留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光热超疏水碳黑粒子/碱改性聚偏氟乙烯-环氧树脂复合涂层的制备及性能

廉悦 黄杉 毛林韩 陈朝霞 张玉红

廉悦, 黄杉, 毛林韩, 等. 光热超疏水碳黑粒子/碱改性聚偏氟乙烯-环氧树脂复合涂层的制备及性能[J]. 复合材料学报, 2024, 41(1): 180-187. doi: 10.13801/j.cnki.fhclxb.20230525.001
引用本文: 廉悦, 黄杉, 毛林韩, 等. 光热超疏水碳黑粒子/碱改性聚偏氟乙烯-环氧树脂复合涂层的制备及性能[J]. 复合材料学报, 2024, 41(1): 180-187. doi: 10.13801/j.cnki.fhclxb.20230525.001
LIAN Yue, HUANG Shan, MAO Linhan, et al. Preparation and properties of photothermal superhydrophobic carbon soot particles/alkali-modified polyvinylidene fluoride-epoxy resin composite coating[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 180-187. doi: 10.13801/j.cnki.fhclxb.20230525.001
Citation: LIAN Yue, HUANG Shan, MAO Linhan, et al. Preparation and properties of photothermal superhydrophobic carbon soot particles/alkali-modified polyvinylidene fluoride-epoxy resin composite coating[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 180-187. doi: 10.13801/j.cnki.fhclxb.20230525.001

光热超疏水碳黑粒子/碱改性聚偏氟乙烯-环氧树脂复合涂层的制备及性能

doi: 10.13801/j.cnki.fhclxb.20230525.001
基金项目: 湖北省功能化学品工程技术中心项目 (GCZX-2022-03)
详细信息
    通讯作者:

    陈朝霞,博士,副教授,研究方向为功能材料 E-mail:chenzhaoxia@hubu.edu.cn

    张玉红,博士,教授,硕士生导师,研究方向为功能高分子 E-mail:zhangyuhong@hubu.edu.cn

  • 中图分类号: O631;TB332

Preparation and properties of photothermal superhydrophobic carbon soot particles/alkali-modified polyvinylidene fluoride-epoxy resin composite coating

Funds: Hubei Provincial Engineering Center of Performance Chemicals (GCZX-2022-03)
  • 摘要: 碳黑粒子(CSPS)具有纳米级的尺寸和良好的光热性能,是光热涂层材料的重要候选原料。本文通过不完全燃烧大豆油制得CSPS,以CSPS、碱改性聚偏氟乙烯(MPVDF)和环氧树脂(ER)为主要原料构建CSPS/MPVDF-ER复合涂层,并对影响复合涂层的光热性能、疏水性等各种因素进行了研究。结果发现:CSPS/MPVDF-ER的拒水性能随着CSPS的加入显著提升(水接触角(WCA)>163°,水滚动角(WSA)<1°)。随着CSPS添加量增大,CSPS/MPVDF-ER涂层的光热转化效率逐渐增强,其接触角和抗水流冲击能力呈现出逐步增强的趋势,在CSPS/MPVDF-ER质量比为0.05时涂层达到最大光热转化效果(与环境的温度差ΔT=88℃)。CSPS/MPVDF-ER涂层具有较好的耐受酸、碱及紫外线性能。由来源广泛CSPS通过简单的方法制得的CSPS/MPVDF-ER涂层具有优良的光热转化效果和超疏水性能,为低成本高强度超疏水防污光热涂层的制备提供了一种新的思路。

     

  • 图  1  超疏水碳黑粒子(CSPS)/碱改性聚偏氟乙烯(MPVDF)-环氧树脂(ER)复合材料制备流程示意图

    Figure  1.  Schematic illustration of the preparation process for superhydrophobic carbon soot particles (CSPS)/alkali modifiedpolyvinylidene fluoride (MPVDF)-epoxy resin (ER) composites

    DMAc—N, N-dimethylacetamide; DETA—Diethylenetriamine

    图  2  CSPS的Raman图谱

    Figure  2.  Raman spectrum of CSPS

    ID/IG—Ratio of the intensity of the D band to the G band

    图  3  CSPS/MPVDF-ER和MPVDF的ATR-FTIR图谱

    Figure  3.  ATR-FTIR spectra of CSPS/MPVDF-ER and MPVDF

    图  4  CSPS、MPVDF和CSPS/MPVDF-ER的XRD图谱

    Figure  4.  XRD patterns of CSPS, MPVDF and CSPS/MPVDF-ER

    图  5  CSPS/MPVDF-ER的微观形貌(a)及对应的C (b)、N (c)、O (d)和F (e)的空间分布情况和元素种类情况(f)

    Figure  5.  Microscopic morphology of CSPS/MPVDF-ER (a),the corresponding spatial distribution of C (b), N (c), O (d) and F (e) and the type of elements (f)

    图  6  不同含量CSPS/MPVDF-ER在人造太阳光照射下与环境的温度差ΔT-照射时间曲线(a)和CSPS/MPVDF-ER质量比为0.05时涂层升温过程中的红外照片((b)~(d))

    Figure  6.  Temperature difference ΔT-time curves (a) of different contents of CSPS/MPVDF-ER under artificial sunlight and infrared photographs ((b)-(d)) of coating heating process when CSPS/MPVDF-ER mass ratio was 0.05

    图  7  不同CSPS含量的CSPS/MPVDF-ER的接触角(a)和滚动角((b1)~(b4))

    Figure  7.  Contact angle (a) and rolling angle ((b1)-(b4)) of CSPS/MPVDF-ER with different content of CSPS

    mCSPS/mMPVDF-ER—Mass ratio of CSPS and MPVDF-ER

    图  8  CSPS/MPVDF-ER在酸处理(a)、碱处理(b)、紫外线照射(c)和打磨(d)后的接触角与滚动角

    Figure  8.  Contact angles and sliding angles of CSPS/MPVDF-ER after acid treatment (a), alkali treatment (b), ultraviolet irradiation (c) and polishing (d)

    图  9  CSPS/MPVDF-ER的拒水防污性能(a)和自清洁性能((b)~(g))

    Figure  9.  Water repellency and antifouling properties (a) and self-cleaning properties ((b)-(g)) of CSPS/MPVDF-ER

  • [1] MUNIRASU S, BANAT F, DURRANI A A, et al. Intrinsically superhydrophobic PVDF membrane by phase inversion for membrane distillation[J]. Desalination,2017,417:77-86. doi: 10.1016/j.desal.2017.05.019
    [2] WU Y, JIA S, QING Y, et al. A versatile and efficient method to fabricate durable superhydrophobic surfaces on wood, lignocellulosic fiber, glass, and metal substrates[J]. Journal of Materials Chemistry A, 2016, 4(37): 14111-14121.
    [3] LI Y, SHAO H, LYU P, et al. Fast preparation of mechanically stable superhydrophobic surface by UV cross-linking of coating onto oxygen-inhibited layer of substrate[J]. Chemical Engineering Journal, 2018, 338: 440-449.
    [4] WANG X, XIAO C, LIU H, et al. Fabrication and properties of PVDF and PVDF-HFP microfiltration membranes[J]. Journal of Applied Polymer Science,2018,135(40):46711. doi: 10.1002/app.46711
    [5] WANG H, LIU Z, WANG E, et al. Facile preparation of superamphiphobic epoxy resin/modified poly(vinylidene fluoride)/fluorinated ethylene propylene composite coating with corrosion/wear-resistance[J]. Applied Surface Science,2015,357:229-235. doi: 10.1016/j.apsusc.2015.09.017
    [6] ZHANG Y, LI F, YU Q, et al. Fabrication of plla with high ductility and transparence by blending with tiny amount of PVDF and compatibilizers[J]. Macromolecular Materials and Engineering,2019,304(11):1900316. doi: 10.1002/mame.201900316
    [7] ZHANG S, WANG R, ZHANG S, et al. Development of phosphorylated silica nanotubes (PSNTs)/polyvinylidene fluoride (PVDF) composite membranes for wastewater treatment[J]. Chemical Engineering Journal,2013,230:260-271. doi: 10.1016/j.cej.2013.06.098
    [8] KAR E, BOSE N, DUTTA B, et al. Ultraviolet- and microwave-protecting, self-cleaning e-skin for efficient energy harvesting and tactile mechanosensing[J]. ACS Applied Materials & Interfaces,2019,11(19):17501-17512.
    [9] LIU F, HASHIM N A, LIU Y, et al. Progress in the production and modification of PVDF membranes[J]. Journal of Membrane Science, 2011, 375: 1-27.
    [10] LI Y, JIN X, ZHENG Y, et al. Tunable water delivery in carbon-coated fabrics for high-efficiency solar vapor generation[J]. ACS Applied Materials & Interfaces, 2019, 11(50): 46938-46946.
    [11] JIANG G, LIU Z, HU J, et al. Superhydrophobic and photothermal PVDF/CNTs durable composite coatings for passive anti-icing/active de-icing[J]. Advanced Materials Interfaces, 2022, 9(2): 2101704.
    [12] EBERT K, FRITSCH D, KOLL J, et al. Influence of inorganic fillers on the compaction behaviour of porous polymer based membranes[J]. Journal of Membrane Science, 2004, 233(1-2): 71-78.
    [13] ESMERYAN K D, CASTANO C E, BRESSLER A H, et al. Rapid synthesis of inherently robust and stable superhydrophobic carbon soot coatings[J]. Applied Surface Science,2016,369:341-347. doi: 10.1016/j.apsusc.2016.02.089
    [14] KIMURA Y, SATO T, KAITO C. Production and structural characterization of carbon soot with narrow UV absorption feature[J]. Carbon,2004,42(1):33-38. doi: 10.1016/j.carbon.2003.09.010
    [15] ZHAO J, GAO X, CHEN S, et al. Hydrophobic or superhydrophobic modification of cement-based materials: A systematic review[J]. Composites Part B: Engineering,2022,243:110104. doi: 10.1016/j.compositesb.2022.110104
    [16] HUANG S, ZHANG Y, CHEN D, et al. Fabrication of mechanochemically robust superhydrophobic coating based on MPVDF/epoxy resins composites[J]. Progress in Organic Coatings,2022,163:106651. doi: 10.1016/j.porgcoat.2021.106651
    [17] DHEVID M, PRABU A A, KIM K J. FTIR studies on polymorphic control of PVDF ultrathin films by heat-controlled spin coater[J]. Journal of Materials Science,2016,51(7):3619-3627. doi: 10.1007/s10853-015-9685-6
    [18] LAURIEN M, DEMIR B, BIITTEMEYER H, et al. Atomistic modeling of the formation of a thermoset/thermoplastic interphase during co-curing[J]. Macromolecules,2018,51(11):3983-3993. doi: 10.1021/acs.macromol.8b00736
    [19] MAAYAN M, MANI K, YAAKOV K, et al. Fluorine-free superhydrophobic coating with antibiofilm properties based on pickering emulsion templating[J]. ACS Applied Materials & Interfaces,2021,13:37693-37703.
    [20] BHUSHAN B. Bioinspired materials and surfaces for green science and technology[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,2019,377(2138):20180336. doi: 10.1098/rsta.2018.0336
    [21] LOMGA J, VARSHNEY P, NANDA D, et al. Fabrication of durable and regenerable superhydrophobic coatings with excellent self-cleaning and anti-fogging properties for aluminium surfaces[J]. Journal of Alloys and Compounds,2017,702:161-170. doi: 10.1016/j.jallcom.2017.01.243
    [22] SHEN L, LI Y, ZHAO W, et al. Tuning F-doped degree of rGO: Restraining corrosion-promotion activity of EP/rGO nanocomposite coating[J]. Journal of Materials Science & Technology,2020,44:121-132.
    [23] LIU M, HORROCKS A R. Effect of carbon black on UV stability of LLDPE films under artificial weathering conditions[J]. Polymer Degradation and Stability,2002,75(3):485-499. doi: 10.1016/S0141-3910(01)00252-X
    [24] HE S, BAI F, LIU S, et al. Aging properties of styrene-butadiene rubber nanocomposites filled with carbon black and rectorite[J]. Polymer Testing,2017,64:92-100. doi: 10.1016/j.polymertesting.2017.09.017
  • 加载中
图(9)
计量
  • 文章访问数:  571
  • HTML全文浏览量:  220
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-06
  • 修回日期:  2023-05-08
  • 录用日期:  2023-05-10
  • 网络出版日期:  2023-05-26
  • 刊出日期:  2024-01-01

目录

    /

    返回文章
    返回