Mechanical properties and constitutive model of ultra-high performance concrete with hybrid steel fiber under axial tension
-
摘要: 通过单轴受拉试验,研究了平直型(短直、长直)和端钩钢纤维混掺的超高性能混凝土(Ultra-high performance concrete,UHPC)轴心受拉力学性能,基于试验结果分析了钢纤维掺量和混杂配比对UHPC抗拉强度、应变能力、韧性等的影响。结果表明:UHPC轴拉试件发生多缝延性破坏,且宏观主裂缝的倾斜、弯曲程度随端钩纤维的混掺越发明显;混杂短直和端勾钢纤维UHPC的轴拉性能随着端勾纤维掺量的增大而显著提升,而混掺长直和端勾钢纤维UHPC的轴拉性能呈相反变化趋势;混杂钢纤维在UHPC受拉过程中呈现出逐级、分层次、相互作用的阻裂增韧特点,短直和端钩钢纤维掺量均为1.0vol%的UHPC轴拉力学性能最佳,其抗拉强度、应变能力和韧性同比单掺短直纤维试件分别提高28.2%、147%和31.1%。基于实测轴拉应力-应变曲线分析,提出了考虑纤维相互作用和纤维增强因子的混杂钢纤维UHPC轴拉本构模型,与相关试验曲线吻合良好,可用于预测UHPC受拉应力-应变关系。Abstract: The axial tensile mechanical properties of ultra-high performance concrete (UHPC) mixed with straight (short straight, long straight) and end-hooked steel fibers were studied through the uniaxial tensile test. Based on the test results, the effects of steel fiber content and mixed ratio on tensile strength, strain capacity and toughness of UHPC were analyzed. The results show that the multi-crack ductile failure occurs in UHPC specimens under axial tensile, and the inclination and bending degree of macro main cracks become more and more obvious with the mixing of end-hooked fibers. The axial tensile properties of UHPC with hybrid short straight and end-hooked steel fibers increase significantly with the increase of end-hooked fiber content, while the axial tensile properties of UHPC with hybrid long straight and end-hooked steel fibers show an opposite trend. Hybrid steel fibers exhibit the characteristics of staged, layered and interactive crack resistance and toughening during the UHPC tensile process. The UHPC with 1.0vol% short straight and 1.0vol% end-hooked steel fibers has the best axial tensile mechanical properties, and its tensile strength, strain capacity and toughness are improved by 28.2%, 147% and 31.1% respectively compared with the specimens with single short straight fibers. A uniaxial tensile constitutive model of UHPC with hybrid steel fibers considering fiber interaction and fiber reinforcement factor is proposed by analyzing the measured axial tensile stress-strain curves. The proposed model is in good agreement with the relevant test curves and can be used to predict the tensile stress-strain relationship of UHPC.
-
表 1 P·O42.5R水泥基本性能
Table 1. Basic properties of P·O42.5R cement
Grade Fineness/% Setting time Flexural strength/MPa Compressive strength/MPa 42.5 ≤3.0 Initial setting≥60 min,
final coagulation≤5 h3 d 28 d 3 d 28 d ≥3.5 ≥6.5 ≥17.0 ≥42.5 表 2 超高性能混凝土(UHPC)基体配合比
Table 2. Mixture proportion of ultra-high performance concrete (UHPC) matrix
Component Cement Silica fume Quartz powder Quartz sand Water-binder ratio Superplasticizer Defoamer Mass ratio 1.00 0.25 0.316 1.062 0.16 2.4% 0.25% 表 3 钢纤维几何和物理性能
Table 3. Geometric and physical properties of steel fiber
Type of fiber Length
/mmDiameter
/mmLength diameter ratio l/d Density
/(g·cm−3)Elastic modulus
/GPaTensile strength
/MPaSS 13 0.2 65 7.8 205 ≥2 700 LS 18 0.2 90 7.8 205 ≥2 700 H 16 0.2 80 7.8 205 ≥2 700 表 4 UHPC试件设计参数
Table 4. Design parameters of UHPC specimens
Specimen Content of steel fiber/vol% Total content
of fiber/vol%SS LS H 1.5%SS/C 1.5 0 0 1.5 1.5%LS/C 0 1.5 0 1.5 2.0%SS/C 2.0 0 0 2.0 2.0%LS/C 0 2.0 0 2.0 1.5%SS-0.5%H/C 1.5 0 0.5 2.0 1.0%SS-1.0%H/C 1.0 0 1.0 2.0 1.5%LS-0.5%H/C 0 1.5 0.5 2.0 1.0%LS-1.0%H/C 0 1.0 1.0 2.0 表 5 实测UHPC力学性能
Table 5. Measured mechanical properties of UHPC
Specimen fcu/MPa fc/MPa fcu/fc Ec/GPa 1.5%SS/C 122.35 102.77 0.84 47.5 1.5%LS/C 134.96 110.67 0.82 46.8 2.0%SS/C 133.05 117.08 0.88 48.3 2.0%LS/C 124.03 100.46 0.81 48.2 1.5%SS-0.5%H/C 128.42 111.73 0.87 48.9 1.0%SS-1.0%H/C 138.97 119.51 0.86 49.0 1.5%LS-0.5%H/C 132.53 107.35 0.81 46.9 1.0%LS-1.0%H/C 133.53 109.49 0.82 47.8 Notes: fcu—Cubic compressive strength; fc—Axial compressive strength; Ec—Compressive elastic modulus. 表 6 UHPC试件轴拉力学性能指标
Table 6. Mechanical performance index of UHPC specimens under axial tension
Specimen fte/MPa εte/% ftu/MPa εtu/% Et0/MPa ftu/fte W1.0/J Re,1.0 1.5%SS/C 5.82 0.0125 6.20 0.182 46560 1.07 11.91 0.77 1.5%LS/C 6.92 0.0147 8.21 0.294 47075 1.19 17.32 0.84 2.0%SS/C 6.78 0.0144 8.48 0.253 47083 1.25 16.70 0.79 2.0%LS/C 8.11 0.0166 10.32 0.401 48855 1.27 23.19 0.90 1.5%SS-0.5%H/C 8.03 0.0165 10.30 0.324 48667 1.28 18.62 0.72 1.0%SS-1.0%H/C 7.91 0.0163 10.87 0.590 48528 1.37 21.90 0.81 1.5%LS-0.5%H/C 7.39 0.0156 9.58 0.416 47372 1.30 20.65 0.86 1.0%LS-1.0%H/C 7.47 0.0153 8.75 0.269 48824 1.17 17.19 0.79 Notes: fte—Elastic ultimate tensile strength; ftu—Tensile strength; εte—Elastic ultimate tensile strain; εtu—Peak tensile strain; Et0—Tensile elastic modulus; W1.0—Tensile work; Re,1.0—Toughness ratio. 表 7 UHPC下降段曲线模型参数
Table 7. Model parameters of UHPC descending curves
Specimen γ α β R2 1.5%SS/C 0.97 0.140 2.604 0.981 1.5%LS/C 1.35 0.251 2.613 0.994 2.0%SS/C 1.30 0.242 2.867 0.996 2.0%LS/C 1.80 0.328 3.051 0.998 1.5%SS-0.5%H/C 1.89 1.198 2.583 0.998 1.0%SS-1.0%H/C 2.49 5.953 2.972 0.998 1.5%LS-0.5%H/C 2.27 0.697 2.898 0.997 1.0%LS-1.0%H/C 2.74 0.306 2.899 0.997 Notes: γ—Fiber reinforcement factor; α and β—Model parameters of softened descending section. -
[1] WANG D, SHI C, WU Z, et al. A review on ultra high performance concrete: Part II. Hydration, microstructure and properties[J]. Construction and Building Materials,2015,96:368-377. doi: 10.1016/j.conbuildmat.2015.08.095 [2] 刘加平, 汤金辉, 韩方玉. 现代混凝土增韧防裂原理及应用[J]. 土木工程学报, 2021, 54(10):47-54, 63.LIU Jiaping, TANG Jinhui, HAN Fangyu. Toughening and crack prevention of modern concrete: Mechanisms and applications[J]. China Civil Engineering Journal,2021,54(10):47-54, 63(in Chinese). [3] 樊健生, 丁然. 超高性能混凝土在房屋建筑结构中的研究与应用进展[J]. 硅酸盐学报, 2023, 51(5):1246-1258.FAN Jiansheng, DING Ran. Development on ultra-high performance concrete in building structures[J]. Journal of the Chinese Ceramic Society,2023,51(5):1246-1258(in Chinese). [4] 刘加平, 刘建忠, 韩方玉, 等. 基于钢-混凝土组合结构轻量化的粗骨料超高性能混凝土研究进展与应用[J]. 建筑结构学报, 2022, 43(9):36-44.LIU Jiaping, LIU Jianzhong, HAN Fangyu, et al. Research progress and application of coarse aggregate ultra high performance concrete used for lightweight steel-concrete composite structure[J]. Journal of Building Structures,2022,43(9):36-44(in Chinese). [5] HOANG A L, FEHLING E. Influence of steel fiber content and aspect ratio on the uniaxial tensile and compressive behavior of ultra high performance concrete[J]. Construction and Building Materials,2017,153:790-806. doi: 10.1016/j.conbuildmat.2017.07.130 [6] YOO D Y, SHIN H O, YANG J M, et al. Material and bond properties of ultra high performance fiber reinforced concrete with micro steel fibers[J]. Composites Part B: Engineering,2014,58:122-133. doi: 10.1016/j.compositesb.2013.10.081 [7] YOO D Y, KIM S, PARK G J, et al. Effects of fiber shape, aspect ratio, and volume fraction on flexural behavior of ultra-high-performance fiber-reinforced cement compo-sites[J]. Composite Structures,2017,174:375-388. doi: 10.1016/j.compstruct.2017.04.069 [8] WILLE K, KIM D J, NAAMAN A E. Strain-hardening UHP-FRC with low fiber contents[J]. Materials and Structures,2011,44:583-598. doi: 10.1617/s11527-010-9650-4 [9] YOO D Y, KIM S, KIM J J, et al. An experimental study on pullout and tensile behavior of ultra-high-performance concrete reinforced with various steel fibers[J]. Construction and Building Materials,2019,206:46-61. doi: 10.1016/j.conbuildmat.2019.02.058 [10] 刘建忠, 韩方玉, 周华新, 等. 超高性能混凝土拉伸力学行为的研究进展[J]. 材料导报, 2017, 31(23):24-32.LIU Jianzhong, HAN Fangyu, ZHOU Huaxin, et al. An overview on tensile behavior of ultra-high performance concrete[J]. Materials Reports,2017,31(23):24-32(in Chinese). [11] TRAN N T, TRAN T K, JEON J K, et al. Fracture energy of ultra-high-performance fiber-reinforced concrete at high strain rates[J]. Cement and Concrete Research,2016,79:169-184. doi: 10.1016/j.cemconres.2015.09.011 [12] 郑丽, 陈露一, 张志豪. 基于紧密堆积理论优化超高性能混凝土钢纤维参数[J]. 硅酸盐通报, 2022, 41(3):853-859.ZHENG Li, CHEN Luyi, ZHANG Zhihao. Steel fibre parameter optimization of ultra-high performance concrete based on dense particle packing theory[J]. Bulletin of the Chinese Ceramic Society,2022,41(3):853-859(in Chinese). [13] PARK S H, KIM D J, RYU G S, et al. Tensile behavior of ultra high performance hybrid fiber reinforced concrete[J]. Cement and Concrete Composites,2012,34(2):172-184. doi: 10.1016/j.cemconcomp.2011.09.009 [14] 苏家战, 林毅焌, 陈宝春, 等. 混杂钢纤维UHPC单轴拉伸性能的混杂效应分析[J]. 南昌大学学报(工科版), 2019, 41(4):358-364.SU Jiazhan, LIN Yijun, CHEN Baochun, et al. Hybrid effect of steel fiber on the uniaxial tensile properties of UHPC[J]. Journal of Nanchang University (Engineering and Technology),2019,41(4):358-364(in Chinese). [15] CHUN B, YOO D Y. Hybrid effect of macro and micro steel fibers on the pullout and tensile behaviors of ultra-high-performance concrete[J]. Composites Part B: Engineering,2019,162:344-360. doi: 10.1016/j.compositesb.2018.11.026 [16] LIANG L, WANG Q, SHI Q. Flexural toughness and its evaluation method of ultra-high performance concrete cured at room temperature[J]. Journal of Building Engineering, 2023, 71: 106516. [17] 中国混凝土与水泥制品协会, 中国建筑材料联合会. 超高性能混凝土基本性能与试验方法: T/CCPA 7—2018[S]. 北京: 中国建筑材料协会, 2018.China Concrete and Cement Products Association, China Building Materials Federation. Basic performance and test method of ultra-high performance concrete: T/CCPA 7—2018[S]. Beijing: China Building Materials Association, 2018. [18] 中国工程建设标准化协会. 纤维混凝土试验方法标准: CECS 13—2009[S]. 北京: 中国计划出版社, 2009.China Engineering Construction Standardization Association. Test method standard for fiber reinforced concrete: CECS 13—2009[S]. Beijing: China Planning Press, 2009. [19] 罗章. 中应变率下钢纤维混凝土的本构关系研究[D]. 长沙: 中南大学, 2004.LUO Zhang. Study on the constitutive relationship of steel fiber reinforced concrete under intermediate strain rate[D]. Changsha: Central South University, 2004(in Chinese). [20] 徐礼华, 梅国栋, 黄乐, 等. 钢-聚丙烯混杂纤维混凝土轴心受拉应力-应变关系研究[J]. 土木工程学报, 2014, 47(7):35-45.XU Lihua, MEI Guodong, HUANG Le, et al. Study on uniaxial tensile stress-strain relationship of steel-polypropylene hybrid fiber reinforced concrete[J]. China Civil Engineering Journal,2014,47(7):35-45(in Chinese). [21] ZHOU Z, QIAO P. Tensile behavior of ultra-high performance concrete: Analytical model and experimental validation[J]. Construction and Building Materials,2019,201:842-851. doi: 10.1016/j.conbuildmat.2018.12.137 [22] 过镇海. 钢筋混凝土原理[M]. 北京: 清华大学出版社, 2013: 18-21.GUO Zhenhai. Principles of reinforced concrete[M]. Beijing: Tsinghua University Publishing House, 2013: 18-21(in Chinese). [23] 郭耀东, 刘元珍, 王文婧, 等. 玄武岩纤维特征参数对混凝土单轴受拉性能的影响[J]. 复合材料学报, 2023, 40(5): 2897-2912.GUO Yaodong, LIU Yuanzhen, WANG Wenjing, et al. Influence of basalt fiber characteristic parameters on uniaxial tensile properties of concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2897-2912(in Chinese). [24] 杲晓龙, 王俊颜, 郭君渊, 等. 循环荷载作用下超高性能混凝土的轴拉力学性能及本构关系模型[J]. 复合材料学报, 2021, 38(11):3925-3938.GAO Xiaolong, WANG Junyan, GUO Junyuan, et al. Axial tensile mechanical properties and constitutive relation model of ultra-high performance concrete under cyclic loading[J]. Acta Materiae Compositae Sinica,2021,38(11):3925-3938(in Chinese). [25] 方志, 周腾, 刘路明, 等. 超高性能混凝土受拉性能试验研究[J]. 铁道学报, 2022, 44(5):157-165.FANG Zhi, ZHOU Teng, LIU Luming, et al. Experimental study on tensile properties of ultra-high performance concrete[J]. Journal of the China Railway Society,2022,44(5):157-165(in Chinese).