 B D25L25* 0.0 300 50 88 A Notes: A indicates that the epoxy resin cracks only at the loading end when the specimen is destroyed; B indicates that the epoxy resin breaks in the concrete groove when the specimen is destroyed. 表 4 试件粘结-滑移曲线特征值拟合结果
Table 4. Results of the fitting of bond-slip characteristic value of the test blocks
Specimen l/mm $ {\tau }_{\mathrm{m}} $/MPa $ {s}_{\mathrm{m}} $/mm $ {\tau }_{\mathrm{r}} $/MPa $ {s}_{0} $/mm A p D30L5 110 9.67 0.187 2.86 0.390 1.59 9.01 D40L5 30 3.68 0.039 1.74 0.108 1.60 7.22 70 10.03 0.209 5.32 0.410 1.52 7.56 110 8.99 0.207 2.03 0.411 1.57 10.13 D50L5 110 12.80 0.209 N/A N/A 1.53 N/A D70L5 30 6.63 0.308 4.61 0.459 1.65 9.30 70 9.19 0.286 6.61 0.550 1.49 11.32 110 11.59 0.442 N/A N/A 1.64 N/A D40L5C30 30 3.91 0.196 1.58 0.297 1.58 10.96 D40L5C70 30 7.14 0.216 2.01 0.406 1.62 12.24 70 6.11 0.059 2.13 0.271 1.52 10.53 110 9.83 0.152 N/A N/A 1.56 N/A Notes: τr—Residual shear stress; s0—Slip value corresponding to the midpoint of the descending segment; p—Fitting parameter for the descending segment; l—Distance from the loading end; N/A—No data; D50L5, D70L5 and D40L5C70—110 mm from the loading end of the bonded slip curve complete descending section before the emergence of the specimen has been destroyed. -
[1] 王春生, 陈惟珍, 陈艾荣. 桥梁损伤安全评定与维护管理策略[J]. 交通运输工程学报, 2002(4):21-28.WANG Chunsheng, CHEN Weizhen, CHEN Airong. Damage safety assessment and maintenance management strategy of bridges[J]. Journal of Traffic and Transportation Engineering,2002(4):21-28(in Chinese). [2] 张开鹏, 蒋玉龙, 曾雪芳. 桥梁加固的发展与展望[J]. 公路, 2005(8):299-301.ZHANG Kaipeng, JIANG Yulong, ZENG Xuefang. Development and prospect of bridge strengthening[J]. Highway,2005(8):299-301(in Chinese). [3] 曾宪桃, 车惠民. 复合材料FRP在桥梁工程中的应用及其前景[J]. 桥梁建设, 2000(2):66-70.ZENG Xiantao, CHE Huimin. Application of composite FRP in bridge engineering and its prospect[J]. Bridge Construction,2000(2):66-70(in Chinese). [4] 叶列平, 冯鹏. FRP在工程结构中的应用与发展[J]. 土木工程学报, 2006(3):24-36.YE Lieping, FENG Peng. Applications and development of fiber-reinforced polymer in engineering structures[J]. China Civil Engineering Journal,2006(3):24-36(in Chinese). [5] 陈开利. CFRP材料在桥梁加固工程中的应用[J]. 桥梁建设, 2001(1):44-45, 48.CHEN Kaili. The application of CFRP in the strengthening of bridges[J]. Bridge Construction,2001(1):44-45, 48(in Chinese). [6] DE LORENZIS L, TENG J G. Near-surface mounted FRP reinforcement: An emerging technique for strengthening structures[J]. Composites Part B: Engineering,2007,38(2):119-143. doi: 10.1016/j.compositesb.2006.08.003 [7] 周延阳, 姚谏. 混凝土表层嵌贴FRP粘结机理研究进展[J]. 科技通报, 2006(2):221-230.ZHOU Yanyang, YAO Jian. Research advance in bond mechanics of near-surface mounted fiber reinforced polymer to concrete[J]. Bulletin of Science and Technology,2006(2):221-230(in Chinese). [8] ZHANG S S, TENG J G. Finite element analysis of end cover separation in RC beams strengthened in flexure with FRP[J]. Engineering Structures,2014,75:550-560. doi: 10.1016/j.engstruct.2014.06.031 [9] 彭晖, 丑佳璇, 吴攀. 端部嵌贴预应力碳纤维复材加固混凝土梁受力性能试验研究[J]. 建筑结构学报, 2023, 44(7): 152-160, 203.PENG Hui, CHOU Jiaxuan, WU Pan. Experimental study on the mechanical behavior of prestressed carbon fiber reinforced polymer strengthened concrete beams with near-end-enhanced-embedment[J]. Journal of Building Structures, 2023, 44(7): 152-160, 203(in Chinese). [10] LYU Y G, WU P, CHOU J X, et al. An experimental study on the interfacial bonding performance of horizontally embedded CFRP strips to concrete[J]. Construction and Building Materials,2023,369:130514. doi: 10.1016/j.conbuildmat.2023.130514 [11] MAZZOTTI C, SAVOIA M, FERRACUTI B. An experimental study on delamination of FRP plates bonded to concrete[J]. Construction & Building Materials,2008,22(7):1409-1421. [12] 叶列平, 方团卿, 杨勇新, 等. 碳纤维布在混凝土梁受弯加固中抗剥离性能的试验研究[J]. 建筑结构, 2003(2):61-65.YE Lieping, FANG Tuanqing, YANG Yongxin, et al. Experimental study on the debonding resistance of carbon fiber sheet in flexural reinforcement of concrete beams[J]. Building Structure,2003(2):61-65(in Chinese). [13] SEO S Y, FEO L, HUI D. Bond strength of near surface-mounted FRP plate for retrofit of concrete structures[J]. Composite Structures,2013,95:719-727. [14] LEE D, CHENG L, HUI Y G. Bond characteristics of various NSM FRP reinforcements in concrete[J]. Journal of Composites for Construction,2013,17(1):117-129. doi: 10.1061/(ASCE)CC.1943-5614.0000318 [15] NOVIDIS D, PANTAZOPOULOU S J, TENTOLOURIS E. Experimental study of bond of NSM-FRP reinforcement[J]. Construction & Building Materials,2007,21(8):1760-1770. [16] DE LORENZIS L, RIZZO A, TEGOLA A L. A modified pull-out test for bond of near-surface mounted FRP rods in concrete[J]. Composites Part B: Engineering,2002,33(8):589-603. doi: 10.1016/S1359-8368(02)00052-5 [17] ACHILLIDES Z, PILAKOUTAS K. Bond behavior of fiber reinforced polymer bars under direct pullout conditions[J]. Journal of Composites for Construction,2004,8(2):173-181. doi: 10.1061/(ASCE)1090-0268(2004)8:2(173) [18] 彭晖, 丑佳璇, 孙溢, 等. 表层嵌贴CFRP-混凝土结构的粘结性能研究[J]. 中国公路学报, 2019, 32(12):156-166. doi: 10.19721/j.cnki.1001-7372.2019.12.016PENG Hui, CHOU Jiaxuan, SUN Yi, et al. Bond behavior of near-surface-mounted CFRP to concrete structure[J]. China Journal of Highway and Transport,2019,32(12):156-166(in Chinese). doi: 10.19721/j.cnki.1001-7372.2019.12.016 [19] OEHLERS D J, HASKETT M, WU C, et al. Embedding NSM FRP plates for improved IC debonding resistance[J]. Journal of Composites for Construction,2008,12(6):635-642. doi: 10.1061/(ASCE)1090-0268(2008)12:6(635) [20] MOHAMED ALI M S, OEHLERS D J, GRIFFITH M C, et al. Interfacial stress transfer of near surface-mounted FRP-to-concrete joints[J]. Engineering Structures,2007,30(7):1861-1868. [21] 袁鸿. FRP增强混凝土结构的界面断裂理论[C]//第二届全国土木工程用纤维增强复合材料(FRP)应用技术学术交流会论文集. 北京: 清华大学出版社, 2002: 278-281.YUAN Hong. Interfacial fracture theories of FRP-strengthened structure[C]//Proceedings of the Second National Conference on Application Technology of Fiber Reinforced Polymer (FRP) for Civil Engineering. Beijing: Tsinghua University Press, 2002: 278-281(in Chinese). [22] ZHANG S S, TENG J G, YU T. Bond-slip model for CFRP strips near-surface mounted to concrete[J]. Engineering Structures,2013,56:945-953. doi: 10.1016/j.engstruct.2013.05.032 [23] 李荣, 滕锦光, 岳清瑞. 嵌入式CFRP板条-混凝土界面粘结性能的试验研究[J]. 工业建筑, 2005(8):31-34.LI Rong, TENG Jinguang, YUE Qingrui. Experimental study on bond behavior of NSM CFRP strips-concrete interface[J]. Industrial Construction,2005(8):31-34(in Chinese). [24] DE LORENZIS L, NANNI A. Shear strengthening of reinforced concrete beams with near-surface mounted fiber-reinforced polymer rods[J]. Structural Journal,2001,98(1):60-68. [25] BAENA M, TORRES L, TURON A, et al. Experimental study of bond behaviour between concrete and FRP bars using a pull-out test[J]. Composites Part B: Engineering,2009,40(8):784-797. doi: 10.1016/j.compositesb.2009.07.003 [26] SHARAKY I A, TORRES L, BAENA M, et al. Effect of different material and construction details on the bond behaviour of NSM FRP bars in concrete[J]. Construction and Building Materials,2013,38:890-902. [27] 张智梅, 张振凯, 熊浩, 等. 建立表层嵌贴FRP板条-混凝土界面粘结-滑移模型的方法[J]. 上海大学学报(自然科学版), 2018, 24(2):304-313.ZHANG Zhimei, ZHANG Zhenkai, XIONG Hao, et al. Method of bond-slip model of near-surface mounted FRP strips-concrete interfaces[J]. Journal of Shanghai University (Natural Science Edition),2018,24(2):304-313(in Chinese).