留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混杂钢纤维超高性能混凝土轴拉力学性能及本构模型

王秋维 梁林 史庆轩

王秋维, 梁林, 史庆轩. 混杂钢纤维超高性能混凝土轴拉力学性能及本构模型[J]. 复合材料学报, 2024, 41(1): 383-394. doi: 10.13801/j.cnki.fhclxb.20230529.002
引用本文: 王秋维, 梁林, 史庆轩. 混杂钢纤维超高性能混凝土轴拉力学性能及本构模型[J]. 复合材料学报, 2024, 41(1): 383-394. doi: 10.13801/j.cnki.fhclxb.20230529.002
WANG Qiuwei, LIANG Lin, SHI Qingxuan. Mechanical properties and constitutive model of ultra-high performance concrete with hybrid steel fiber under axial tension[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 383-394. doi: 10.13801/j.cnki.fhclxb.20230529.002
Citation: WANG Qiuwei, LIANG Lin, SHI Qingxuan. Mechanical properties and constitutive model of ultra-high performance concrete with hybrid steel fiber under axial tension[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 383-394. doi: 10.13801/j.cnki.fhclxb.20230529.002

混杂钢纤维超高性能混凝土轴拉力学性能及本构模型

doi: 10.13801/j.cnki.fhclxb.20230529.002
基金项目: 国家自然科学基金(52178505;51878543)
详细信息
    通讯作者:

    梁林,博士生,研究方向为超高性能混凝土及其结构 E-mail: lianglin1107@xauat.edu.cn

  • 中图分类号: TU528;TB333

Mechanical properties and constitutive model of ultra-high performance concrete with hybrid steel fiber under axial tension

Funds: National Natural Science Foundation of China (52178505; 51878543)
  • 摘要: 通过单轴受拉试验,研究了平直型(短直、长直)和端钩钢纤维混掺的超高性能混凝土(Ultra-high performance concrete,UHPC)轴心受拉力学性能,基于试验结果分析了钢纤维掺量和混杂配比对UHPC抗拉强度、应变能力、韧性等的影响。结果表明:UHPC轴拉试件发生多缝延性破坏,且宏观主裂缝的倾斜、弯曲程度随端钩纤维的混掺越发明显;混杂短直和端勾钢纤维UHPC的轴拉性能随着端勾纤维掺量的增大而显著提升,而混掺长直和端勾钢纤维UHPC的轴拉性能呈相反变化趋势;混杂钢纤维在UHPC受拉过程中呈现出逐级、分层次、相互作用的阻裂增韧特点,短直和端钩钢纤维掺量均为1.0vol%的UHPC轴拉力学性能最佳,其抗拉强度、应变能力和韧性同比单掺短直纤维试件分别提高28.2%、147%和31.1%。基于实测轴拉应力-应变曲线分析,提出了考虑纤维相互作用和纤维增强因子的混杂钢纤维UHPC轴拉本构模型,与相关试验曲线吻合良好,可用于预测UHPC受拉应力-应变关系。

     

  • 图  1  钢纤维类型

    Figure  1.  Types of steel fibers

    SS—Short straight steel fiber; LS—Long straight steel fiber; H—End-hooked steel fiber

    图  2  UHPC轴拉试件尺寸(a)及加载装置(b)

    Figure  2.  UHPC specimen size (a) and loading device (b)

    R—Radius

    图  3  混杂钢纤维UHPC典型破坏形态

    Figure  3.  Typical failure modes of UHPC with hybrid steel fiber

    图  4  钢纤维掺量及类型对UHPC轴拉力学性能的影响

    Figure  4.  Effect of steel fiber content and type on mechanical properties of UHPC under axial tension

    图  5  典型混杂钢纤维UHPC试件受拉断裂面

    Figure  5.  Tensile fracture surface of typical UHPC specimens with hybrid steel fiber

    图  6  混杂钢纤维UHPC受拉断裂破坏模型

    Figure  6.  Tensile fracture failure model of hybrid steel fiber UHPC

    图  7  UHPC轴拉应力-应变曲线

    Figure  7.  Stress-strain curves of UHPC under axial tension

    σte—Elastic ultimate tensile stress; σtu—Peak tensile stress; εte—Elastic ultimate tensile strain; εtu—Peak tensile strain

    图  8  UHPC塑性上升段曲线拟合

    Figure  8.  Curve fitting of UHPC plastic ascending sections

    R2—Fit goodness

    图  9  UHPC软化下降段曲线拟合

    Figure  9.  Curve fitting of UHPC softened descending sections

    图  10  UHPC轴拉本构模型验证

    Figure  10.  Verification of the uniaxial tensile constitutive model of UHPC

    SF—Straight steel fiber; HF—End-hooked steel fiber

    表  1  P·O42.5R水泥基本性能

    Table  1.   Basic properties of P·O42.5R cement

    GradeFineness/%Setting timeFlexural strength/MPaCompressive strength/MPa
    42.5≤3.0Initial setting≥60 min,
    final coagulation≤5 h
    3 d28 d3 d28 d
    ≥3.5≥6.5≥17.0≥42.5
    下载: 导出CSV

    表  2  超高性能混凝土(UHPC)基体配合比

    Table  2.   Mixture proportion of ultra-high performance concrete (UHPC) matrix

    ComponentCementSilica fumeQuartz powderQuartz sandWater-binder ratioSuperplasticizerDefoamer
    Mass ratio1.000.250.3161.0620.162.4%0.25%
    下载: 导出CSV

    表  3  钢纤维几何和物理性能

    Table  3.   Geometric and physical properties of steel fiber

    Type of fiberLength
    /mm
    Diameter
    /mm
    Length diameter ratio l/dDensity
    /(g·cm−3)
    Elastic modulus
    /GPa
    Tensile strength
    /MPa
    SS130.2657.8205≥2 700
    LS180.2907.8205≥2 700
    H160.2807.8205≥2 700
    下载: 导出CSV

    表  4  UHPC试件设计参数

    Table  4.   Design parameters of UHPC specimens

    SpecimenContent of steel fiber/vol%Total content
    of fiber/vol%
    SSLSH
    1.5%SS/C1.5001.5
    1.5%LS/C01.501.5
    2.0%SS/C2.0002.0
    2.0%LS/C02.002.0
    1.5%SS-0.5%H/C1.500.52.0
    1.0%SS-1.0%H/C1.001.02.0
    1.5%LS-0.5%H/C01.50.52.0
    1.0%LS-1.0%H/C01.01.02.0
    下载: 导出CSV

    表  5  实测UHPC力学性能

    Table  5.   Measured mechanical properties of UHPC

    Specimenfcu/MPafc/MPafcu/fcEc/GPa
    1.5%SS/C122.35102.770.8447.5
    1.5%LS/C134.96110.670.8246.8
    2.0%SS/C133.05117.080.8848.3
    2.0%LS/C124.03100.460.8148.2
    1.5%SS-0.5%H/C128.42111.730.8748.9
    1.0%SS-1.0%H/C138.97119.510.8649.0
    1.5%LS-0.5%H/C132.53107.350.8146.9
    1.0%LS-1.0%H/C133.53109.490.8247.8
    Notes: fcu—Cubic compressive strength; fc—Axial compressive strength; Ec—Compressive elastic modulus.
    下载: 导出CSV

    表  6  UHPC试件轴拉力学性能指标

    Table  6.   Mechanical performance index of UHPC specimens under axial tension

    Specimenfte/MPaεte/%ftu/MPaεtu/%Et0/MPaftu/fteW1.0/JRe,1.0
    1.5%SS/C5.820.0125 6.200.182465601.0711.910.77
    1.5%LS/C6.920.0147 8.210.294470751.1917.320.84
    2.0%SS/C6.780.0144 8.480.253470831.2516.700.79
    2.0%LS/C8.110.016610.320.401488551.2723.190.90
    1.5%SS-0.5%H/C8.030.016510.300.324486671.2818.620.72
    1.0%SS-1.0%H/C7.910.016310.870.590485281.3721.900.81
    1.5%LS-0.5%H/C7.390.0156 9.580.416473721.3020.650.86
    1.0%LS-1.0%H/C7.470.0153 8.750.269488241.1717.190.79
    Notes: fte—Elastic ultimate tensile strength; ftu—Tensile strength; εte—Elastic ultimate tensile strain; εtu—Peak tensile strain; Et0—Tensile elastic modulus; W1.0—Tensile work; Re,1.0—Toughness ratio.
    下载: 导出CSV

    表  7  UHPC下降段曲线模型参数

    Table  7.   Model parameters of UHPC descending curves

    SpecimenγαβR2
    1.5%SS/C0.970.1402.6040.981
    1.5%LS/C1.350.2512.6130.994
    2.0%SS/C1.300.2422.8670.996
    2.0%LS/C1.800.3283.0510.998
    1.5%SS-0.5%H/C1.891.1982.5830.998
    1.0%SS-1.0%H/C2.495.9532.9720.998
    1.5%LS-0.5%H/C2.270.6972.8980.997
    1.0%LS-1.0%H/C2.740.3062.8990.997
    Notes: γ—Fiber reinforcement factor; α and β—Model parameters of softened descending section.
    下载: 导出CSV
  • [1] WANG D, SHI C, WU Z, et al. A review on ultra high performance concrete: Part II. Hydration, microstructure and properties[J]. Construction and Building Materials,2015,96:368-377. doi: 10.1016/j.conbuildmat.2015.08.095
    [2] 刘加平, 汤金辉, 韩方玉. 现代混凝土增韧防裂原理及应用[J]. 土木工程学报, 2021, 54(10):47-54, 63.

    LIU Jiaping, TANG Jinhui, HAN Fangyu. Toughening and crack prevention of modern concrete: Mechanisms and applications[J]. China Civil Engineering Journal,2021,54(10):47-54, 63(in Chinese).
    [3] 樊健生, 丁然. 超高性能混凝土在房屋建筑结构中的研究与应用进展[J]. 硅酸盐学报, 2023, 51(5):1246-1258.

    FAN Jiansheng, DING Ran. Development on ultra-high performance concrete in building structures[J]. Journal of the Chinese Ceramic Society,2023,51(5):1246-1258(in Chinese).
    [4] 刘加平, 刘建忠, 韩方玉, 等. 基于钢-混凝土组合结构轻量化的粗骨料超高性能混凝土研究进展与应用[J]. 建筑结构学报, 2022, 43(9):36-44.

    LIU Jiaping, LIU Jianzhong, HAN Fangyu, et al. Research progress and application of coarse aggregate ultra high performance concrete used for lightweight steel-concrete composite structure[J]. Journal of Building Structures,2022,43(9):36-44(in Chinese).
    [5] HOANG A L, FEHLING E. Influence of steel fiber content and aspect ratio on the uniaxial tensile and compressive behavior of ultra high performance concrete[J]. Construction and Building Materials,2017,153:790-806. doi: 10.1016/j.conbuildmat.2017.07.130
    [6] YOO D Y, SHIN H O, YANG J M, et al. Material and bond properties of ultra high performance fiber reinforced concrete with micro steel fibers[J]. Composites Part B: Engineering,2014,58:122-133. doi: 10.1016/j.compositesb.2013.10.081
    [7] YOO D Y, KIM S, PARK G J, et al. Effects of fiber shape, aspect ratio, and volume fraction on flexural behavior of ultra-high-performance fiber-reinforced cement compo-sites[J]. Composite Structures,2017,174:375-388. doi: 10.1016/j.compstruct.2017.04.069
    [8] WILLE K, KIM D J, NAAMAN A E. Strain-hardening UHP-FRC with low fiber contents[J]. Materials and Structures,2011,44:583-598. doi: 10.1617/s11527-010-9650-4
    [9] YOO D Y, KIM S, KIM J J, et al. An experimental study on pullout and tensile behavior of ultra-high-performance concrete reinforced with various steel fibers[J]. Construction and Building Materials,2019,206:46-61. doi: 10.1016/j.conbuildmat.2019.02.058
    [10] 刘建忠, 韩方玉, 周华新, 等. 超高性能混凝土拉伸力学行为的研究进展[J]. 材料导报, 2017, 31(23):24-32.

    LIU Jianzhong, HAN Fangyu, ZHOU Huaxin, et al. An overview on tensile behavior of ultra-high performance concrete[J]. Materials Reports,2017,31(23):24-32(in Chinese).
    [11] TRAN N T, TRAN T K, JEON J K, et al. Fracture energy of ultra-high-performance fiber-reinforced concrete at high strain rates[J]. Cement and Concrete Research,2016,79:169-184. doi: 10.1016/j.cemconres.2015.09.011
    [12] 郑丽, 陈露一, 张志豪. 基于紧密堆积理论优化超高性能混凝土钢纤维参数[J]. 硅酸盐通报, 2022, 41(3):853-859.

    ZHENG Li, CHEN Luyi, ZHANG Zhihao. Steel fibre parameter optimization of ultra-high performance concrete based on dense particle packing theory[J]. Bulletin of the Chinese Ceramic Society,2022,41(3):853-859(in Chinese).
    [13] PARK S H, KIM D J, RYU G S, et al. Tensile behavior of ultra high performance hybrid fiber reinforced concrete[J]. Cement and Concrete Composites,2012,34(2):172-184. doi: 10.1016/j.cemconcomp.2011.09.009
    [14] 苏家战, 林毅焌, 陈宝春, 等. 混杂钢纤维UHPC单轴拉伸性能的混杂效应分析[J]. 南昌大学学报(工科版), 2019, 41(4):358-364.

    SU Jiazhan, LIN Yijun, CHEN Baochun, et al. Hybrid effect of steel fiber on the uniaxial tensile properties of UHPC[J]. Journal of Nanchang University (Engineering and Technology),2019,41(4):358-364(in Chinese).
    [15] CHUN B, YOO D Y. Hybrid effect of macro and micro steel fibers on the pullout and tensile behaviors of ultra-high-performance concrete[J]. Composites Part B: Engineering,2019,162:344-360. doi: 10.1016/j.compositesb.2018.11.026
    [16] LIANG L, WANG Q, SHI Q. Flexural toughness and its evaluation method of ultra-high performance concrete cured at room temperature[J]. Journal of Building Engineering, 2023, 71: 106516.
    [17] 中国混凝土与水泥制品协会, 中国建筑材料联合会. 超高性能混凝土基本性能与试验方法: T/CCPA 7—2018[S]. 北京: 中国建筑材料协会, 2018.

    China Concrete and Cement Products Association, China Building Materials Federation. Basic performance and test method of ultra-high performance concrete: T/CCPA 7—2018[S]. Beijing: China Building Materials Association, 2018.
    [18] 中国工程建设标准化协会. 纤维混凝土试验方法标准: CECS 13—2009[S]. 北京: 中国计划出版社, 2009.

    China Engineering Construction Standardization Association. Test method standard for fiber reinforced concrete: CECS 13—2009[S]. Beijing: China Planning Press, 2009.
    [19] 罗章. 中应变率下钢纤维混凝土的本构关系研究[D]. 长沙: 中南大学, 2004.

    LUO Zhang. Study on the constitutive relationship of steel fiber reinforced concrete under intermediate strain rate[D]. Changsha: Central South University, 2004(in Chinese).
    [20] 徐礼华, 梅国栋, 黄乐, 等. 钢-聚丙烯混杂纤维混凝土轴心受拉应力-应变关系研究[J]. 土木工程学报, 2014, 47(7):35-45.

    XU Lihua, MEI Guodong, HUANG Le, et al. Study on uniaxial tensile stress-strain relationship of steel-polypropylene hybrid fiber reinforced concrete[J]. China Civil Engineering Journal,2014,47(7):35-45(in Chinese).
    [21] ZHOU Z, QIAO P. Tensile behavior of ultra-high performance concrete: Analytical model and experimental validation[J]. Construction and Building Materials,2019,201:842-851. doi: 10.1016/j.conbuildmat.2018.12.137
    [22] 过镇海. 钢筋混凝土原理[M]. 北京: 清华大学出版社, 2013: 18-21.

    GUO Zhenhai. Principles of reinforced concrete[M]. Beijing: Tsinghua University Publishing House, 2013: 18-21(in Chinese).
    [23] 郭耀东, 刘元珍, 王文婧, 等. 玄武岩纤维特征参数对混凝土单轴受拉性能的影响[J]. 复合材料学报, 2023, 40(5): 2897-2912.

    GUO Yaodong, LIU Yuanzhen, WANG Wenjing, et al. Influence of basalt fiber characteristic parameters on uniaxial tensile properties of concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2897-2912(in Chinese).
    [24] 杲晓龙, 王俊颜, 郭君渊, 等. 循环荷载作用下超高性能混凝土的轴拉力学性能及本构关系模型[J]. 复合材料学报, 2021, 38(11):3925-3938.

    GAO Xiaolong, WANG Junyan, GUO Junyuan, et al. Axial tensile mechanical properties and constitutive relation model of ultra-high performance concrete under cyclic loading[J]. Acta Materiae Compositae Sinica,2021,38(11):3925-3938(in Chinese).
    [25] 方志, 周腾, 刘路明, 等. 超高性能混凝土受拉性能试验研究[J]. 铁道学报, 2022, 44(5):157-165.

    FANG Zhi, ZHOU Teng, LIU Luming, et al. Experimental study on tensile properties of ultra-high performance concrete[J]. Journal of the China Railway Society,2022,44(5):157-165(in Chinese).
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  713
  • HTML全文浏览量:  436
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-21
  • 修回日期:  2023-04-26
  • 录用日期:  2023-05-18
  • 网络出版日期:  2023-05-29
  • 刊出日期:  2024-01-01

目录

    /

    返回文章
    返回