留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

RTM用改性硅炔杂化树脂及其复合材料

胡文杰 张钧钧 高明宇 蒋峰光 刘敏 周权

胡文杰, 张钧钧, 高明宇, 等. RTM用改性硅炔杂化树脂及其复合材料[J]. 复合材料学报, 2024, 41(2): 685-693. doi: 10.13801/j.cnki.fhclxb.20230524.002
引用本文: 胡文杰, 张钧钧, 高明宇, 等. RTM用改性硅炔杂化树脂及其复合材料[J]. 复合材料学报, 2024, 41(2): 685-693. doi: 10.13801/j.cnki.fhclxb.20230524.002
HU Wenjie, ZHANG Junjun, GAO Mingyu, et al. Modified silicone alkyne hybrid resin for RTM and its composite[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 685-693. doi: 10.13801/j.cnki.fhclxb.20230524.002
Citation: HU Wenjie, ZHANG Junjun, GAO Mingyu, et al. Modified silicone alkyne hybrid resin for RTM and its composite[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 685-693. doi: 10.13801/j.cnki.fhclxb.20230524.002

RTM用改性硅炔杂化树脂及其复合材料

doi: 10.13801/j.cnki.fhclxb.20230524.002
基金项目: 国家自然科学基金(52173074)
详细信息
    通讯作者:

    周权,博士,教授,博士生导师,研究方向为耐高温树脂及其复合材料 E-mail: qzhou@ecust.edu.cn

  • 中图分类号: TB332

Modified silicone alkyne hybrid resin for RTM and its composite

Funds: National Natural Science Foundation of China (52173074)
  • 摘要: 树脂传递模塑(RTM)成型工艺是一种液体闭模成型工艺,成品表面光滑、安全环保、成本较低,极具发展潜力。硅炔杂化树脂是一种耐高温性能优异的有机无机杂化树脂,在航空航天领域均有广泛应用,但其与纤维的结合性能较差,复合材料力学性能不佳,成为制约其发展应用的主要因素。本文以苯并噁嗪树脂(PBZ)和氨基稀释剂(PAD)共混改性聚(间二乙炔基苯-甲基氢硅烷)树脂(PSA),制备了适用于RTM成型工艺的改性硅炔杂化树脂(PPA)。通过DSC、FTIR、流变仪、旋转黏度计和热重等方法对PPA树脂的RTM成型工艺、固化行为及耐热性能进行分析。结果表明:PPA树脂的加工窗口宽,可以实现RTM成型的目标,但固化温度高于PSA树脂;PPA树脂的耐热性能优异,其中PPA-1 (PSA∶PBZ∶PAD质量比为5∶1∶2)树脂在氮气和空气中质量损失5%的温度(Td5)分别为585.4℃和568.3℃,1000℃质量保留率分别为88.3% 和26.0%。复合材料力学性能测试表明,石英纤维增强PPA树脂复合材料(QF/PPA)力学性能随PBZ含量的增加而逐渐升高,其中QF/PPA-1常温下弯曲强度为346.2 MPa,层间剪切强度为21.4 MPa,较QF/PSA复合材料分别提高了120.6%和72.6%,400℃热老化2 h后的弯曲强度和层间剪切强度分别为256.5 MPa和17.1 MPa,400℃热老化2 h后的力学性能保留率超过70%。

     

  • 图  1  聚(间二乙炔基苯-甲基氢硅烷)树脂(PSA)和含乙炔基苯并噁嗪树脂(PBZ)的结构式

    Figure  1.  Structures of poly(m-diacetylbenzene-methylhydrosilane) resin (PSA) and benzoxazine resin (PBZ)

    图  2  PPA-3树脂的黏度-时间曲线

    Figure  2.  Viscosity-time curves of PPA-3 resin

    图  3  PPA树脂的DSC曲线

    Figure  3.  DSC curves of PPA resin

    图  4  PPA树脂的流变曲线

    Figure  4.  Rheological curves of PPA resin

    图  5  不同固化温度的PPA-2树脂红外图谱

    Figure  5.  Infrared spectra of PPA-2 resin at different curing temperatures

    图  6  PPA树脂固化反应机制

    Figure  6.  Curing reaction mechanism of PPA resin

    图  7  PPA树脂的TGA曲线

    Figure  7.  TGA curves of PPA resin

    图  8  石英纤维增强PPA树脂复合材料(QF/PPA)的弯曲强度与层间剪切强度

    RT—Room temperature

    Figure  8.  Flexural strength and interlaminar shear strength of quartz fiber reinforced PPA resin composites (QF/PPA)

    图  9  QF/PPA复合材料的DMA曲线

    tanδ—Loss tangent

    Figure  9.  DMA curves of QF/PPA composite

    图  10  QF/PPA复合材料热老化10 h前后外观变化

    Figure  10.  Appearance change of QF/PPA composites before and after thermal aging

    表  1  不同比例的改性硅炔杂化树脂(PPA)配方

    Table  1.   Modified silicone alkyne hybrid resin (PPA) formula with different proportions

    SampleResin mass ratio
    PSAPBZPAD
    PPA-1512
    PPA-2522
    PPA-3532
    Note: PAD—Amino diluent.
    下载: 导出CSV

    表  2  PPA树脂的黏度

    Table  2.   Viscosity of PPA resin

    SampleViscosity/(mPa·s)
    25℃30℃40℃
    PSA 740 350100
    PPA-11000 610230
    PPA-217001000400
    PPA-340001800640
    下载: 导出CSV

    表  3  PPA树脂的凝胶时间

    Table  3.   Gelation time of PPA resin

    SampleGel time/min
    160℃180℃200℃
    PPA-123.511.05.1
    PPA-220.1 9.34.0
    PPA-318.2 8.13.0
    下载: 导出CSV

    表  4  PPA树脂的TGA数据

    Table  4.   TGA data of PPA resin

    SampleTd5/℃Mass retention/%
    AirN2AirN2
    PSA563.1689.831.2691.36
    PPA-1568.3613.726.0189.13
    PPA-2555.4601.823.0488.78
    PPA-3538.6595.921.6688.74
    Note: Td5—Temperature of 5% mass loss.
    下载: 导出CSV

    表  5  QF/PPA复合材料热老化10 h质量损失

    Table  5.   Mass loss of QF/PPA composites thermal aging

    SampleMass loss/wt%
    QF/PSA4.28
    QF/PPA-12.06
    QF/PPA-22.50
    QF/PPA-32.80
    下载: 导出CSV
  • [1] SHEN Y, YUAN Q, HUANG F, et al. Effect of neutral nickel catalyst on cure process of silicon-containing polyarylacetylene[J]. Thermochimica Acta,2014,590:66-72. doi: 10.1016/j.tca.2014.06.002
    [2] LANGE N, DIETRICH P M, LIPPITZ A, et al. New azidation methods for the functionalization of silicon nitride and application in copper-catalyzed azide-alkyne cycloaddition (CuAAC)[J]. Surface and Interface Analysis, 2016, 48(7):621-625.
    [3] 陈元俊, 郭康康, 王帆, 等. 含氟硅芳炔树脂的合成与性能研究[J]. 华东理工大学学报(自然科学版), 2020, 46(3):368-375.

    CHEN Yuanjun, GUO Kangkang, WANG Fan, et al. Synthesis and performance of fluorine-containing silicon arylacetylene resins[J]. Journal of East China University of Science and Technology,2020,46(3):368-375(in Chinese).
    [4] GAO G, ZHANG S, WANG L, et al. Developing highly tough, heat-resistant blend thermosets based on silicon-containing arylacetylene: A material genome approach[J]. ACS Applied Materials & Interfaces,2020,12(24):27587-27597.
    [5] MA M, GONG C, LI C, et al.The synthesis and properties of silicon-containing arylacetylene resins with rigid-rod 2, 5-diphenyl-[1, 3, 4]-oxadiazole moieties[J]. European Polymer Journal, 2020, 143(4): 110192.
    [6] YANG R, WANG Y, HAO B, et al. Synthesis of ortho-methyltetrahydrophthalimide functional benzoxazine containing phthalonitrile group: Thermally activated polymerization behaviors and properties of its polymer[J]. High Performance Polymers,2021,33(2):196-204. doi: 10.1177/0954008320954519
    [7] CORRIU R, GERBIER P, GUÉRIN C, et al. Poly[(silylene) diacetylene]/finemetal oxide powder dispersions: Use as precursors to silicon-based composite ceramics[J]. Jour-nal of Materials Chemistry,2000,10(9):2173-2182. doi: 10.1039/b002788j
    [8] ITOH M, INOUE K, HIRAYAMA N, et al. Fiber reinforced plastics using a new heat-resistant silicon based polymer[J]. Journal of Materials Science,2002,37(17):3795-3801. doi: 10.1023/A:1016538014803
    [9] ITOH M, INOUE K, IWATA K, et al. New highly heat-resistant polymers containing silicon: Poly(silyleneethynylene-phenyleneethynylene)s[J]. Macromolecules,1997,30(4):694-701. doi: 10.1021/ma961081f
    [10] ITOH M, IWATA K, ISHIKAWA J I, et al. Various silicon-containing polymers with Si(H)C≡C units[J]. Journal of Polymer Science, Part A: Polymer Chemistry,2001,39(15):2658-2669. doi: 10.1002/pola.1242
    [11] 袁航, 孟庆杰, 张昊, 等. 新型含硅聚芳炔树脂基透波复合材料的制备与性能[J]. 复合材料学报, 2021, 38(11):3629-3639. doi: 10.13801/j.cnki.fhclxb.20210210.009

    YUAN Hang, MENG Qingjie, ZHANG Hao, et al. Preparation and properties of novel silicon-containing polyarylacetylene resin based wave-transparent composite[J]. Acta Materiae Compositae Sinica,2021,38(11):3629-3639(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210210.009
    [12] 王志德, 白小陶, 贾宇翔, 等. 硼硅炔杂化聚合物的合成及耐热性能[J]. 高分子材料科学与工程, 2022, 38(10):17-22.

    WANG Zhide, BAI Xiaotao, JIA Yuxiang, et al. Synthesis and heat resistance of borosilyne hybrid polymers[J]. Polymer Materials Science and Engineering,2022,38(10):17-22(in Chinese).
    [13] 司书帅, 袁荞龙, 黄发荣. 含炔基酚醛树脂改性PSA及碳纤维布/PSA-EPAN复合材料性能[J]. 复合材料学报, 2018, 35(3):545-552.

    SI Shushuai, YUAN Qiaolong, HUANG Furong. Properties of PSA modified by alkynyl-containing phenolic resin and carbon fabric/PSA-EPAN composites[J]. Acta Materiae Compositae Sinica,2018,35(3):545-552(in Chinese).
    [14] TONG Y, YUAN Q, HUANG F. Preparation and characterization of silicon-containing polyarylacetylene/montmorilloite nanocomposites[J]. Journal of Macromolecular Science Part B—Physics,2019,58(4):469-488. doi: 10.1080/00222348.2019.1590982
    [15] 王茂源, 束长朋, 贾宇翔, 等. 双酚A型邻苯二甲腈树脂改性硅炔杂化树脂及其复合材料性能[J]. 复合材料学报, 2021, 38(11):3652-3660. doi: 10.13801/j.cnki.fhclxb.20210114.003

    WANG Maoyuan, SHU Changpeng, JIA Yuxiang, et al. Bisphenol A type o-phthalonitrile resin modified silicoalkyne hybrid resin and its composite properties[J]. Acta Materiae Compositae Sinica,2021,38(11):3652-3660(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210114.003
    [16] 王佳明, 贾明印, 董贤文, 等. 树脂传递模塑成型工艺研究进展[J]. 塑料工业, 2021, 49(11):9-14, 43. doi: 10.3969/j.issn.1005-5770.2021.11.003

    WANG Jiaming, JIA Mingyin, DONG Xianwen, et al. Research progress on the molding process of resin transfer mould[J]. China Plastics Industry,2021,49(11):9-14, 43(in Chinese). doi: 10.3969/j.issn.1005-5770.2021.11.003
    [17] 金东升, 张庆茂, 张朋, 等. RTM在耐高温复材结构中的应用问题与对策[C]//第二十一届全国复合材料学术会议(NCCM-21). 北京, 2020: 359-364.

    JIN Dongsheng, ZHANG Qingmao, ZHANG Peng, et al. Application problems and counter measures of RTM in high temperature resistant composite structures[C]//The 21st National Academic Conference on Composite Materials (NCCM-21). Beijing, 2020: 359-364(in Chinese).
    [18] 朱怡臻, 王瑛, 陈鸣亮, 等. 先进树脂基复合材料RTM成型工艺研究及应用进展[J]. 塑料工业, 2020, 48(5):18-22, 128. doi: 10.3969/j.issn.1005-5770.2020.05.002

    ZHU Yizhen, WANG Ying, CHEN Mingliang, et al. Research progress and application of RTM for advanced resin matrix composites[J]. China Plastics Industry,2020,48(5):18-22, 128(in Chinese). doi: 10.3969/j.issn.1005-5770.2020.05.002
    [19] 赵安安, 杨文凯, 于飞, 等. 大型高性能复合材料构件RTM工艺进展[J]. 南京航空航天大学学报, 2020, 52(1):39-47. doi: 10.16356/j.1005-2615.2020.01.004

    ZHAO An'an, YANG Wenkai, YU Fei, et al. RTM progress for large-scale high-performance composite components[J]. Journal of Nanjing University of Aeronautics and Astronautics,2020,52(1):39-47(in Chinese). doi: 10.16356/j.1005-2615.2020.01.004
    [20] 祝庆君. 环氧树脂增韧改性及RTM工艺制备碳纤维复合材料性能研究[D]. 哈尔滨: 黑龙江省科学院石油化学研究院, 2018.

    ZHU Qingjun. Study on the toughening modification of epoxy resin and the properties of carbon fiber composites prepared by RTM process[D]. Harbin: Institute of Petrochemistry, Heilongjiang Academy of Sciences, 2018(in Chinese).
    [21] GAJJAR T, SHAH D, JOSHI S, et al. Investigation on dimensional accuracy for CFRP antenna reflectors using autoclave and VARTM processes[C]//Advances in Computational Methods in Manufacturing. Lecture Notes on Multidisciplinary Industrial Engineering. Singapore: Springer, 2019: 693-702.
    [22] AMIRKHOSRAVI M, PISHVAR M, CENGIZ ALTAN M. Fabricating high-quality VARTM laminates by magnetic consolidation: Experiments and process model[J]. Composites Part A: Applied Science and Manufacturing,2018,114:398-406. doi: 10.1016/j.compositesa.2018.09.003
    [23] 轩立新, 王茂源, 束长朋, 等. RTM成型工艺用改性硅炔杂化树脂性能研究[J]. 中国胶粘剂, 2020, 29(6):1-6. doi: 10.13416/j.ca.2020.06.002

    XUAN Lixin, WANG Maoyuan, SHU Changpeng, et al. Study on properties of modified silicone alkyne hybrid resin for RTM molding process[J]. China Adhesives,2020,29(6):1-6(in Chinese). doi: 10.13416/j.ca.2020.06.002
    [24] 中国国家标准化管理委员会. 纤维增强塑料弯曲性能试验方法: GB/T 1449−2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic of China. Fiber-reinforced plastic composites: Determination of flexural properties: GB/T 1449−2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [25] 中国国家标准化管理委员会. 纤维增强塑料层间剪切强度试验方法: GB/T 1450.1−2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic of China. Fiber-reinforced plastic composites: Determination of interlaminar shear strength: GB/T 1450.1−2005[S]. Beijing: China Standards Press, 2005(in Chinese).
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  357
  • HTML全文浏览量:  218
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-31
  • 修回日期:  2023-05-10
  • 录用日期:  2023-05-11
  • 网络出版日期:  2023-05-25
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回