Modified silicone alkyne hybrid resin for RTM and its composite
-
摘要: 树脂传递模塑(RTM)成型工艺是一种液体闭模成型工艺,成品表面光滑、安全环保、成本较低,极具发展潜力。硅炔杂化树脂是一种耐高温性能优异的有机无机杂化树脂,在航空航天领域均有广泛应用,但其与纤维的结合性能较差,复合材料力学性能不佳,成为制约其发展应用的主要因素。本文以苯并噁嗪树脂(PBZ)和氨基稀释剂(PAD)共混改性聚(间二乙炔基苯-甲基氢硅烷)树脂(PSA),制备了适用于RTM成型工艺的改性硅炔杂化树脂(PPA)。通过DSC、FTIR、流变仪、旋转黏度计和热重等方法对PPA树脂的RTM成型工艺、固化行为及耐热性能进行分析。结果表明:PPA树脂的加工窗口宽,可以实现RTM成型的目标,但固化温度高于PSA树脂;PPA树脂的耐热性能优异,其中PPA-1 (PSA∶PBZ∶PAD质量比为5∶1∶2)树脂在氮气和空气中质量损失5%的温度(Td5)分别为585.4℃和568.3℃,1000℃质量保留率分别为88.3% 和26.0%。复合材料力学性能测试表明,石英纤维增强PPA树脂复合材料(QF/PPA)力学性能随PBZ含量的增加而逐渐升高,其中QF/PPA-1常温下弯曲强度为346.2 MPa,层间剪切强度为21.4 MPa,较QF/PSA复合材料分别提高了120.6%和72.6%,400℃热老化2 h后的弯曲强度和层间剪切强度分别为256.5 MPa和17.1 MPa,400℃热老化2 h后的力学性能保留率超过70%。Abstract: Resin transfer molding (RTM) forming process is a liquid closed mold forming process, which has a smooth surface of the finished product, safety and environmentally friendly, low cost, and has great development potential. Silicone alkyne hybrid resin is an organic-inorganic hybrid resin with excellent high-temperature resistance, widely used in aerospace field, but its poor bonding performance with fibers and poor mechanical properties of composites have become the main factors restricting its development and application. Poly(m-diacetylbenzene-methylhydrosilane) resin (PSA) was modified by blending benzoxazine resin (PBZ) and amino diluent (PAD) to prepare modified silicone alkyne hybrid resin (PPA) suitable for RTM molding process. The RTM molding process, curing behavior, and heat resistance of PPA resin were analyzed by DSC, FTIR, rheometer, rotational viscometer, and thermogravimetry. The results show that the processing window of PPA resin is wide, which can achieve the goal of RTM molding, but the curing temperature is higher than that of PSA resin. The heat resistance of PPA resin is excellent, and the temperature of 5% mass loss (Td5) of PPA-1 resin (PSA∶PBZ∶PAD mass ratio 5∶1∶2) resin is 585.4℃ and 568.3℃, respectively. The mass retention rates at 1000℃ is 88.3% and 26.0%, respectively. The mechanical property tests show that the mechanical properties of quartz fiber reinforced PPA resin composites (QF/PPA) gradually increase with the increase of PBZ content. The flexural strength of QF/PPA-1 at room temperature is 346.2 MPa, and the interlaminar shear strength is 21.4 MPa, which is 120.6% and 72.6% higher than that of QF/PSA composites, respectively. After thermal aging at 400℃ for 2 h, the flexural strength and interlaminar shear strength are 256.5 MPa and 17.1 MPa, respectively, and the retention rate of mechanical properties after thermal aging at 400℃ for 2 h exceeds 70%.
-
表 1 不同比例的改性硅炔杂化树脂(PPA)配方
Table 1. Modified silicone alkyne hybrid resin (PPA) formula with different proportions
Sample Resin mass ratio PSA PBZ PAD PPA-1 5 1 2 PPA-2 5 2 2 PPA-3 5 3 2 Note: PAD—Amino diluent. 表 2 PPA树脂的黏度
Table 2. Viscosity of PPA resin
Sample Viscosity/(mPa·s) 25℃ 30℃ 40℃ PSA 740 350 100 PPA-1 1000 610 230 PPA-2 1700 1000 400 PPA-3 4000 1800 640 表 3 PPA树脂的凝胶时间
Table 3. Gelation time of PPA resin
Sample Gel time/min 160℃ 180℃ 200℃ PPA-1 23.5 11.0 5.1 PPA-2 20.1 9.3 4.0 PPA-3 18.2 8.1 3.0 表 4 PPA树脂的TGA数据
Table 4. TGA data of PPA resin
Sample Td5/℃ Mass retention/% Air N2 Air N2 PSA 563.1 689.8 31.26 91.36 PPA-1 568.3 613.7 26.01 89.13 PPA-2 555.4 601.8 23.04 88.78 PPA-3 538.6 595.9 21.66 88.74 Note: Td5—Temperature of 5% mass loss. 表 5 QF/PPA复合材料热老化10 h质量损失
Table 5. Mass loss of QF/PPA composites thermal aging
Sample Mass loss/wt% QF/PSA 4.28 QF/PPA-1 2.06 QF/PPA-2 2.50 QF/PPA-3 2.80 -
[1] SHEN Y, YUAN Q, HUANG F, et al. Effect of neutral nickel catalyst on cure process of silicon-containing polyarylacetylene[J]. Thermochimica Acta,2014,590:66-72. doi: 10.1016/j.tca.2014.06.002 [2] LANGE N, DIETRICH P M, LIPPITZ A, et al. New azidation methods for the functionalization of silicon nitride and application in copper-catalyzed azide-alkyne cycloaddition (CuAAC)[J]. Surface and Interface Analysis, 2016, 48(7):621-625. [3] 陈元俊, 郭康康, 王帆, 等. 含氟硅芳炔树脂的合成与性能研究[J]. 华东理工大学学报(自然科学版), 2020, 46(3):368-375.CHEN Yuanjun, GUO Kangkang, WANG Fan, et al. Synthesis and performance of fluorine-containing silicon arylacetylene resins[J]. Journal of East China University of Science and Technology,2020,46(3):368-375(in Chinese). [4] GAO G, ZHANG S, WANG L, et al. Developing highly tough, heat-resistant blend thermosets based on silicon-containing arylacetylene: A material genome approach[J]. ACS Applied Materials & Interfaces,2020,12(24):27587-27597. [5] MA M, GONG C, LI C, et al.The synthesis and properties of silicon-containing arylacetylene resins with rigid-rod 2, 5-diphenyl-[1, 3, 4]-oxadiazole moieties[J]. European Polymer Journal, 2020, 143(4): 110192. [6] YANG R, WANG Y, HAO B, et al. Synthesis of ortho-methyltetrahydrophthalimide functional benzoxazine containing phthalonitrile group: Thermally activated polymerization behaviors and properties of its polymer[J]. High Performance Polymers,2021,33(2):196-204. doi: 10.1177/0954008320954519 [7] CORRIU R, GERBIER P, GUÉRIN C, et al. Poly[(silylene) diacetylene]/finemetal oxide powder dispersions: Use as precursors to silicon-based composite ceramics[J]. Jour-nal of Materials Chemistry,2000,10(9):2173-2182. doi: 10.1039/b002788j [8] ITOH M, INOUE K, HIRAYAMA N, et al. Fiber reinforced plastics using a new heat-resistant silicon based polymer[J]. Journal of Materials Science,2002,37(17):3795-3801. doi: 10.1023/A:1016538014803 [9] ITOH M, INOUE K, IWATA K, et al. New highly heat-resistant polymers containing silicon: Poly(silyleneethynylene-phenyleneethynylene)s[J]. Macromolecules,1997,30(4):694-701. doi: 10.1021/ma961081f [10] ITOH M, IWATA K, ISHIKAWA J I, et al. Various silicon-containing polymers with Si(H)C≡C units[J]. Journal of Polymer Science, Part A: Polymer Chemistry,2001,39(15):2658-2669. doi: 10.1002/pola.1242 [11] 袁航, 孟庆杰, 张昊, 等. 新型含硅聚芳炔树脂基透波复合材料的制备与性能[J]. 复合材料学报, 2021, 38(11):3629-3639. doi: 10.13801/j.cnki.fhclxb.20210210.009YUAN Hang, MENG Qingjie, ZHANG Hao, et al. Preparation and properties of novel silicon-containing polyarylacetylene resin based wave-transparent composite[J]. Acta Materiae Compositae Sinica,2021,38(11):3629-3639(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210210.009 [12] 王志德, 白小陶, 贾宇翔, 等. 硼硅炔杂化聚合物的合成及耐热性能[J]. 高分子材料科学与工程, 2022, 38(10):17-22.WANG Zhide, BAI Xiaotao, JIA Yuxiang, et al. Synthesis and heat resistance of borosilyne hybrid polymers[J]. Polymer Materials Science and Engineering,2022,38(10):17-22(in Chinese). [13] 司书帅, 袁荞龙, 黄发荣. 含炔基酚醛树脂改性PSA及碳纤维布/PSA-EPAN复合材料性能[J]. 复合材料学报, 2018, 35(3):545-552.SI Shushuai, YUAN Qiaolong, HUANG Furong. Properties of PSA modified by alkynyl-containing phenolic resin and carbon fabric/PSA-EPAN composites[J]. Acta Materiae Compositae Sinica,2018,35(3):545-552(in Chinese). [14] TONG Y, YUAN Q, HUANG F. Preparation and characterization of silicon-containing polyarylacetylene/montmorilloite nanocomposites[J]. Journal of Macromolecular Science Part B—Physics,2019,58(4):469-488. doi: 10.1080/00222348.2019.1590982 [15] 王茂源, 束长朋, 贾宇翔, 等. 双酚A型邻苯二甲腈树脂改性硅炔杂化树脂及其复合材料性能[J]. 复合材料学报, 2021, 38(11):3652-3660. doi: 10.13801/j.cnki.fhclxb.20210114.003WANG Maoyuan, SHU Changpeng, JIA Yuxiang, et al. Bisphenol A type o-phthalonitrile resin modified silicoalkyne hybrid resin and its composite properties[J]. Acta Materiae Compositae Sinica,2021,38(11):3652-3660(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210114.003 [16] 王佳明, 贾明印, 董贤文, 等. 树脂传递模塑成型工艺研究进展[J]. 塑料工业, 2021, 49(11):9-14, 43. doi: 10.3969/j.issn.1005-5770.2021.11.003WANG Jiaming, JIA Mingyin, DONG Xianwen, et al. Research progress on the molding process of resin transfer mould[J]. China Plastics Industry,2021,49(11):9-14, 43(in Chinese). doi: 10.3969/j.issn.1005-5770.2021.11.003 [17] 金东升, 张庆茂, 张朋, 等. RTM在耐高温复材结构中的应用问题与对策[C]//第二十一届全国复合材料学术会议(NCCM-21). 北京, 2020: 359-364.JIN Dongsheng, ZHANG Qingmao, ZHANG Peng, et al. Application problems and counter measures of RTM in high temperature resistant composite structures[C]//The 21st National Academic Conference on Composite Materials (NCCM-21). Beijing, 2020: 359-364(in Chinese). [18] 朱怡臻, 王瑛, 陈鸣亮, 等. 先进树脂基复合材料RTM成型工艺研究及应用进展[J]. 塑料工业, 2020, 48(5):18-22, 128. doi: 10.3969/j.issn.1005-5770.2020.05.002ZHU Yizhen, WANG Ying, CHEN Mingliang, et al. Research progress and application of RTM for advanced resin matrix composites[J]. China Plastics Industry,2020,48(5):18-22, 128(in Chinese). doi: 10.3969/j.issn.1005-5770.2020.05.002 [19] 赵安安, 杨文凯, 于飞, 等. 大型高性能复合材料构件RTM工艺进展[J]. 南京航空航天大学学报, 2020, 52(1):39-47. doi: 10.16356/j.1005-2615.2020.01.004ZHAO An'an, YANG Wenkai, YU Fei, et al. RTM progress for large-scale high-performance composite components[J]. Journal of Nanjing University of Aeronautics and Astronautics,2020,52(1):39-47(in Chinese). doi: 10.16356/j.1005-2615.2020.01.004 [20] 祝庆君. 环氧树脂增韧改性及RTM工艺制备碳纤维复合材料性能研究[D]. 哈尔滨: 黑龙江省科学院石油化学研究院, 2018.ZHU Qingjun. Study on the toughening modification of epoxy resin and the properties of carbon fiber composites prepared by RTM process[D]. Harbin: Institute of Petrochemistry, Heilongjiang Academy of Sciences, 2018(in Chinese). [21] GAJJAR T, SHAH D, JOSHI S, et al. Investigation on dimensional accuracy for CFRP antenna reflectors using autoclave and VARTM processes[C]//Advances in Computational Methods in Manufacturing. Lecture Notes on Multidisciplinary Industrial Engineering. Singapore: Springer, 2019: 693-702. [22] AMIRKHOSRAVI M, PISHVAR M, CENGIZ ALTAN M. Fabricating high-quality VARTM laminates by magnetic consolidation: Experiments and process model[J]. Composites Part A: Applied Science and Manufacturing,2018,114:398-406. doi: 10.1016/j.compositesa.2018.09.003 [23] 轩立新, 王茂源, 束长朋, 等. RTM成型工艺用改性硅炔杂化树脂性能研究[J]. 中国胶粘剂, 2020, 29(6):1-6. doi: 10.13416/j.ca.2020.06.002XUAN Lixin, WANG Maoyuan, SHU Changpeng, et al. Study on properties of modified silicone alkyne hybrid resin for RTM molding process[J]. China Adhesives,2020,29(6):1-6(in Chinese). doi: 10.13416/j.ca.2020.06.002 [24] 中国国家标准化管理委员会. 纤维增强塑料弯曲性能试验方法: GB/T 1449−2005[S]. 北京: 中国标准出版社, 2005.Standardization Administration of the People's Republic of China. Fiber-reinforced plastic composites: Determination of flexural properties: GB/T 1449−2005[S]. Beijing: China Standards Press, 2005(in Chinese). [25] 中国国家标准化管理委员会. 纤维增强塑料层间剪切强度试验方法: GB/T 1450.1−2005[S]. 北京: 中国标准出版社, 2005.Standardization Administration of the People's Republic of China. Fiber-reinforced plastic composites: Determination of interlaminar shear strength: GB/T 1450.1−2005[S]. Beijing: China Standards Press, 2005(in Chinese).