Preparation and properties of multi-functional composite integrated with heat-shielding and radar-absorbing
-
摘要: 本文分别以传统酚醛树脂和新型有机硅树脂为树脂基体,针刺缝合石英纤维织物为增强材料,双层电阻性超材料为吸波层,采用高压树脂传递模塑成型工艺(HP-RTM)制备了两种烧蚀防热/吸波多功能一体化复合材料。系统研究了材料的微观组织、力学性能及烧蚀对其吸波性能的影响机制。结果表明:采用传统酚醛树脂和有机硅树脂制备的两种多功能一体化复合材料组织均匀、力学性能优异,材料在2~18 GHz的平均反射率低于−10 dB,尤其在S、C、X中低频段吸波性能优异,吸收率大于90%的有效带宽大于9 GHz,这主要归因于介质层的良好透波性和双层超材料的谐振吸波效应。然而,酚醛树脂基一体化复合材料在石英灯烧蚀后,表面形成了高电导率的连续碳层,成为雷达波强反射体,导致其吸波性能几乎全部丧失,相比之下,由于有机硅树脂基一体化复合材料在烧蚀后残碳量少、不连续,其吸波性能没有明显降低,仅波形向高频偏移了2 dB,该材料在高温烧蚀隐身领域具有较大的应用潜力。Abstract: In this paper, two kinds of multi-functional composites integrated with heat-shielding and radar-absorbing were prepared by high pressure resin transfer molding (HP-RTM), employing traditional phenolic and silicone resin as matrix, needle stitched quartz fiber fabric as reinforcing material, and metamaterials as radar absorbing layers. The effects of microstructure, mechanical properties, and ablation on the microwave absorbing properties of the multi-functional composites were systematically investigated. The results show that the two multi-functional composites prepared have uniform microstructure and excellent mechanical properties. The average reflectivity of the composites in 2-18 GHz are lower than −10 dB, especially in S, C, and X bands, and the effective bandwidth is wider than 9 GHz, which is ascribed to the good transmissivity of the medium layer and the resonant absorption effect of metamaterial layers. However, a continuous carbon layer with high conductivity are formed on the surface of phenolic matrix composite after ablation, which seriously degraded its wave absorbing property. In contrast, the wave absorbing property of silicone matrix composite remains the same due to discontinuity of the carbon layer with band shifting to high frequency, which shows its great application potential in high temperature ablation/stealth field.
-
Key words:
- silicone resin /
- radar absorption /
- ablation /
- metamaterials /
- reflection loss
-
图 10 防热/吸波多功能一体化复合材料烧蚀后形貌特征:(a) 1#表面;(b) 1#截面;(c) 2#表面;(d) 2#截面
Figure 10. Microstructure of multi-functional composites integrated with heat-shielding and radar-absorbing after ablation: (a) Surface of sample 1#; (b) Cross section of sample 1#; (c) Surface of sample 2#; (d) Cross section of sample 2#
图 12 防热/吸波多功能一体化复合材料烧蚀前后表面碳含量变化:((a), (a1)) 1#烧蚀前;((b), (b1)) 1#烧蚀后;((c), (c1)) 2#烧蚀前;((d), (d1)) 2#烧蚀后
Figure 12. Change of surface carbon content before and after ablation of multi-functional composites integrated with heat-shielding and radar-absorbing: ((a), (a1)) 1# before ablation; ((b), (b1)) 1# after ablation; ((c), (c1)) 2# before ablation; ((d), (d1)) 2# after ablation
表 1 高压树脂传递模塑成型(HP-RTM)注射工艺参数
Table 1. Injection process parameters of high pressure resin transfer molding (HP-RTM)
Items Injection
pressure/MPaInjection
temperature/℃Viscosity/
(mPa·s)1# 1.2 80 300 2# 1.2 80 260 表 2 防热/吸波多功能一体化复合材料的力学性能
Table 2. Mechanical properties of multi-functional composites integrated with heat-shielding and radar-absorbing
Items Density/cm3 Tensile stress/MPa Modulus/GPa Elongation/% Interlaminar shear strength/MPa 1# 1.6 95.2 8.7 1.5 32 2# 1.5 90.4 6.3 1.6 28 表 3 防热/吸波多功能一体化复合材料雷达反射率测试
Table 3. Results of reflection loss tests of multi-functional composites integrated with heat-shielding and radar-absorbing
Sample Parameter f/GHz RL/dB 1# Avg. 2.00-18.00 −10.00 Max 2.00 −2.74 Min 10.64 −20.54 2# Avg. 2.00-18.00 −10.85 Max 18.00 −3.39 Min 11.08 −39.49 表 4 烧蚀后防热/吸波多功能一体化复合材料的雷达反射率
Table 4. Reflection loss of multi-functional composites integrated with heat-shielding and radar-absorbing after ablation
Sample Parameter f/GHz RL/dB 1# Avg. 2.00-18.00 −0.52 Max 2.00 0.27 Min 16.72 −2.46 2# Avg. 2.00-18.00 −10.48 Max 18.00 −0.71 Min 12.56 −27.47 -
[1] WANG C, CHEN M, LEI H, et al. Radar stealth and mechanical properties of a broadband radar absorbing structure[J]. Composites Part B: Engineering,2017,123:19-27. doi: 10.1016/j.compositesb.2017.05.005 [2] ANANTH P B, ABHIRAM N, KRISHNA K H, et al. Synthesis of radar absorption material for stealth application[J]. Materials Today: Proceedings,2021,47:4872-4878. doi: 10.1016/j.matpr.2021.06.196 [3] GAO Z, FAN Q, TIAN X, et al. An optically transparent broadband metamaterial absorber for radar-infrared bi-stealth[J]. Optical Materials,2021,112(3):110793. [4] FU Z Y, PANG A, LUO H, et al. Research progress of ceramic matrix composites for high temperature stealth technology based on multi-scale collaborative design[J]. Journal of Materials Research and Technology, 2022, 18: 2770-2783. [5] CHENG H F, WANG J. Review on high-temperature structural radar absorbing materials[J]. Materials Review,2009,23(19):24-27. [6] DING D H, LUO F, ZHOU W C, et al. Research status and outlook of high temperature radar absorbing materials[J]. Journal of Inorganic Materials,2014,29(5):461-469. [7] RAN M A, FANG Y A, XI A, et al. A high-temperature structural and wave-absorbing SiC fiber reinforced Si3N4 matrix composites[J]. Ceramics International,2020,47(6):8191-8199. [8] WANG W, ZHANG L, DONG X, et al. Additive manufacturing of fiber reinforced ceramic matrix composites: Advances, challenges, and prospects[J]. Ceramics International,2022,48(14):19542-19556. doi: 10.1016/j.ceramint.2022.04.146 [9] YUE H, HUANG D Q, SHI Y Q, et al. Research progress of high temperature microwave-absorbing ceramic matrix composites[J]. Journal of Aeronautical Materials,2019,39(5):1-12. [10] TIAN H, LIU H T, CHENG H F. A high-temperature radar absorbing structure: Design, fabrication, and characterization[J]. Composites Science & Technology,2014,90:202-208. [11] LIU H T, CHENG H F, TIAN H. Design, preparation and microwave absorbing properties of resin matrix composites reinforced by SiC fibers with different electrical properties[J]. Materials Science and Engineering: B,2014,179:17-24. doi: 10.1016/j.mseb.2013.09.019 [12] HA E H, HANG D Q, DING H Y. Application research and prospects of new and light mass radar absorbing materials[J]. Journal of Materials Engineering,2006,21(3):55-59. [13] 董雁瑾, 杨海升, 白以龙. 玻璃纤维增强复合材料的I型层间断裂韧性[J]. 材料研究学报, 1999, 13(2):147-152.DONG Yanjin, YANG Haisheng, BAI Yilong. Mode I interlaminar fracture toughness of glass woven fibric reinforced composites[J]. Journal of Materials Research,1999,13(2):147-152(in Chinese). [14] 叶卓然, 罗靓, 潘海燕, 等. 超高分子量聚乙烯纤维及其复合材料的研究现状与分析[J]. 复合材料学报, 2022, 39(9):4286-4309.YE Zhuoran, LUO Liang, PAN Haiyan, et al. Research status and analysis of ultra-high molecular weight polyethylene fiber and its composites[J]. Acta Materiae Compositae Sinica,2022,39(9):4286-4309(in Chinese). [15] 梁圆龙, 黄贤俊, 姚理想, 等. 透明电磁屏蔽材料的研究进展[J]. 安全与电磁兼容, 2021(2):61-68, 103. doi: 10.3969/j.issn.1005-9776.2021.02.012LIANG Yuanliang, HUANG Xianjun, YAO Lixiang, et al. Recent research advances on transparent electromagnetic shielding materials[J]. Safety & EMC,2021(2):61-68, 103(in Chinese). doi: 10.3969/j.issn.1005-9776.2021.02.012 [16] ZHU X Z, GUO A Q, YAN Z Y, et al. PET/AgNW/PMMA transparent electromagnetic interference shielding films with high stability and flexibility[J]. Nanoscale,2021,13(17):8067-8076. doi: 10.1039/D1NR00977J [17] 王强, 王岩, 黄小忠, 等. 新型全介质谐振表面二元超材料吸波体[J]. 材料导报, 2019, 33(2):363-367. doi: 10.11896/cldb.201902030WANG Qiang, WANG Yan, HUANG Xiaozhong, et al. A novel binary metamaterial absorber using all-dielectric resonance surface[J]. Materials Reports,2019,33(2):363-367(in Chinese). doi: 10.11896/cldb.201902030 [18] 王彦朝, 许河秀, 王朝辉, 等. 电磁超材料吸波体的研究进展[J]. 物理学报, 2020, 69(13): 39-51.WANG Yanzhao, XU Hexiu, WANG Chaohui, et al. Research progress of electromagnetic metamaterial absorbers[J]. Acta Physica Sinica, 2020, 69(13): 39-51(in Chinese). [19] ZHANG K L, ZHANG J Y, HOU Z L, et al. Multifunctional broadband microwave absorption of flexible graphene composites[J]. Carbon,2019,141:608-617. doi: 10.1016/j.carbon.2018.10.024 [20] HUANG Y X, SONG W L, WANG C X, et al. Multi-scale design of electromagnetic composite metamaterials for broadband microwave absorption[J]. Composites Science and Technology,2018,162:206-214. doi: 10.1016/j.compscitech.2018.04.028 [21] CHEN X Q, WU Z, ZHANG Z L, et al. Ultra-broadband and wide-angle absorption based on 3D-printed pyramid[J]. Optics and Laser Technology,2020,124:105972. doi: 10.1016/j.optlastec.2019.105972 [22] 胡正浪, 吴海华, 杨增辉, 等. 石墨烯-铁镍合金-聚乳酸复合材料的制备及其吸波性能[J]. 复合材料学报, 2022, 39(7):3303-3316.HU Zhenglang, WU Haihua, YANG Zenghui, et al. Preparation of graphene-iron-nickel alloy-polylactic acid composites andtheir microwave absorption properties[J]. Acta Materiae Compositae Sinica,2022,39(7):3303-3316(in Chinese). [23] 中国国家标准化管理委员会. 纤维增强塑料拉伸性能试验方法: GB/T 1447—2005[S]. 北京: 中国标准出版社, 2005.Standardization Administration of the People's Republic of China. Fiber-reinfored plastic composites—Determination of tensile properties: GB/T 1447—2005[S]. Beijing: China Standards Press, 2005(in Chinese). [24] 中国国家标准化管理委员会. 纤维增强塑料压缩性能试验方法: GB/T 1448—2005[S]. 北京: 中国标准出版社, 2005.Standardization Administration of the People's Republic of China. Fiber-reinfored plastic composites—Determination of compressive properties: GB/T 1448—2005[S]. Beijing: China Standards Press, 2005(in Chinese). [25] OYHARCABAL M, OLINGA T, FOULC M P, et al. Influence of the morphology of polyaniline on the microwave absorption properties of epoxy polyaniline composites[J]. Composites Science & Technology,2013,74:107-112. [26] SMITH B, ZHOU J. "Snell or Fresnel": The influence of material index on hyper NA lithography[J]. Proceedings of SPIE,2007,6520:65200A. doi: 10.1117/12.713203