留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粉煤灰微珠-沙漠砂陶粒混凝土力学性能试验

许建疆 郭军林 甘丹 袁康 何明胜

许建疆, 郭军林, 甘丹, 等. 粉煤灰微珠-沙漠砂陶粒混凝土力学性能试验[J]. 复合材料学报, 2024, 41(1): 348-360. doi: 10.13801/j.cnki.fhclxb.20230529.004
引用本文: 许建疆, 郭军林, 甘丹, 等. 粉煤灰微珠-沙漠砂陶粒混凝土力学性能试验[J]. 复合材料学报, 2024, 41(1): 348-360. doi: 10.13801/j.cnki.fhclxb.20230529.004
XU Jianjiang, GUO Junlin, GAN Dan, et al. Experimental study on mechanical properties of fly ash cenospheres-desert sand ceramsite concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 348-360. doi: 10.13801/j.cnki.fhclxb.20230529.004
Citation: XU Jianjiang, GUO Junlin, GAN Dan, et al. Experimental study on mechanical properties of fly ash cenospheres-desert sand ceramsite concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 348-360. doi: 10.13801/j.cnki.fhclxb.20230529.004

粉煤灰微珠-沙漠砂陶粒混凝土力学性能试验

doi: 10.13801/j.cnki.fhclxb.20230529.004
基金项目: 兵团重点领域科技攻关项目(2021AB027);石河子大学青年创新人才培育项目(CXPY202014)
详细信息
    通讯作者:

    郭军林,博士,副教授,硕士生导师,研究方向为新型建筑材料与工程结构抗震 E-mail: guo_education@163.com

  • 中图分类号: TU502;TB332

Experimental study on mechanical properties of fly ash cenospheres-desert sand ceramsite concrete

Funds: Key Scientific and Technological Tackle Project of Xinjiang Production and Construction Corps, China (2021AB027); Youth Innovation Talent Cultivation Project of Shihezi University (CXPY202014)
  • 摘要: 以沙漠砂(DS)和粉煤灰微珠(FAC)部分代替河砂,并掺入聚合物乳液(PL)制备新型陶粒混凝土—粉煤灰微珠-沙漠砂陶粒混凝土(FDCC)。通过单因素变量研究DS替代率、FAC替代率和PL掺量对FDCC工作性能及力学性能影响规律,并建立了FDCC抗压强度预测模型。研究结果表明:DS和FAC可部分替代河砂用于制备轻骨料混凝土。FDCC表观密度与抗压强度呈线性关系,坍落度随DS替代率的增加而降低,随FAC替代率和PL掺量的增加而增加。FDCC抗压强度随DS替代率增加先上升后下降,随FAC替代率增加先下降后上升。DS、FAC最优替代率及PL最优掺量分别为20vol%、30vol%和1wt%。FDCC劈裂抗拉强度随DS替代率、FAC替代率和PL掺量增加而降低。DS和FAC的掺入能促进水化产物生成,对FDCC混凝土微观结构有利。

     

  • 图  1  沙漠砂(DS)宏观和微观图

    Figure  1.  Desert sand (DS) macro and micro diagrams

    图  2  FAC宏观和微观图

    Figure  2.  FAC macro and micro diagrams

    图  3  细集料粒径分布曲线

    Figure  3.  Fine aggregate particle size distribution curves

    Area I, area II and area III represent over fine, normal and over coarse sand area, respectively; F1D2 represents mixed sand with FAC replacement 10vol% and DS replacement 20vol%

    图  4  FDCC表观密度与28天抗压强度关系图

    Figure  4.  Apparent density of FDCC related to 28 days compressive strength

    R2—Coefficient of determination

    图  5  各因素对FDCC坍落度的影响

    Figure  5.  Effect of factors on slump of FDCC

    图  6  DS替代率与FDCC抗压强度的关系

    Figure  6.  Relationship between DS replacement rate and FDCC compressive strength

    图  7  FAC替代率与FDCC抗压强度的关系

    Figure  7.  Relationship between FAC replacement rate and FDCC compressive strength

    图  8  PL掺量与FDCC抗压强度的关系

    Figure  8.  Relationship between PL dosing and FDCC compressive strength

    图  9  各因素与FDCC劈裂抗拉强度的关系

    Figure  9.  Relationship between factors and FDCC splitting tensile strength

    图  10  FDCC抗压破坏形态

    Figure  10.  Compressive damage pattern of FDCC

    图  11  FDCC劈裂破坏形态

    Figure  11.  Splitting damage pattern of FDCC

    图  12  FDCC混凝土强度预测值与实际值对比

    Figure  12.  Comparison of predicted and actual values of FDCC concrete strength

    fcu—28 days compressive strength of concrete; fts—28 days splitting tensile strength of concrete

    图  13  不同DS替代率下FDCC的SEM图像

    Figure  13.  SEM images of FDCC at different DS replacement rates

    C-S-H—Hydrate calcium silicate; CH—Calcium hydroxide; AFt—Ettringite

    图  14  FDCC细集料的界面SEM图像

    Figure  14.  SEM images of the fine aggregate interface of FDCC

    ITZ—Aggregate transition interface

    图  15  不同DS替代率下FDCC的XRD图谱

    Figure  15.  XRD patterns of FDCC at different DS replacement rates

    LWAC—Lightweight aggregate concrete

    表  1  粉煤灰微珠(FAC)主要化学成分

    Table  1.   Main chemical composition of fly ash cenosphere (FAC)

    CompositionSiO2/wt%Al2O3/wt%CaO/wt%Fe2O3/wt%MgO/wt%K2O/wt%Na2O/wt%TiO2/wt%
    Fly ash cenosphere59.4423.302.315.491.372.851.490.96
    下载: 导出CSV

    表  2  DS、FAC和聚合物乳液(PL)配合比

    Table  2.   Mixing ratio of DS, FAC and polymer (PL)

    Specimen
    number
    FAC/vol%DS/vol%PL/wt%Amount of material/(kg·m−3)
    WaterCementCaramsiteFly ashRiver sandFACDSPL
    FDCC-1 136.85 368 472.36 92 646.11
    FDCC-2 10 10 0.5 516.88 10.92 73.48 3.83
    FDCC-3 1 516.88 10.92 73.48 7.67
    FDCC-4 1.5 516.88 10.92 73.48 11.50
    FDCC-5 20 0.5 452.27 10.92 146.87 3.83
    FDCC-6 1 452.27 10.92 146.87 7.67
    FDCC-7 1.5 452.27 10.92 146.87 11.50
    FDCC-8 30 0.5 387.66 10.92 220.30 3.83
    FDCC-9 1 387.66 10.92 220.30 7.67
    FDCC-10 1.5 387.66 10.92 220.30 11.50
    FDCC-11 20 10 0.5 452.27 21.84 73.48 3.83
    FDCC-12 1 452.27 21.84 73.48 7.67
    FDCC-13 1.5 452.27 21.84 73.48 11.50
    FDCC-14 20 0.5 387.66 21.84 146.87 3.83
    FDCC-15 1 387.66 21.84 146.87 7.67
    FDCC-16 1.5 387.66 21.84 146.87 11.50
    FDCC-17 30 0.5 323.05 21.84 220.30 3.83
    FDCC-18 1 323.05 21.84 220.30 7.67
    FDCC-19 1.5 323.05 21.84 220.30 11.50
    FDCC-20 30 10 0.5 387.66 32.76 73.48 3.83
    FDCC-21 1 387.66 32.76 73.48 7.67
    FDCC-22 1.5 387.66 32.76 73.48 11.50
    FDCC-23 20 0.5 323.05 32.76 146.87 3.83
    FDCC-24 1 323.05 32.76 146.87 7.67
    FDCC-25 1.5 323.05 32.76 146.87 11.50
    FDCC-26 30 0.5 258.44 32.76 220.30 3.83
    FDCC-27 1 258.44 32.76 220.30 7.67
    FDCC-28 1.5 258.44 32.76 220.30 11.50
    Note: FDCC—Fly ash cenosphere-desert sand ceramsite concrete.
    下载: 导出CSV

    表  3  粉煤灰微珠-沙漠砂陶粒混凝土(FDCC)力学性能试验结果

    Table  3.   Mechanical property test results of flyash cenosphere-desert sand ceramsite concrete (FDCC)

    Group
    number
    Apparent
    density/
    (kg·m−3)
    Compressive strength/MPaSplitting tensile strength/
    MPa
    Slump/
    mm
    Group numberApparent density/
    (kg·m−3)
    Compressive strength/MPaSplitting tensile strength/
    MPa
    Slump/
    mm
    7 d28 d7 d28 d
    FDCC-1 1730.81 24.18 30.75 2.89 81 FDCC-15 1722.54 21.35 27.56 1.89 63
    FDCC-2 1731.20 22.15 27.62 2.68 81 FDCC-16 1704.09 20.88 26.57 1.75 55
    FDCC-3 1740.23 21.15 26.69 2.31 72 FDCC-17 1705.20 21.75 26.49 2.12 69
    FDCC-4 1742.23 20.37 26.67 2.26 66 FDCC-18 1710.48 20.63 25.01 1.81 53
    FDCC-5 1746.73 23.30 28.92 2.86 67 FDCC-19 1703.32 19.56 23.36 1.34 44
    FDCC-6 1743.63 22.34 28.28 2.66 51 FDCC-20 1690.50 26.99 32.77 2.36 109
    FDCC-7 1744.43 22.15 27.87 2.59 44 FDCC-21 1683.22 25.55 31.49 1.89 101
    FDCC-8 1748.77 22.58 24.81 2.61 43 FDCC-22 1699.60 25.49 29.88 1.55 93
    FDCC-9 1759.60 21.35 25.84 2.57 39 FDCC-23 1714.03 28.23 32.14 2.14 88
    FDCC-10 1765.27 19.53 25.35 2.51 31 FDCC-24 1727.45 27.00 34.22 1.72 79
    FDCC-11 1728.10 21.05 27.74 2.51 93 FDCC-25 1716.12 25.67 30.95 1.41 71
    FDCC-12 1700.08 19.81 27.86 2.05 79 FDCC-26 1732.33 27.14 29.04 2.06 70
    FDCC-13 1713.27 19.61 24.58 1.98 71 FDCC-27 1724.02 25.62 29.60 1.68 59
    FDCC-14 1737.79 22.71 27.97 2.43 79 FDCC-28 1722.37 26.39 29.74 1.34 47
    下载: 导出CSV

    表  4  混凝土抗压强度预测模型验证

    Table  4.   Verification of concrete compressive strength prediction model

    Data sourceTest value/
    MPa
    Model test
    value/MPa
    DifferencesRelative
    error/%
    Concrete
    types
    Replacement
    aggregates
    [24]-working condition 231.528.4 3.1 9.8Ceramsite concreteDesert sand
    [24]-working condition 334.428.6 5.8 16.8Ceramsite concreteDesert sand
    [24]-working condition 526.629.5−2.9−10.9Ceramsite concreteDesert sand
    [25]-working condition RLC1043.326.217.1 39.5Ceramsite concreteRubber
    [25]-working condition RLC2039.425.314.1 35.7Ceramsite concreteRubber
    [25]-working condition RLC3033.824.4 9.4 27.8Ceramsite concreteRubber
    Note: RLC10—Rubber lightweight aggregate concrete 10.
    下载: 导出CSV

    表  5  FDCC的经济性分析

    Table  5.   Economic analysis of FDCC

    Group
    number
    Price/
    (CNY·m−3)
    Price
    differential/%
    Price (none PL)/
    (CNY·m−3)
    Price
    differential/%
    FDCC-1420.45420.45
    FDCC-2427.552414.91−1
    FDCC-28431.623393.67−5
    下载: 导出CSV
  • [1] 余振鹏, 黄侨, 赵志青, 等. 自密实轻骨料混凝土压-剪复合受力力学性能[J]. 复合材料学报, 2019, 36(8):1984-1994.

    YU Zhenpeng, HUANG Qiao, ZHAO Zhiqing, et al. Mechanical property of self-compacting lightweight aggregate concrete under combined compression-shear stress[J]. Acta Materiae Compositae Sinica,2019,36(8):1984-1994(in Chinese).
    [2] 陈宇良, 刘志华, 叶培欢, 等. 高温后珊瑚海水海砂混凝土直剪力学性能及损伤演化[J]. 复合材料学报, 2023, 40(7): 4128-4138.

    CHEN Yuliang, LIU Zhihua, YE Peihuan, et al. Direct shear mechanical properties and damage evolution of coral seawater sea-sand concrete after high temperature[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4128-4138(in Chinese)
    [3] 叶列平, 孙海林, 陆新征, 等. 高强轻骨料混凝土结构−性能、分析与计算[M]. 北京: 科学出版社, 2009: 1-4.

    YE Lieping, SUN Hailin, LU Xinzheng, et al. High-strength lightweight aggregate concrete structures behaviors, analysis and calculation[M]. Beijing: China Science Publishing, 2009: 1-4(in Chinese).
    [4] 郭璞, 李红云, 邹春霞. 混杂纤维轻骨料混凝土压拉性能及强度预测[J]. 排灌机械工程学报, 2022, 40(3):311-316.

    GUO Pu, LI Hongyun, ZOU Chunxia. Compression and tensile performance and strength prediction of hybrid fiber lightweight aggregate concrete[J]. Journal of Drainage and Irrigation Machinery Engineering,2022,40(3):311-316(in Chinese).
    [5] 金浏, 杨旺贤, 余文轩, 等. 基于细观模拟的轻骨料混凝土破坏行为及尺寸效应研究[J]. 防灾减灾工程学报, 2021, 41(1):91-99.

    JIN Liu, YANG Wangxian, YU Wenxuan, et al. Study on failure behavior and size effect of lightweight aggregate concrete based on meso-simulation[J]. Journal of Disaster Prevention and Mitigation Engineering,2021,41(1):91-99(in Chinese).
    [6] 袁康, 郭军林, 张佳明. 新疆农村装配式轻钢-沙漠砂轻骨料混凝土剪力墙抗震性能[J]. 农业工程学报, 2020, 36(16):125-133.

    YUAN Kang, GUO Junlin, ZHANG Jiaming. Seismic performance of precast light steel-desert sand lightweight aggregate concrete shear wall in Xinjiang rural areas, China[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(16):125-133(in Chinese).
    [7] 王雪艳, 刘明辉, 刘萱, 等. 沙漠砂+机制砂混凝土力学性能及碳排放研究[J]. 土木工程学报, 2022, 55(2):23-30.

    WANG Xueyan, LIU Minghui, LIU Xuan, et al. Study on mechanical properties and carbon emissions of desert sand and machine-made sand concrete[J]. China Civil Engineering Journal,2022,55(2):23-30(in Chinese).
    [8] 薛慧君, 申向东, 侯雨丰, 等. 风积沙混凝土力学性能及孔隙特征[J]. 排灌机械工程学报, 2021, 39(7):720-726.

    XUE Huijun, SHEN Xiangdong, HOU Yufeng, et al. Mechanical properties and pore characteristics of aeolian sand concrete[J]. Journal of Drainage and Irrigation Machinery Engineering,2021,39(7):720-726(in Chinese).
    [9] WEI H, WU T, LIU X, et al. Investigation of stress-strain relationship for confined lightweight aggregate concrete[J]. Construction and Building Materials,2020,256:119432. doi: 10.1016/j.conbuildmat.2020.119432
    [10] DE S JAYAWARDENA U, INDRATILAKA H M L. Use of dune sand as an alternative for river sand for construction industry in sri lanka[M]. Cham. Switzerland: Springer International Publishing, 2014: 1277-1280.
    [11] 李志强, 杨森, 唐艳娟, 等. 高掺量沙漠砂混凝土力学性能试验研究[J]. 混凝土, 2018(12):53-56.

    LI Zhiqiang, YANG Sen, TANG Yanjuan, et al. Experimental study on the mechanical properties of desert sand concrete with high replacement[J]. Concrete,2018(12):53-56(in Chinese).
    [12] PARK S, LEE E, KO J, et al. Rheological properties of concrete using dune sand[J]. Construction and Building Materials,2018,172:685-695. doi: 10.1016/j.conbuildmat.2018.03.192
    [13] 秦拥军, 张亮亮, 渠长伟, 等. 钢纤维沙漠砂混凝土梁受弯力学性能试验[J]. 复合材料学报, 2022, 39(11):5599-5610.

    QIN Yongjun, ZHANG Liangliang, QU Changwei, et al. Flexural mechanical properties of steel fiber desert sand concrete beams[J]. Acta Materiae Compositae Sinica,2022,39(11):5599-5610(in Chinese).
    [14] 董伟, 申向东, 林艳杰, 等. 风积沙的掺入对浮石轻骨料混凝土性能的影响[J]. 硅酸盐通报, 2015, 34(8): 2089-2094, 2106.

    DONG Wei, SHEN Xiangdong, LIN Yanjie, et al. Impact of mixed aeolian sand on the properties of pumice lightweight aggregate concrete[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(8): 2089-2094, 2106(in Chinese).
    [15] 薛慧君, 郑建庭, 邹春霞, 等. 冻融作用下风积沙浮石混凝土孔结构分形特征[J]. 工业建筑, 2022, 52(1):187-193.

    XUE Huijun, ZHENG Jianting, ZOU Chunxia, et al. Fractal characteristics of pore structure of aeolian sand pumice concrete subjected to freeze-thaw cycles[J]. Industrial Construction,2022,52(1):187-193(in Chinese).
    [16] 袁康, 张佳明, 邹蕊月. 沙漠砂陶粒混凝土物理力学性能试验研究[J]. 非金属矿, 2018, 41(5):11-13. doi: 10.3969/j.issn.1000-8098.2018.05.004

    YUAN Kang, ZHANG Jiaming, ZOU Ruiyue. Experimental study on the physical and mechanical performance of desert sand ceramsite concrete[J]. Non-Metallic Mines,2018,41(5):11-13(in Chinese). doi: 10.3969/j.issn.1000-8098.2018.05.004
    [17] HANIF A, LU Z, CHENG Y, et al. Effects of different lightweight functional fillers for use in cementitious composites[J]. International Journal of Concrete Structures and Materials,2017,11(1):99-113. doi: 10.1007/s40069-016-0184-1
    [18] SATPATHY H P, PATEL S K, NAYAK A N. Development of sustainable lightweight concrete using fly ash cenosphere and sintered fly ash aggregate[J]. Construction and Building Materials,2019,202:636-655. doi: 10.1016/j.conbuildmat.2019.01.034
    [19] 郭峻驿. 粉煤灰微珠泡沫混凝土配合比的试验研究[D]. 太原: 太原理工大学, 2019.

    GUO Junyi. Experimental study on mix proportion of fly ash microbead foam concrete[D]. Taiyuan: Taiyuan University of Technology, 2019.
    [20] 郭峻驿, 闫亚杰. 大掺量粉煤灰微珠泡沫混凝土试验研究[J]. 新型建筑材料, 2019, 46(1):79-81.

    GUO Junyi, YAN Yajie. Experimental research on properties of foam concrete with large amount of fly ash microbead[J]. New Building Materials,2019,46(1):79-81(in Chinese).
    [21] 中华人民共和国住房和城乡建设部. 轻骨料混凝土应用技术标准: JGJ/T 12—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Construction of the People's Republic of China. Technical standard for application of lightweight aggregate concrete: JGJ/T 12—2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese).
    [22] 中华人民共和国住房和城乡建设部. 普通混凝土力学性能试验方法标准: GB/T 50081—2016[S]. 北京: 中国建筑工业出版社, 2016.

    Ministry of Housing and Urban-Rural Construction of the People's Republic of China. Standard for test method of performance on ordinary concrete: GB/T 50081—2016[S]. Beijing: China Architecture & Building Press, 2016(in Chinese).
    [23] 黄鑫, 姜景山, 孙天洋, 等. 玄武岩-碳纤维/矿渣混凝土力学性能正交试验[J]. 复合材料学报, 2020, 37(7):1743-1753.

    HUANG Xin, JIANG Jingshan, SUN Tianyang, et al. Orthogonal experiment on mechanical properties of basalt fiber-carbon fiber/slag concrete[J]. Acta Materiae Compositae Sinica,2020,37(7):1743-1753(in Chinese).
    [24] 张佳明, 袁康, 邹蕊月, 等. 沙漠砂陶粒混凝土配合比试验研究[J]. 硅酸盐通报, 2018, 37(8):2621-2627.

    ZHANG Jiaming, YUAN Kang, ZOU Ruiyue, et al. Experimental study on the mixture ratio of desert sand ceramsite concrete[J]. Bulletin of the Chinese Ceramic Society,2018,37(8):2621-2627(in Chinese).
    [25] 白文琦, 吕晶. 橡胶轻骨料混凝土阻尼性能试验[J]. 长安大学学报(自然科学版), 2018, 38(3):26-33.

    BAI Wenqi, LYU Jing. Experimental on damping capacity of rubber lightweight aggregate concrete[J]. Journal of Chang'an University (Natural Science Edition),2018,38(3):26-33(in Chinese).
    [26] 银英姿, 雷雅楠, 苏英. 风积沙混凝土微观结构及孔隙特征研究[J]. 建筑结构, 2021, 51(16):135-139.

    YIN Yingzi, LEI Yanan, SU Ying. Study on microstructure and pore characteristics of aeolian sand concrete[J]. Building Structure,2021,51(16):135-139(in Chinese).
    [27] 王丹, 车佳玲, 舒宏博, 等. 沙漠砂-水泥基材的收缩特性[J]. 材料科学与工程学报, 2021, 39(6):1021-1027.

    WANG Dan, CHE Jialing, SHU Hongbo, et al. Shrinkage properties of desert sand cementitious materials[J]. Journal of Materials Science and Engineering,2021,39(6):1021-1027(in Chinese).
    [28] ZHANG Y T, FAN Z W, SUN X W, et al. Utilization of surface-modified fly ash cenosphere waste as an internal curing material to intensify concrete performance[J]. Journal of Cleaner Production,2022,358:132042. doi: 10.1016/j.jclepro.2022.132042
    [29] PATEL S K, MAJHI R K, SATPATHY H P, et al. Durability and microstructural properties of lightweight concrete manufactured with fly ash cenosphere and sintered fly ash aggregate[J]. Construction and Building Materials,2019,226:579-590. doi: 10.1016/j.conbuildmat.2019.07.304
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  660
  • HTML全文浏览量:  292
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-29
  • 修回日期:  2023-05-08
  • 录用日期:  2023-05-22
  • 网络出版日期:  2023-05-30
  • 刊出日期:  2024-01-01

目录

    /

    返回文章
    返回