Experimental study on mechanical properties of fly ash cenospheres-desert sand ceramsite concrete
-
摘要: 以沙漠砂(DS)和粉煤灰微珠(FAC)部分代替河砂,并掺入聚合物乳液(PL)制备新型陶粒混凝土—粉煤灰微珠-沙漠砂陶粒混凝土(FDCC)。通过单因素变量研究DS替代率、FAC替代率和PL掺量对FDCC工作性能及力学性能影响规律,并建立了FDCC抗压强度预测模型。研究结果表明:DS和FAC可部分替代河砂用于制备轻骨料混凝土。FDCC表观密度与抗压强度呈线性关系,坍落度随DS替代率的增加而降低,随FAC替代率和PL掺量的增加而增加。FDCC抗压强度随DS替代率增加先上升后下降,随FAC替代率增加先下降后上升。DS、FAC最优替代率及PL最优掺量分别为20vol%、30vol%和1wt%。FDCC劈裂抗拉强度随DS替代率、FAC替代率和PL掺量增加而降低。DS和FAC的掺入能促进水化产物生成,对FDCC混凝土微观结构有利。Abstract: A new ceramsite concrete, fly ash cenosphere-desert sand ceramsite concrete (FDCC), was prepared using desert sand (DS) and fly ash cenosphere (FAC) as a partial replacement for river sand and mixed with polymer (PL). The effects of the DS replacement rate, FAC replacement rate and PL admixture on the workability and mechanical properties of the FDCC were investigated by means of univariate variables, and prediction models for compressive strength and splitting tensile strength of the FDCC were established. The results show that the DS and FAC can partly replace river sand to prepare the lightweight aggregate concrete. The apparent density of the FDCC is linearly related to the compressive strength, the slump decreases with the DS replacement rate increasing and increases with the FAC replacement rate and the PL admixture increasing. The compressive strength of the FDCC increases and then decreases with the DS replacement rate increasing, and decreases then increases with the FAC replacement rate increasing. The optimal DS and FAC replacement rates and the optimal PL admixture are 20vol%, 30vol% and 1wt%, respectively. The splitting tensile strength of the FDCC decreases with the DS and FAC replacement rates and PL admixture increasing. The incorporation of the DS and FAC promotes the formation of hydration products and is beneficial to the microstructure of FDCC concrete.
-
Key words:
- desert sand /
- fly ash cenosphere /
- polymer /
- ceramsite concrete /
- mechanical properties
-
表 1 粉煤灰微珠(FAC)主要化学成分
Table 1. Main chemical composition of fly ash cenosphere (FAC)
Composition SiO2/wt% Al2O3/wt% CaO/wt% Fe2O3/wt% MgO/wt% K2O/wt% Na2O/wt% TiO2/wt% Fly ash cenosphere 59.44 23.30 2.31 5.49 1.37 2.85 1.49 0.96 表 2 DS、FAC和聚合物乳液(PL)配合比
Table 2. Mixing ratio of DS, FAC and polymer (PL)
Specimen
numberFAC/vol% DS/vol% PL/wt% Amount of material/(kg·m−3) Water Cement Caramsite Fly ash River sand FAC DS PL FDCC-1 — — — 136.85 368 472.36 92 646.11 — — — FDCC-2 10 10 0.5 516.88 10.92 73.48 3.83 FDCC-3 1 516.88 10.92 73.48 7.67 FDCC-4 1.5 516.88 10.92 73.48 11.50 FDCC-5 20 0.5 452.27 10.92 146.87 3.83 FDCC-6 1 452.27 10.92 146.87 7.67 FDCC-7 1.5 452.27 10.92 146.87 11.50 FDCC-8 30 0.5 387.66 10.92 220.30 3.83 FDCC-9 1 387.66 10.92 220.30 7.67 FDCC-10 1.5 387.66 10.92 220.30 11.50 FDCC-11 20 10 0.5 452.27 21.84 73.48 3.83 FDCC-12 1 452.27 21.84 73.48 7.67 FDCC-13 1.5 452.27 21.84 73.48 11.50 FDCC-14 20 0.5 387.66 21.84 146.87 3.83 FDCC-15 1 387.66 21.84 146.87 7.67 FDCC-16 1.5 387.66 21.84 146.87 11.50 FDCC-17 30 0.5 323.05 21.84 220.30 3.83 FDCC-18 1 323.05 21.84 220.30 7.67 FDCC-19 1.5 323.05 21.84 220.30 11.50 FDCC-20 30 10 0.5 387.66 32.76 73.48 3.83 FDCC-21 1 387.66 32.76 73.48 7.67 FDCC-22 1.5 387.66 32.76 73.48 11.50 FDCC-23 20 0.5 323.05 32.76 146.87 3.83 FDCC-24 1 323.05 32.76 146.87 7.67 FDCC-25 1.5 323.05 32.76 146.87 11.50 FDCC-26 30 0.5 258.44 32.76 220.30 3.83 FDCC-27 1 258.44 32.76 220.30 7.67 FDCC-28 1.5 258.44 32.76 220.30 11.50 Note: FDCC—Fly ash cenosphere-desert sand ceramsite concrete. 表 3 粉煤灰微珠-沙漠砂陶粒混凝土(FDCC)力学性能试验结果
Table 3. Mechanical property test results of flyash cenosphere-desert sand ceramsite concrete (FDCC)
Group
numberApparent
density/
(kg·m−3)Compressive strength/MPa Splitting tensile strength/
MPaSlump/
mmGroup number Apparent density/
(kg·m−3)Compressive strength/MPa Splitting tensile strength/
MPaSlump/
mm7 d 28 d 7 d 28 d FDCC-1 1730.81 24.18 30.75 2.89 81 FDCC-15 1722.54 21.35 27.56 1.89 63 FDCC-2 1731.20 22.15 27.62 2.68 81 FDCC-16 1704.09 20.88 26.57 1.75 55 FDCC-3 1740.23 21.15 26.69 2.31 72 FDCC-17 1705.20 21.75 26.49 2.12 69 FDCC-4 1742.23 20.37 26.67 2.26 66 FDCC-18 1710.48 20.63 25.01 1.81 53 FDCC-5 1746.73 23.30 28.92 2.86 67 FDCC-19 1703.32 19.56 23.36 1.34 44 FDCC-6 1743.63 22.34 28.28 2.66 51 FDCC-20 1690.50 26.99 32.77 2.36 109 FDCC-7 1744.43 22.15 27.87 2.59 44 FDCC-21 1683.22 25.55 31.49 1.89 101 FDCC-8 1748.77 22.58 24.81 2.61 43 FDCC-22 1699.60 25.49 29.88 1.55 93 FDCC-9 1759.60 21.35 25.84 2.57 39 FDCC-23 1714.03 28.23 32.14 2.14 88 FDCC-10 1765.27 19.53 25.35 2.51 31 FDCC-24 1727.45 27.00 34.22 1.72 79 FDCC-11 1728.10 21.05 27.74 2.51 93 FDCC-25 1716.12 25.67 30.95 1.41 71 FDCC-12 1700.08 19.81 27.86 2.05 79 FDCC-26 1732.33 27.14 29.04 2.06 70 FDCC-13 1713.27 19.61 24.58 1.98 71 FDCC-27 1724.02 25.62 29.60 1.68 59 FDCC-14 1737.79 22.71 27.97 2.43 79 FDCC-28 1722.37 26.39 29.74 1.34 47 表 4 混凝土抗压强度预测模型验证
Table 4. Verification of concrete compressive strength prediction model
Data source Test value/
MPaModel test
value/MPaDifferences Relative
error/%Concrete
typesReplacement
aggregates[24]-working condition 2 31.5 28.4 3.1 9.8 Ceramsite concrete Desert sand [24]-working condition 3 34.4 28.6 5.8 16.8 Ceramsite concrete Desert sand [24]-working condition 5 26.6 29.5 −2.9 −10.9 Ceramsite concrete Desert sand [25]-working condition RLC10 43.3 26.2 17.1 39.5 Ceramsite concrete Rubber [25]-working condition RLC20 39.4 25.3 14.1 35.7 Ceramsite concrete Rubber [25]-working condition RLC30 33.8 24.4 9.4 27.8 Ceramsite concrete Rubber Note: RLC10—Rubber lightweight aggregate concrete 10. 表 5 FDCC的经济性分析
Table 5. Economic analysis of FDCC
Group
numberPrice/
(CNY·m−3)Price
differential/%Price (none PL)/
(CNY·m−3)Price
differential/%FDCC-1 420.45 — 420.45 — FDCC-2 427.55 2 414.91 −1 FDCC-28 431.62 3 393.67 −5 -
[1] 余振鹏, 黄侨, 赵志青, 等. 自密实轻骨料混凝土压-剪复合受力力学性能[J]. 复合材料学报, 2019, 36(8):1984-1994.YU Zhenpeng, HUANG Qiao, ZHAO Zhiqing, et al. Mechanical property of self-compacting lightweight aggregate concrete under combined compression-shear stress[J]. Acta Materiae Compositae Sinica,2019,36(8):1984-1994(in Chinese). [2] 陈宇良, 刘志华, 叶培欢, 等. 高温后珊瑚海水海砂混凝土直剪力学性能及损伤演化[J]. 复合材料学报, 2023, 40(7): 4128-4138.CHEN Yuliang, LIU Zhihua, YE Peihuan, et al. Direct shear mechanical properties and damage evolution of coral seawater sea-sand concrete after high temperature[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4128-4138(in Chinese) [3] 叶列平, 孙海林, 陆新征, 等. 高强轻骨料混凝土结构−性能、分析与计算[M]. 北京: 科学出版社, 2009: 1-4.YE Lieping, SUN Hailin, LU Xinzheng, et al. High-strength lightweight aggregate concrete structures behaviors, analysis and calculation[M]. Beijing: China Science Publishing, 2009: 1-4(in Chinese). [4] 郭璞, 李红云, 邹春霞. 混杂纤维轻骨料混凝土压拉性能及强度预测[J]. 排灌机械工程学报, 2022, 40(3):311-316.GUO Pu, LI Hongyun, ZOU Chunxia. Compression and tensile performance and strength prediction of hybrid fiber lightweight aggregate concrete[J]. Journal of Drainage and Irrigation Machinery Engineering,2022,40(3):311-316(in Chinese). [5] 金浏, 杨旺贤, 余文轩, 等. 基于细观模拟的轻骨料混凝土破坏行为及尺寸效应研究[J]. 防灾减灾工程学报, 2021, 41(1):91-99.JIN Liu, YANG Wangxian, YU Wenxuan, et al. Study on failure behavior and size effect of lightweight aggregate concrete based on meso-simulation[J]. Journal of Disaster Prevention and Mitigation Engineering,2021,41(1):91-99(in Chinese). [6] 袁康, 郭军林, 张佳明. 新疆农村装配式轻钢-沙漠砂轻骨料混凝土剪力墙抗震性能[J]. 农业工程学报, 2020, 36(16):125-133.YUAN Kang, GUO Junlin, ZHANG Jiaming. Seismic performance of precast light steel-desert sand lightweight aggregate concrete shear wall in Xinjiang rural areas, China[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(16):125-133(in Chinese). [7] 王雪艳, 刘明辉, 刘萱, 等. 沙漠砂+机制砂混凝土力学性能及碳排放研究[J]. 土木工程学报, 2022, 55(2):23-30.WANG Xueyan, LIU Minghui, LIU Xuan, et al. Study on mechanical properties and carbon emissions of desert sand and machine-made sand concrete[J]. China Civil Engineering Journal,2022,55(2):23-30(in Chinese). [8] 薛慧君, 申向东, 侯雨丰, 等. 风积沙混凝土力学性能及孔隙特征[J]. 排灌机械工程学报, 2021, 39(7):720-726.XUE Huijun, SHEN Xiangdong, HOU Yufeng, et al. Mechanical properties and pore characteristics of aeolian sand concrete[J]. Journal of Drainage and Irrigation Machinery Engineering,2021,39(7):720-726(in Chinese). [9] WEI H, WU T, LIU X, et al. Investigation of stress-strain relationship for confined lightweight aggregate concrete[J]. Construction and Building Materials,2020,256:119432. doi: 10.1016/j.conbuildmat.2020.119432 [10] DE S JAYAWARDENA U, INDRATILAKA H M L. Use of dune sand as an alternative for river sand for construction industry in sri lanka[M]. Cham. Switzerland: Springer International Publishing, 2014: 1277-1280. [11] 李志强, 杨森, 唐艳娟, 等. 高掺量沙漠砂混凝土力学性能试验研究[J]. 混凝土, 2018(12):53-56.LI Zhiqiang, YANG Sen, TANG Yanjuan, et al. Experimental study on the mechanical properties of desert sand concrete with high replacement[J]. Concrete,2018(12):53-56(in Chinese). [12] PARK S, LEE E, KO J, et al. Rheological properties of concrete using dune sand[J]. Construction and Building Materials,2018,172:685-695. doi: 10.1016/j.conbuildmat.2018.03.192 [13] 秦拥军, 张亮亮, 渠长伟, 等. 钢纤维沙漠砂混凝土梁受弯力学性能试验[J]. 复合材料学报, 2022, 39(11):5599-5610.QIN Yongjun, ZHANG Liangliang, QU Changwei, et al. Flexural mechanical properties of steel fiber desert sand concrete beams[J]. Acta Materiae Compositae Sinica,2022,39(11):5599-5610(in Chinese). [14] 董伟, 申向东, 林艳杰, 等. 风积沙的掺入对浮石轻骨料混凝土性能的影响[J]. 硅酸盐通报, 2015, 34(8): 2089-2094, 2106.DONG Wei, SHEN Xiangdong, LIN Yanjie, et al. Impact of mixed aeolian sand on the properties of pumice lightweight aggregate concrete[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(8): 2089-2094, 2106(in Chinese). [15] 薛慧君, 郑建庭, 邹春霞, 等. 冻融作用下风积沙浮石混凝土孔结构分形特征[J]. 工业建筑, 2022, 52(1):187-193.XUE Huijun, ZHENG Jianting, ZOU Chunxia, et al. Fractal characteristics of pore structure of aeolian sand pumice concrete subjected to freeze-thaw cycles[J]. Industrial Construction,2022,52(1):187-193(in Chinese). [16] 袁康, 张佳明, 邹蕊月. 沙漠砂陶粒混凝土物理力学性能试验研究[J]. 非金属矿, 2018, 41(5):11-13. doi: 10.3969/j.issn.1000-8098.2018.05.004YUAN Kang, ZHANG Jiaming, ZOU Ruiyue. Experimental study on the physical and mechanical performance of desert sand ceramsite concrete[J]. Non-Metallic Mines,2018,41(5):11-13(in Chinese). doi: 10.3969/j.issn.1000-8098.2018.05.004 [17] HANIF A, LU Z, CHENG Y, et al. Effects of different lightweight functional fillers for use in cementitious composites[J]. International Journal of Concrete Structures and Materials,2017,11(1):99-113. doi: 10.1007/s40069-016-0184-1 [18] SATPATHY H P, PATEL S K, NAYAK A N. Development of sustainable lightweight concrete using fly ash cenosphere and sintered fly ash aggregate[J]. Construction and Building Materials,2019,202:636-655. doi: 10.1016/j.conbuildmat.2019.01.034 [19] 郭峻驿. 粉煤灰微珠泡沫混凝土配合比的试验研究[D]. 太原: 太原理工大学, 2019.GUO Junyi. Experimental study on mix proportion of fly ash microbead foam concrete[D]. Taiyuan: Taiyuan University of Technology, 2019. [20] 郭峻驿, 闫亚杰. 大掺量粉煤灰微珠泡沫混凝土试验研究[J]. 新型建筑材料, 2019, 46(1):79-81.GUO Junyi, YAN Yajie. Experimental research on properties of foam concrete with large amount of fly ash microbead[J]. New Building Materials,2019,46(1):79-81(in Chinese). [21] 中华人民共和国住房和城乡建设部. 轻骨料混凝土应用技术标准: JGJ/T 12—2019[S]. 北京: 中国建筑工业出版社, 2019.Ministry of Housing and Urban-Rural Construction of the People's Republic of China. Technical standard for application of lightweight aggregate concrete: JGJ/T 12—2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese). [22] 中华人民共和国住房和城乡建设部. 普通混凝土力学性能试验方法标准: GB/T 50081—2016[S]. 北京: 中国建筑工业出版社, 2016.Ministry of Housing and Urban-Rural Construction of the People's Republic of China. Standard for test method of performance on ordinary concrete: GB/T 50081—2016[S]. Beijing: China Architecture & Building Press, 2016(in Chinese). [23] 黄鑫, 姜景山, 孙天洋, 等. 玄武岩-碳纤维/矿渣混凝土力学性能正交试验[J]. 复合材料学报, 2020, 37(7):1743-1753.HUANG Xin, JIANG Jingshan, SUN Tianyang, et al. Orthogonal experiment on mechanical properties of basalt fiber-carbon fiber/slag concrete[J]. Acta Materiae Compositae Sinica,2020,37(7):1743-1753(in Chinese). [24] 张佳明, 袁康, 邹蕊月, 等. 沙漠砂陶粒混凝土配合比试验研究[J]. 硅酸盐通报, 2018, 37(8):2621-2627.ZHANG Jiaming, YUAN Kang, ZOU Ruiyue, et al. Experimental study on the mixture ratio of desert sand ceramsite concrete[J]. Bulletin of the Chinese Ceramic Society,2018,37(8):2621-2627(in Chinese). [25] 白文琦, 吕晶. 橡胶轻骨料混凝土阻尼性能试验[J]. 长安大学学报(自然科学版), 2018, 38(3):26-33.BAI Wenqi, LYU Jing. Experimental on damping capacity of rubber lightweight aggregate concrete[J]. Journal of Chang'an University (Natural Science Edition),2018,38(3):26-33(in Chinese). [26] 银英姿, 雷雅楠, 苏英. 风积沙混凝土微观结构及孔隙特征研究[J]. 建筑结构, 2021, 51(16):135-139.YIN Yingzi, LEI Yanan, SU Ying. Study on microstructure and pore characteristics of aeolian sand concrete[J]. Building Structure,2021,51(16):135-139(in Chinese). [27] 王丹, 车佳玲, 舒宏博, 等. 沙漠砂-水泥基材的收缩特性[J]. 材料科学与工程学报, 2021, 39(6):1021-1027.WANG Dan, CHE Jialing, SHU Hongbo, et al. Shrinkage properties of desert sand cementitious materials[J]. Journal of Materials Science and Engineering,2021,39(6):1021-1027(in Chinese). [28] ZHANG Y T, FAN Z W, SUN X W, et al. Utilization of surface-modified fly ash cenosphere waste as an internal curing material to intensify concrete performance[J]. Journal of Cleaner Production,2022,358:132042. doi: 10.1016/j.jclepro.2022.132042 [29] PATEL S K, MAJHI R K, SATPATHY H P, et al. Durability and microstructural properties of lightweight concrete manufactured with fly ash cenosphere and sintered fly ash aggregate[J]. Construction and Building Materials,2019,226:579-590. doi: 10.1016/j.conbuildmat.2019.07.304