Viscosifying dicyclopentadiene monomer by prepolymerization and evaluation of its continuous carbon fiber composites
-
摘要: 聚双环戊二烯(PDCPD)作为一种综合性能优异的热固性树脂,可与连续碳纤维进行复合,应用在工程领域上,以满足轻量化和节能环保需求。本文首先通过调节双环戊二烯单体(DCPD)与Grubbs 2代催化剂的质量比使其只聚合不交联,调节黏度以满足真空辅助灌注成型(VARI)工艺对树脂特性的要求。随后对碳纤维表面进行丙酮去浆处理,再与上述加入足量催化剂的预聚物进行复合。对比PDCPD复合材料与通用型环氧树脂复合材料的拉伸、弯曲、V型缺口剪切、层间I型以及II型断裂韧性、冲击和热力学性能,研究PDCPD复合材料在不同加载模式下的失效机制,探寻其在工程领域应用的关键点和方向。结果表明,去浆后碳纤维与PDCPD界面结合良好,PDCPD复合材料在强度上与环氧树脂相当,在抵抗变形能力上较弱,但是在遭受高于极限强度的载荷后,仍然具有一定程度的承载能力;从层间断裂韧性来看,PDCPD复合材料I型断裂韧性和II型断裂韧性分别相当于环氧树脂复合材料的406%和250%,具有优异的抵抗分层能力;对比两种复合材料抗冲击性能,3.2 mm的PDCPD复合材料层合板在40 J能量的冲击下,表面产生层合板勉强可见冲击损伤(BVID),背面无明显纤维破裂现象,剩余冲击压缩强度比环氧树脂复合材料高34.7%。Abstract: Polydicyclopentadiene (PDCPD) as a thermosetting resin with excellent comprehensive performance, can be composited with continuous carbon fibers (CF), for the application of various engineering field to meet the requirements of lightweight, energy conservation and environmental protection. In this paper, firstly, the viscosity of the DCPD prepolymer could meet the demands of vacuum assisted resin infusion (VARI) molding process by adjusting the content of Grubbs 2 catalyst. Subsequently, the carbon fiber was subjected desizing treatment, and then compounded with the prepolymer added with sufficient catalyst. The tensile, flexural, V-notch shear, interlaminar fracture toughness, impact, and thermodynamic properties of PDCPD/CF composites were compared with thegeneral epoxy resin (EP)/CF composites, The failure mechanisms of PDCPD/CF composites under different loading modes were detected, and the key points and directions for their application in the engineering field were explored. The results show that the interface between the carbon fibers after desizing and PDCPD is well bonded, and the strength of PDCPD/CF composite is comparable to that of EP/CF composite. Although PDCPD/CF composite had weaker deformation resistance, they still had a certain degree of bearing capacity after being subjected to the ultimate loads. From the perspective of interlaminar fracture toughness, PDCPD/CF composites have excellent delamination resistance, with mode I and mode II fracture toughness equivalent to 406% and 250% of CF/EP composites, respectively. A barely visible impact damage (BVID) has formed on the top surface of a 3.2 mm-thickness PDCPD laminate after being subjected to a 40 J impact, while there is no significant fiber breakage on the bottom surface. The residual compression strength of PDCPD/CF composites is 34.7% higher than the EP/CF composite.
-
图 8 PDCPD复合材料(PDCPD/CF)和环氧树脂复合材料(EP/CF)弯曲性能对比:(a) 荷载-位移曲线;(b) 弯曲强度对比;环氧树脂复合材料(c)和PDCPD复合材料(d)弯曲失效形貌
Figure 8. Comparison of flexural properties of PDCPD/CF and EP/CF: (a) Load-displacement curves; (b) Flexural strength comparison; Fracture morphologies of EP/CF (c) and PDCPD/CF (d)
CF—Carbon fiber; EP—Epoxy resin
图 11 PDCPD复合材料和环氧树脂复合材料V型缺口剪切性能对比:(a) 荷载-位移曲线;(b) V型缺口剪切强度对比;环氧树脂复合材料(c) 和PDCPD复合材料 (d) 的V型缺口剪切失效图
Figure 11. Comparison of V-notch shear properties of PDCPD/CF and EP/CF: (a) Load-displacement curves; (b) V-notch shear strength comparison; V-notch shear failure diagram of EP/CF (c) and PDCPD/CF (d)
图 16 两种复合材料冲击性能:(a) 荷载-位移曲线;(b) 能量吸收-时间曲线;环氧树脂复合材料(c)和PDCPD复合材料(d)冲击后表面形貌;环氧树脂复合材料(e)和PDCPD复合材料(f)冲击后背面形貌
Figure 16. Impact properties of EP/CF andPDCPD/CF: (a) Load-displacement curves; (b) Energy absorption-time curve; Top surface morphologies of EP/CF (c) and PDCPD/CF (d) after impact; Bottom surface morphologies of EP/CF (e) and PDCPD/CF (f) after impact
BVID—Barely visible impact damages
表 1 预聚物的配方设计
Table 1. Formulation design of prepolymer
Formulation number Mass ratio of DCPD monomer to GC2 1 1∶1×10−5 2 1∶2×10−5 3 1∶3×10−5 4 1∶4×10−5 5 1∶5×10−5 Notes: DCPD—Dicyclopentadiene; GC2—Grubbs 2 catalyst. 表 2 复合材料各项性能测试参数
Table 2. Technical details for the performed composites tests
Test Test speed Layers Nominal sample dimensions/mm3 Three point bending 1 mm/min 16 120×13×3.2 Tension 2 mm/min 12 250×25×2.4 V-notched rail shear 2 mm/min 12 76×56×2.4, groove depth is 12.7 mm and groove angle is 90℃ Double cantilever beam 1 mm/min 20 150×25×4, pre-crack length is 75 mm End notched flexure 2 mm/min 20 150×25×4, pre-crack length is 45 mm Compression after impact 1.25 mm/min for compression rate 16 150×100×3.2 Dynamic mechanical properties 1 Hz, heating rate of 5℃/min 10 60×12×2 表 3 预聚物全固化后力学性能对比
Table 3. Comparison of mechanical properties of prepolymers after full curing
Resin system Tensile strength/MPa Elongation at break/% Tensile modulus/GPa Flexural strength/MPa Fracture toughness/(MPa·m1/2) PDCPD without prepolymerzation
53.9±2.7 8.2±0.6 1.52±0.09 82.1±4.4 2.56±0.12 No.2 prepolymer 53.7±2.4 8.2±0.5 1.55±0.08 84.3±5.6 2.59±0.18 No.3 prepolymer 52.6±1.9 8.0±0.5 1.48±0.08 83.7±3.9 2.48±0.15 No.4 prepolymer 54.2±2.1 8.1±0.7 1.55±0.1 82.4±4.7 2.50±0.09 No.5 prepolymer 53.8±1.8 8.0±0.6 1.51±0.12 83.6±4.7 2.55±0.13 Epoxy resin 74.9±3.1 3.9±0.2 2.45±0.1 123.4±5.5 0.68±0.03 -
[1] CHENG C, ZHANG C, ZHOU J, et al. Improving the interlaminar toughness of the carbon fiber/epoxy composites via interleaved with polyethersulfone porous films[J]. Composite Science Technology,2019,183:107827. doi: 10.1016/j.compscitech.2019.107827 [2] NASSER J, ZHANG L, SODANO H. Laser induced graphene interlaminar reinforcement for tough carbon fiber/epoxy composites[J]. Composites Science and Technology,2021,201:104893. [3] CAO H, LIU L, WU B, et al. Process optimization of high-speed dry milling UD-CF/PEEK laminates using GA-BP neural network[J]. Composites Part B: Engineering,2021,221:109034. doi: 10.1016/j.compositesb.2021.109034 [4] YAO S, JIN F, RHEE K Y, et al. Recent advances in carbon-fiber reinforced thermoplastic composites: A review[J]. Composites Part B: Engineering,2018,142:241-250. doi: 10.1016/j.compositesb.2017.12.007 [5] 彭淑鸽, 刘晓飞, 樊昕洁, 等. 反应注射成型纳米CuS/PDCPD复合材料的制备与性能[J]. 复合材料学报, 2013, 30(2):56-62. doi: 10.13801/j.cnki.fhclxb.2013.02.032PENG Shuge, LIU Xiaofei, FAN Xinjie, et al. Preparation and properties of nano-CuS/PDCPD composites by reaction injection molding[J]. Acta Materiae Compositae Sinica,2013,30(2):56-62(in Chinese). doi: 10.13801/j.cnki.fhclxb.2013.02.032 [6] REN H Y, HE Z L, LI D L, et al. Synergistic enhanced yield strength, tensile ductility and impact toughness of polydicyclopentadiene nanocomposites by introducing low loadings of di-functionalized silica[J]. Polymer Testing,2019,79:106052. doi: 10.1016/j.polymertesting.2019.106052 [7] 郭松, 胡贵宝, 杨维成, 等. 聚双环戊二烯的共聚改性及其性能调控[J]. 精细化工, 2022, 39(3):548-553, 568.GUO Song, HU Guibao, YANG Weicheng, et al. Copolymerization modification of polydicyclopentadiene and its property regulation[J]. Fine Chemicals,2022,39(3):548-553, 568(in Chinese). [8] VALLONS K A M, DROZDZAK R, CHARRET M, et al. Assessment of the mechanical behaviour of glass fibre composites with a tough polydicyclopentadiene (PDCPD) matrix[J]. Composites Part A: Applied Science and Manufacturing,2015,78:191-200. doi: 10.1016/j.compositesa.2015.08.016 [9] HU Y, LANG A W, LI X, et al. Hygrothermal aging effects on fatigue of glass fibre/polydicyclopentadiene composite[J]. Polymer Degradation and Stability,2014,110:464-472. doi: 10.1016/j.polymdegradstab.2014.10.018 [10] HU Y, LI X, LANG A W, et al. Water immersion aging of polydicyclopentadiene resin and glass fibre composites[J]. Polymer Degradation and Stability,2016,124:35-42. doi: 10.1016/j.polymdegradstab.2015.12.008 [11] 杨青, 程超, 刁春霞, 等. 真空辅助灌注成型用聚双环戊二烯的制备及其碳纤维增强复合材料的性能研究[J]. 复合材料科学与工程, 2022, 341(6):89-95. doi: 10.19936/j.cnki.2096-8000.20220628.014YANG Qing, CHENG Chao, DIAO Chunxia, et al. Preparation and performance research of carbon fiber reinforced polydicyclopentadiene composites based on vacuum-assisted resin infusion processing[J]. Composites Science and Engineering,2022,341(6):89-95(in Chinese). doi: 10.19936/j.cnki.2096-8000.20220628.014 [12] CHENG C, ZHANG C, CHEN Z, et al. Newly designed polydicyclopentadiene and its continuous carbon fiber composites: Preparation and mechanical properties assessment[J]. Polymer,2022,262:125481. doi: 10.1016/j.polymer.2022.125481 [13] QIAO X, YAN Z, YANG W, et al. Carbon fibre-reinforced polydicyclopentadiene composites for automobile applications[J]. Materials Letters,2023,337:133848. doi: 10.1016/j.matlet.2023.133848 [14] ROBERTSON I D, YOURDKHANI M, CENTELLAS P J, et al. Rapid energy-efficient manufacturing of polymers and composites via frontal polymerization[J]. Nature,2018,557:223-227. doi: 10.1038/s41586-018-0054-x [15] CENTELLAS P J, YOURDKHANI M, VYAS S, et al. Rapid multiple-front polymerization of fiber-reinforced polymer composites[J]. Composites Part A: Applied Science and Manufacturing,2022,158:106931. doi: 10.1016/j.compositesa.2022.106931 [16] ZHANG Z, LIU R, LI W, et al. Frontal polymerization-assisted 3D printing of short carbon fibers/dicyclopentadiene composites[J]. Journal of Manufacturing Processes,2021,71:753-762. doi: 10.1016/j.jmapro.2021.10.014 [17] HAYNE D J, SINGLETON M A, PATTERSON B A, et al. Assessing the properties of poly(dicyclopentadiene) reinforced with discontinuous carbon fibers[J]. Composites Part A: Applied Science and Manufacturing,2022,155:106839. doi: 10.1016/j.compositesa.2022.106839 [18] 王新庆, 柳肇博, 刘寒松, 等. 上浆剂对国产T800级碳纤维增强热固性复合材料界面性能的影响[J]. 复合材料学报, 2022, 39(9):4393-4405. doi: 10.13801/j.cnki.fhclxb.20220104.001WANG Xinqing, LIU Zhaobo, LIU Hansong, et al. Effect of sizing agent on interfacial properties of domestic T800 grade carbon fiber reinforced thermosetting composites[J]. Acta Materiae Compositae Sinica,2022,39(9):4393-4405(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220104.001 [19] LIU F, SHI Z, DONG Y. Improved wettability and interfacial adhesion in carbon fibre/epoxy composites via an aqueous epoxy sizing agent[J]. Composites Part A: Applied Science and Manufacturing,2018,112:337-345. doi: 10.1016/j.compositesa.2018.06.026 [20] DONG Y, YU T, WANG X, et al. Improved interfacial shear strength in polyphenylene sulfide/carbon fiber composites via the carboxylic polyphenylene sulfide sizing agent[J]. Composites Science and Technology,2020,190:108056. doi: 10.1016/j.compscitech.2020.108056 [21] YOO H M, JEON J H, LI M X, et al. Analysis of curing behavior of endo-dicyclopentadiene using different amounts of decelerator solution[J]. Composites Part B: Engineering,2019,161:439-454. doi: 10.1016/j.compositesb.2018.12.068 [22] ASTM International. Standard test method for flexural properties of polymer matrix composite materials: ASTM D7264[S]. West Conshohocken: ASTM International, 2022. [23] ASTM International. Standard test method for tensile properties of polymer matrix composites: ASTM D3039[S]. West Conshohocken: ASTM International, 2014. [24] ASTM International. Standard test method for shear properties of composite materials by V-notched rail shear method: ASTM D7078[S]. West Conshohocken: ASTM International, 2018. [25] ASTM International. Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D5528[S]. West Conshohocken: ASTM International, 2021. [26] ASTM International. Standard test method for determination of the mode II interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites: ASTM D7905[S]. West Conshohocken: ASTM International, 2014. [27] ASTM International. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event: ASTM D7136[S]. West Conshohocken: ASTM International, 2005. [28] ROBERTSON I D, DEAN L M, RUDEBUSCH G E, et al. Alkyl phosphite inhibitors for frontal ring-opening metathesis polymerization greatly increase pot life[J]. ACS Macro Letters,2017,6(6):609-612. doi: 10.1021/acsmacrolett.7b00270 [29] BROUWER W D, VAN HERPT E C F C, LABORDUS M. Vacuum injection moulding for large structural applications[J]. Composites Part A: Applied Science and Manufacturing,2003,34(6):551-558. doi: 10.1016/S1359-835X(03)00060-5 [30] OBANDE W, MAMALIS D, RAY D, et al. Mechanical and thermomechanical characterization of vacuum-infused thermoplastic- and thermoset-based composites[J]. Materials & Design,2019,175:107828. [31] 李传, 刘晓天, 唐均坤, 等. 碳纤维表面处理对含硅芳炔树脂复合材料的界面增强[J]. 高分子材料科学与工程, 2022, 38(7):38-44. doi: 10.16865/j.cnki.1000-7555.2022.0155LI Chuan, LIU Xiaotian, TANG Junkun, et al. Interface properties of T300/poly(silylene arylacetylene) resin composites enhanced by surface treatment of T300 carbon fibers[J]. Polymer Materials Science and Engineering,2022,38(7):38-44(in Chinese). doi: 10.16865/j.cnki.1000-7555.2022.0155 [32] 张裕恒, 王继辉, 魏建辉, 等. 湿热环境下碳纤维增强乙烯基树脂复合材料长期力学性能[J]. 复合材料学报, 2023, 40(3):1406-1416.ZHANG Yuheng, WANG Jihui, WEI Jianhui, et al. Long-term mechanical properties of carbon fiber reinforced vinyl resin composites in hygrothermal environment[J]. Acta Materiae Compositae Sinica,2023,40(3):1406-1416(in Chinese). [33] ZHOU Z, ZHENG N, SUN W. Self-interlocked MXene/polyvinyl alcohol aerogel network to enhance interlaminar fracture toughness of carbon fibre/epoxy composites[J]. Carbon,2023,201:60-70. doi: 10.1016/j.carbon.2022.08.081 [34] CHENG C, CHEN Z, HUANG Z, et al. Simultaneously improving mode I and mode II fracture toughness of the carbon fiber/epoxy composite laminates via interleaved with uniformly aligned PES fiber webs[J]. Composites Part A: Applied Science and Manufacturing,2020,129:105696. doi: 10.1016/j.compositesa.2019.105696 [35] 拓宏亮, 马晓平, 卢智先. 基于连续介质损伤力学的复合材料层合板低速冲击损伤模型[J]. 复合材料学报, 2018, 35(7):1878-1888. doi: 10.13801/j.cnki.fhclxb.20180103.001TUO Hongliang, MA Xiaoping, LU Zhixian. A model for low velocity impact damage analysis of composite laminates based on continuum damage mechanics[J]. Acta Materiae Compositae Sinica,2018,35(7):1878-1888(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180103.001 [36] 龚明, 张代军, 张嘉阳, 等. 原位聚合碳纤维增强聚甲基丙烯酸甲酯基复合材料损伤与修复研究[J]. 复合材料学报, 2023, 40(3):1740-1750. doi: 10.13801/j.cnki.fhclxb.20220516.002GONG Ming, ZHANG Daijun, ZHANG Jiayang, et al. Damage and repair study of in-situ polymerized carbon fiber reinforced PMMA composites[J]. Acta Materiae Compositae Sinica,2023,40(3):1740-1750(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220516.002 [37] HU Y, LIU W, SHI Y. Low-velocity impact damage research on CFRPs with Kevlar-fiber toughening[J]. Composite Structures,2019,216:127-141. doi: 10.1016/j.compstruct.2019.02.051 [38] 顾洋洋, 张金栋, 刘刚, 等. 聚芳醚酮(PAEK)树脂熔体黏度及冲击能量对其复合材料冲击损伤行为的影响[J]. 复合材料学报, 2023, 40(10):5641-5653. doi: 10.13801/j.cnki.fhclxb.20221228.003GU Yangyang, ZHANG Jindong, LIU Gang, et al. Effect of melt viscosity and impact energy of poly aryl ether ketone (PAEK) resins on the impact damage behavior of their composites[J]. Acta Materiae Compositae Sinica,2023,40(10):5641-5653(in Chinese). doi: 10.13801/j.cnki.fhclxb.20221228.003 [39] 曹东风, 陈新昌, 冀运东, 等. 硅氧烷改性环氧树脂基复合材料层间力学性能与耐热性[J]. 复合材料学报, 2023, 40(11):6098-6109. doi: 10.13801/j.cnki.fhclxb.20230109.001CAO Dongfeng, CHEN Xinchang, JI Yundong, et al. Interlaminar mechanical properties and heat resistance of silicone modified epoxy resin composites[J]. Acta Materiae Compositae Sinica,2023,40(11):6098-6109(in Chinese). doi: 10.13801/j.cnki.fhclxb.20230109.001 [40] ZHENG N, HUANG Y, LIU H Y, et al. Improvement of interlaminar fracture toughness in carbon fiber/epoxy composites with carbon nanotubes/polysulfone interleaves[J]. Composites Science and Technology,2017,140:8-15. doi: 10.1016/j.compscitech.2016.12.017