Flexural performance of ultra-high performance fiber reinforced cementitious composite material doped with copolymer formaldehyde fiber
-
摘要: 为探究共聚甲醛纤维超高性能水泥基复合材料(UHPFRC)的抗弯力学性能,设计并测试了5组抗弯试件,包括3组纤维单掺型试件和2组纤维混杂型试件。结果表明:共聚甲醛纤维UHPFRC试件中,纤维体积掺量为2vol%时,UHPFRC试件具有更好的抗弯强度,平均强度可达13.4 MPa;适量的共聚甲醛纤维可延缓UHPFRC基体的开裂,增强其裂前变形能力,5组试件中,2vol%共聚甲醛纤维UHPFRC试件的开裂挠度最大,可达0.65 mm;混杂纤维可更好地增强UHPFRC的抗弯强度和韧性,1.5vol%共聚甲醛纤维和1.5vol%钢纤维混掺时,UHPFRC试件抗弯强度可达13.9 MPa,同时该组试件的韧性最好。本文揭示了共聚甲醛纤维在UHPFRC抗弯力学性能方面的作用效果,对其在UHPFRC中的应用及UHPFRC的推广具有重要参考价值。
-
关键词:
- 共聚甲醛纤维 /
- 超高性能水泥基复合材料 /
- 抗弯性能 /
- 纤维类型 /
- 纤维掺量
Abstract: In order to investigate the flexural performance of ultra-high performance fiber reinforced cementitious composite material (UHPFRC) doped with copolymer formaldehyde fiber, five groups of bending specimens were designed and tested, including three groups of single mixed specimens and two groups of fiber hybrid specimens. The results show that among the copolymer formaldehyde fiber UHPFRC specimens, 2vol% copolymer formaldehyde fiber UHPFRC specimens have better flexural strength, with an average strength of 13.4 MPa. An appropriate amount of co-formaldehyde fiber can delay the cracking of UHPFRC matrix and enhance its ability to deformation before cracking. Among the five groups of test pieces, the cracking deflection of 2vol% copolymer formaldehyde fiber UHPFRC test piece is the largest, which can reach 0.65 mm. Hybrid fiber can better enhance the flexural strength and toughness of UHPFRC. When 1.5vol% copolymer formaldehyde fiber and 1.5vol% steel fiber are mixed, the flexural strength of UHPFRC specimens can reach 13.9 MPa, and the toughness of this group of specimens is the best. The research reveals the effect of copolymer formaldehyde fiber on the flexural mechanical properties of UHPFRC, which has important reference value for its application in UHPFRC and the promotion of UHPFRC. -
表 1 纤维的几何与物理参数
Table 1. Geometrical and physical properties of fibers
Fiber type Density/(g·cm−3) Diameter/mm Length/mm Elastic modulus/GPa Tensile stress/MPa Elongation/% POM 1.40 0.2 12 ≥10 ≥1000 ≤16 SF 7.85 0.2 13 20-25 2850 3.5-4 Notes: POM—Copolymer formaldehyde fiber; SF—Steel fiber. 表 2 试件分组
Table 2. Specimen grouping
Group POM content/vol% SF content/
vol%Cement/
(kg·m−3)Silica fume/
(kg·m−3)Sand/
(kg·m−3)Sika viscocrete/
(kg·m−3)Beads powder/
(kg·m−3)Water/
(kg·m−3)2%POM-0%SF/C 2 0 904.8 67.9 1258.8 36.8 171.7 165 3%POM-0%SF/C 3 0 904.8 67.9 1258.8 36.8 171.7 165 0%POM-3%SF/C 0 3 904.8 67.9 1258.8 36.8 171.7 165 1%POM-1%SF/C 1 1 904.8 67.9 1258.8 36.8 171.7 165 1.5%POM-1.5%SF/C 1.5 1.5 904.8 67.9 1258.8 36.8 171.7 165 Note: C—Cement. 表 3 UHPFRC试件的试验结果
Table 3. Test results of the UHPFRC specimens
Group Slump flaw value/mm Bending strength/MPa 2%POM-0%SF/C 426 13.4 3%POM-0%SF/C 380 11.6 0%POM-3%SF/C 560 13.9 1%POM-1%SF/C 495 12.9 1.5%POM-1.5%SF/C 460 13.9 表 4 UHPFRC试件韧性指标计算结果
Table 4. Calculation results of toughness index of UHPFRC specimens
Group Initial crack
deflection/mmToughness index[29] Tb Toughness factor/MPa $ {I_5} $ $ {I_{10}} $ $ {I_{20}} $ 2%POM-0%SF/C 0.65 3.77 7.34 12.96 7.30 4.38 3%POM-0%SF/C 0.41 3.52 7.81 17.39 8.40 5.04 0%POM-3%SF/C 0.48 5.52 10.27 16.47 11.93 7.16 1%POM-1%SF/C 0.49 4.15 7.98 13.69 10.80 6.48 1.5%POM-1.5%SF/C 0.56 4.84 10.03 16.87 11.95 7.17 Notes: Tb—The area under the load-deflection curve corresponding to the mid-span deflection reaching L/150 (N·mm); I5, I10, I20—The ratio of the area under the load-deflection curve corresponding to deflections of 3, 5.5, and 10.5 times the initial cracking deflection to the area under the load-deflection curve corresponding to the initial cracking deflection. -
[1] 陈宝春, 季韬, 黄卿维, 等. 超高性能混凝土研究综述[J]. 建筑科学与工程学报, 2014, 31(3):1-24.CHEN Baochun, JI Tao, HUANG Qingwei, et al. Review of research on ultra-high performance concrete[J]. Journal of Architecture and Civil Engineering,2014,31(3):1-24(in Chinese). [2] 陈宝春, 林毅焌, 杨简, 等. 超高性能纤维增强混凝土中纤维作用综述[J]. 福州大学学报(自然科学版), 2020, 48(1):58-68.CHEN Baochun, LIN Yijun, YANG Jian, et al. Review on fiber function in ultra-high performance fiber reinforced concrete[J]. Journal of Fuzhou University (Natural Science Edition),2020,48(1):58-68(in Chinese). [3] 赵人达, 赵成功, 原元, 等. UHPC中钢纤维的应用研究进展[J]. 中国公路学报, 2021, 34(8):1-22.ZHAO Renda, ZHAO Chenggong, YUAN Yuan, et al. Research progress on application of steel fiber in UHPC[J]. China Journal of Highway and Transport,2021,34(8):1-22(in Chinese). [4] 王义超, 侯梦君, 余江滔, 等. 聚乙烯纤维制备超高延性水泥基复合材料的试验研究[J]. 材料导报, 2018, 32(20):3535-3540.WANG Yichao, HOU Mengjun, YU Jiangtao, et al. Experimental study on mechanical properties of ultra-high ductile cementitious composites[J]. Materials Reports,2018,32(20):3535-3540(in Chinese). [5] 黄政宇, 李操旺, 刘永强. 聚乙烯纤维对超高性能混凝土性能的影响[J]. 材料导报, 2014, 28(20):111-115.HUANG Zhengyu, LI Caowang, LIU Yongqiang. The effects of polyethylene fiber on the properties of UHPC[J]. Materials Reports,2014,28(20):111-115(in Chinese). [6] 赖建中, 徐升, 杨春梅, 等. 聚乙烯醇纤维对超高性能混凝土高温性能的影响[J]. 南京理工大学学报, 2013, 37(4):633-639.LAI Jianzhong, XU Sheng, YANG Chunmei, et al. Influence of polyvinyl alcohol fibers on the properties of ultra high performance concrete at high temperature[J]. Journal of Nanjing University of Science and Technology,2013,37(4):633-639(in Chinese). [7] 陈倩, 徐礼华, 吴方红, 等. 钢-聚丙烯混杂纤维增强超高性能混凝土强度试验研究[J]. 硅酸盐通报, 2020, 39(3):740-748, 755.CHEN Qian, XU Lihua, WU Fanghong, et al. Experimental investigation on strength of steel-polypropylene hybrid fiber reinforced ultra high performance concrete[J]. Bulletin of the Chinese Ceramic Society,2020,39(3):740-748, 755(in Chinese). [8] 滕晓丹, 谭又文, 李朋原, 等. 钢-高强高模量聚乙烯纤维混凝土高温后力学性能研究[J]. 硅酸盐通报, 2019, 38(4): 996-1001.TENG Xiaodan, TAN Youwen, LI Pengyuan, et al. Mechanical properties of steel-UHMWPE fiber reinforced concrete after high temperature[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(4): 996-1001(in Chinese). [9] 晏麓晖, 张玉武, 朱林. 超高分子量聚乙烯纤维混凝土的基本力学性能[J]. 国防科技大学学报, 2014, 36(6):43-47.YAN Luhui, ZHANG Yuwu, ZHU Lin. Basic mechanical properties of ultra high molecular weight polyethylene fiber concrete[J]. Journal of National University of Defense Technology,2014,36(6):43-47(in Chinese). [10] 安宇坤, 王亚涛, 李建华. 聚甲醛纤维混凝土抗收缩与抗渗透性研究[J]. 混凝土世界, 2019(3):64-67.AN Yukun, WANG Yatao, LI Jianhua. Study on shrinkage and permeability of polyoxymethylene fiber reinforced concrete[J]. Concrete World,2019(3):64-67(in Chinese). [11] 吕锦飞. 聚甲醛纤维混凝土性能研究[D]. 扬州: 扬州大学, 2019.LYU Jinfei. Study on properties of POM fiber reinforced concrete[D]. Yangzhou: Yangzhou University, 2019(in Chinese). [12] 何越骁, 黄维蓉, 郭江川, 等. 共聚甲醛纤维超高性能混凝土高温后残余力学性能研究[J]. 硅酸盐学报, 2022, 50(3): 839-848.HE Yuexiao, HUANG Weirong, GUO Jiangchuan, et al. Residual mechanical properties of ultra-high performance concrete doped with copolymer formaldehyde fiber exposed to high temperature[J]. Journal of the Chinese Ceramic Society, 2022, 50(3): 839-848(in Chinese). [13] Swiss Society of Engineers and Architects. UHPFRC—Material, design and construction: SIA 2052[S]. Zurich: Swiss Society of Engineers and Architects, 2016. [14] Association Française de Normalisation. Concrete—Ultra-high-performance fibre-reinforced concrete—Specifications, performance, production and conformity: NF P18-470[S]. Saint Denis: Association Française de Normalisation, 2016. [15] HE W, WANG C, WANG S, et al. Characterizing and predicting the tensile mechanical behavior and failure mechanisms of notched FMLs—Combined with DIC and numerical techniques[J]. Composite Structures,2020,254:112893. doi: 10.1016/j.compstruct.2020.112893 [16] FAYYAD T M, LEES J M. Application of digital image correlation to reinforced concrete fracture[J]. Procedia Materials Science, 2014, 3: 1585-1590. [17] 梁兴文, 胡翱翔, 于婧, 等. 钢纤维对超高性能混凝土抗弯力学性能的影响[J]. 复合材料学报, 2018, 35(3):722-731.LIANG Xingwen, HU Aoxiang, YU Jing, et al. Effect of steel fibers on the flexural response of ultra-high performance concrete[J]. Acta Materiae Compositae Sinica,2018,35(3):722-731(in Chinese). [18] 中华人民共和国住房和城乡建设部. 普通混凝土拌合物性能试验方法标准: GB/T 50080—2016[S]. 北京: 中国建筑工业出版社, 2016.Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for performance test methods of ordinary concrete mixtures: GB/T 50080—2016[S]. Beijing: China Building Industry Press, 2016(in Chinese). [19] ZHOU P, FENG P. Unified analysis for tailorable multi-scale fiber reinforced cementitious composites in tension[J]. Composites Part B: Engineering,2023,254:110586. doi: 10.1016/j.compositesb.2023.110586 [20] 郭文婧, 马少鹏, 康永军, 等. 基于数字散斑相关方法的虚拟引伸计及其在岩石裂纹动态观测中的应用[J]. 岩土力学, 2011, 32(10):3196-3200.GUO Wenjing, MA Shaopeng, KANG Yongjun, et al. Virtual extensometer based on digital speckle correlation method and its application to deformation field evolution of rock specimen[J]. Rock and Soil Mechanics,2011,32(10):3196-3200(in Chinese). [21] MUNOZ H, TAHERI A, CHANDA E K. Pre-peak and post-peak rock strain characteristics during uniaxial compression by 3D digital image correlation[J]. Rock Mechanics and Rock Engineering,2016,49(7):2541-2554. doi: 10.1007/s00603-016-0935-y [22] LE D B, TRAN S D, DAO V T N, et al. Deformation capturing of concrete structures at elevated temperatures[J]. Procedia Engineering,2017,210:613-621. doi: 10.1016/j.proeng.2017.11.121 [23] KIM D J, PARK S H, RYU G S, et al. Comparative flexural behavior of hybrid ultra high performance fiber reinforced concrete with different macro fibers[J]. Construction and Building Materials,2011,25(11):4144-4155. doi: 10.1016/j.conbuildmat.2011.04.051 [24] ZENG J J, ZENG W B, YE Y Y, et al. Flexural behavior of FRP grid reinforced ultra-high-performance concrete compo-site plates with different types of fibers[J]. Engineering Structures,2022,272:115020. doi: 10.1016/j.engstruct.2022.115020 [25] 曲博扬, 卿龙邦. 钢纤维增强水泥基复合材料增韧机理研究[J]. 硅酸盐通报, 2022, 41(5): 1522-1528.QU Boyang, QING Longbang. Toughening mechanism of steel fiber reinforced cement matrix composite[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(5): 1522-1528(in Chinese). [26] American Society for Testingand Materials. Standardtest method for flexural toughness and first-crack strength of fiber-reinforced concrete using beam with third-point loading: ASTM C1018—1997[S]. West Conshohocken: American Society for Testing and Materials,1997. [27] JSCE. Method of tests for flexural strength and flexural toughness of steel fiber reinforced concrete: JSCE-SF4[S]. Tokyo: Japan Society of Civil Engineering, 1984.