Preparation of organic/inorganic composite functional Janus cages with large aperture and their pH-responsive absorption and release of the oil
-
摘要: Janus笼独特的内外表面化学性质或组成的非对称性使其可以用作特殊微容器,用于分离富集、传输和受限反应等。在一定程度上,更大的孔径能够加强Janus笼和环境之间的物质传输效率。本文介绍了一种两步制备具有pH响应性的大孔径磁性有机/无机复合Janus笼的方法。首先是通过乳液界面硅烷偶联剂的溶胶凝胶和两种表面活性剂在界面微相分离制备支撑性良好、表面孔径可调的磁性无机Janus笼。其内表面修饰上的卤素基团可通过可控自由基聚合接枝上pH响应性聚合物得到聚合物/无机复合功能Janus笼。通过SEM、TEM、FTIR及TGA对复合Janus笼进行表征,其粒径在1~3 μm,孔径在40 nm~1 μm可调,聚合物的质量占复合笼的41.7wt%。制备的复合Janus笼可以通过改变环境pH值控制其对油相的富集和释放,并可同时通过磁操控实现定向传输,有望用于药物装载和体内靶向释放等领域。Abstract: The unique asymmetry of chemistry or composition of external and internal surface for Janus cage allows it to be used as a special microcontainer for separation, enrichment, transport and restricted reactions. To some extent, large aperture of cage can enhance the material transport efficiency between microcontainer and the environment. A two-step method to prepare magnetic organic/inorganic composite Janus cages with large aperture and pH responsiveness was introduced in this paper. Firstly, a magnetic inorganic Janus cage with a well-supported shell and adjustable aperture was prepared by the sol-gel of silane coupling agents and microphase separation of two surfactants at the interface. Then pH-responsive polymer poly diethylaminoethyl methacrylate (PDEAEMA) was grafted on the interior surface of inorganic Janus cage by Cu-mediated controlled radical polymerization to obtain functional Janus composite cages. SEM, TEM, FTIR and TGA were performed on composite cages. The size of cages is about 1-3 μm, with tunable pore size from 40 nm to 1 μm. The proportion of polymer in the composite cages is 41.7wt%. Controlled absorption and release of oil and oriented transport of substance can be achieved by changing pH and magnetic manipulation respectively with these composite Janus cages, which means it is promising for drug loading and targeted release in vivo.
-
图 1 内侧修饰正辛基的磁性无机Janus笼的SEM图像 (a) 和TEM图像 (b);由磁性无机Janus笼破碎得到的Janus多孔片的SEM图像 (c) 和甲基丙烯酸甲酯(MMA)包埋切片后的TEM图像 (d)
Figure 1. SEM image (a) and TEM image (b) of magnetic organic Janus cage with octyl group grafted onto interior surface; SEM image (c) of Janus porous nanosheets crushed from magnetic inorganic Janus cage and cross section TEM image (d) of slice of magnetic inorganic Janus cage after embedding in methyl methacrylate (MMA) and section
图 3 (a) 水相中Tween 80添加量为0.22wt%制备的无机/有机复合Janus笼的SEM图像;(b) 水相中Tween 80添加量为0.04wt%制备的无机笼的SEM图像
Figure 3. (a) SEM image of the polymer/inorganic composite Janus cages synthesized at 0.22wt% of Tween 80 in aqueous phase; (b) SEM image of inorganic Janus cages synthesized at 0.04wt% of Tween 80 without addition of monomer in aqueous phase
图 4 (a) 合成的末端带Br基的硅烷偶联剂的核磁共振图谱;(b) 内表面接枝Br基的磁性无机Janus笼的SEM图像及内嵌EDX图谱(方框为元素分析所选区域)
Figure 4. (a) 1H NMR spectrum of synthesized silane end with Br group; (b) SEM image and inset EDX spectrum of magnetic inorganic Janus cage with Br group grafted onto the interior surface (Box is the selected area for element analysis)
图 5 (a) 内表面接枝聚甲基丙烯酸二乙氨基乙酯(PDEAEMA)的磁性无机/有机复合Janus笼的SEM图像;(b) 未复合磁性纳米颗粒的内表面接枝PDEAEMA无机/有机复合Janus笼切片的TEM图像;(c) 复合Janus笼破碎后的多孔片的SEM图像;(d) 用HF酸刻蚀除去无机壳层后的有机笼的SEM图像
Figure 5. (a) SEM image of magnetic composite Janus cage with polydiethylaminoethyl methacrylate (PDEAEMA) grafted onto interior surface; (b) Cross-section TEM image of composite Janus cage with PDEAEMA grafted onto interior surface (without Fe3O4 nanoparticles); (c) SEM image of Janus porous nanosheets crushed from composite Janus cage; (d) SEM image of organic cage obtained by etching inorganic shell with HF
图 6 (a) 磁性无机Janus笼(曲线1)和磁性有机/无机复合Janus笼(曲线2)的FTIR图谱;(b) 磁性无机Janus笼(曲线1)和磁性有机/无机复合Janus笼(曲线2)的在空气中的热失重曲线
Figure 6. (a) FTIR spectra of magnetic inorganic Janus cage ( curve 1) and magnetic composite Janus cage (curve 2); (b) Thermogravimetric analysis (TGA) curves in air of magnetic inorganic Janus cage (curve 1) and magnetic composite Janus cage (curve 2)
图 7 内表面接枝PDEAEMA的磁性复合Janus笼对油相的pH响应性及磁操控分离实验:(a) 分散有复合Janus笼的水(下层)和甲苯(上层)分相照片,甲苯中加入1, 1-双十八烷基-3, 3, 3, 3-四甲基吲哚羰花青高氯酸盐 (dil-C18)染料以便于观察,水相pH值为5;(b) 调节pH至9,振荡后磁分离吸收甲苯的复合Janus笼的照片;(c) 调节pH至5,振荡静置后磁铁吸附复合Janus笼的照片;(d) 分散有复合Janus笼的水(下层)和经dil-C18染色的甲苯(上层)分相照片,水相pH值为5;(e) 保持pH为5不变,振荡静置后磁铁吸附复合Janus笼的照片
Figure 7. pH-responsive absorption and release of the oil and magnetic manipulation of magnetic composite Janus cage with PDEAEMA grafted onto interior surface: (a) Immiscible mixture of toluene (top)/aqueous dispersion of composite Janus cage (bottom), oil soluble dye 1, 1'-dioctadecyl-3, 3, 3', 3'-tetramethylindodicarbocyanine perchlorate (dil-C18) is added in toluene and the pH value of aqueous dispersion is 5; (b) pH value is modulated to 9 and oil contained magnetic Janus cages are collected by magnets after vibration; (c) pH value is modulated back to 5 and magnetic Janus cages are collected by magnets after vibration with the release of dyed oil; (d) Immiscible mixture of toluene (top)/aqueous dispersion of composite Janus cage (bottom), oil soluble dye dil-C18 is added in toluene and the pH value of aqueous dispersion is 5; (e) pH value remains to be 5 and magnetic Janus cages are collected by magnets after vibration while dyed oil remains unchanged
图 8 pH=9时复合Janus笼吸附荧光染色甲苯的荧光显微镜图像(a)和用磁铁分离吸附甲苯的Janus笼后,上层水样的荧光显微镜图像(b); pH=5时Janus笼释放出甲苯后的荧光显微镜图像(c)和磁铁分离Janus笼后上层水样的荧光显微镜图像(d)
Figure 8. Fluorescence microscopy images of the Janus composite cage after absorption of toluene with pH of the circumstance of 9 (a) and the supernatant water after magnetic collection of the Janus cage (b); Fluorescence microscopy images of the Janus composite cage after release of toluene with pH of the circumstance of 5 (c) and the supernatant water after magnetic collection of the Janus cage (d)
-
[1] DE GENNES P G. Soft matter[J]. Angewandte Chemie International Edition in English,1992,31(7):842-845. doi: 10.1002/anie.199208421 [2] BRADLEY L C, STEBE K J, LEE D. Clickable Janus particles[J]. Journal of the American Chemical Society,2016,138(36):11437-11440. doi: 10.1021/jacs.6b05633 [3] 李书华, 张松楠, 张治斌, 等. Janus亲/疏复合材料的制备及研究进展[J]. 高分子材料科学与工程, 2022, 38(2):174-182.LI Shuhua, ZHANG Songnan, ZHANG Zhibin, et al. Preparation and research progress of Janus pro/phobic composite materials[J]. Polymer Materials Science and Engineering,2022,38(2):174-182(in Chinese). [4] 周婉蓉, 孙巍, 杨平辉. Janus粒子的制备及功能化应用[J]. 化学进展, 2018, 30(11):1601-1614. doi: 10.7536/PC180316ZHOU Wanrong, SUN Wei, YANG Pinghui. Preparation and functional application of Janus particles[J]. Progress in Chemistry,2018,30(11):1601-1614(in Chinese). doi: 10.7536/PC180316 [5] BINKS B P, FLETCHER P D I. Particles adsorbed at the oil-water interface: A theoretical comparison between spheres of uniform wettability and "Janus" particles[J]. Langmuir,2001,17(16):4708-4710. doi: 10.1021/la0103315 [6] JURADO-SANCHEZ B, PACHECO M, MARIA-HORMIGOS R, et al. Perspectives on Janus micromotors: Materials and applications[J]. Applied Materials Today,2017,9:407-418. doi: 10.1016/j.apmt.2017.09.005 [7] AGRAWAL G, AGRAWAL R, PICH A. Dual responsive poly (N-vinylcaprolactam) based degradable microgels for drug delivery[J]. Particle & Particle Systems Characterization,2017,34(11):1700132. [8] GREYDANUS B, SCHWARTZ D K, MEDLIN J W. Controlling catalyst-phase selectivity in complex mixtures with amphiphilic Janus particles[J]. ACS Applied Materials & Interfaces,2019,12(2):2338-2345. [9] 张波, 胡希丽, 曲丽君. 微流控纺丝技术及多元结构微流控纤维柔性可穿戴应用[J]. 复合材料学报, 2023, 40(5):2536-2549. doi: 10.13801/j.cnki.fhclxb.20221019.002ZHANG Bo, HU Xili, QU Lijun. Microfluidic spinning technology and flexible wearable application of multi-structure microfluidic fiber[J]. Acta Materiae Compositae Sinica,2023,40(5):2536-2549(in Chinese). doi: 10.13801/j.cnki.fhclxb.20221019.002 [10] TANG C, ZHANG C, LIU J, et al. Large scale synthesis of Janus submicrometer sized colloids by seeded emulsion polymerization[J]. Macromolecules,2010,43(11):5114-5120. doi: 10.1021/ma100437t [11] CHAUDHARY K, CHEN Q, JUAREZ J J, et al. Janus colloidal matchsticks[J]. Journal of the American Chemical Society,2012,134(31):12901-12903. doi: 10.1021/ja305067g [12] WANG Y, ZHANG C, TANG C, et al. Emulsion interfacial synthesis of asymmetric Janus particles[J]. Macromolecules,2011,44(10):3787-3794. doi: 10.1021/ma102945t [13] ZHAO H, LIANG F, QU X, et al. Conelike Janus composite particles[J]. Macromolecules,2015,48(3):700-706. doi: 10.1021/ma502421z [14] LEE V E, SOSA C, LIU R, et al. Scalable platform for structured and hybrid soft nanocolloids by continuous precipitation in a confined environment[J]. Langmuir,2017,33(14):3444-3449. doi: 10.1021/acs.langmuir.7b00249 [15] MEIER W. Polymer nanocapsules[J]. Chemical Society Reviews,2000,29(5):295-303. doi: 10.1039/a809106d [16] MCDONALD C J, DEVON M J. Hollow latex particles: Synthesis and applications[J]. Advances in Colloid and Interface Science,2002,99(3):181-213. doi: 10.1016/S0001-8686(02)00034-9 [17] ZENG H C. Synthetic architecture of interior space for inorganic nanostructures[J]. Journal of Materials Chemistry,2006,16(7):649-662. doi: 10.1039/B511296F [18] CHRISTIAN D A, TIAN A, ELLENBROEK W G, et al. Spotted vesicles, striped micelles and Janus assemblies induced by ligand binding[J]. Nature Materials,2009,8(10):843-849. doi: 10.1038/nmat2512 [19] HUANG B, BAI F, YANG X L, et al. Synthesis of monodisperse hollow polymer microspheres with functional groups by distillation precipitation polymerization[J]. Chinese Journal of Polymer Science,2010,28(2):277-285. doi: 10.1007/s10118-010-9089-7 [20] SI Y, JI X, LIANG F, et al. Responsive Janus cage reactor[J]. Chemistry—An Asian Journal,2019,14(11):1917-1920. doi: 10.1002/asia.201900173 [21] WANG Q G, LIANG F X, WANG Q, et al. Responsive composite Janus cages[J]. Chinese Journal of Polymer Science,2015,33(10):1462-1469. doi: 10.1007/s10118-015-1691-2 [22] CHEN Y, YANG H, ZHANG C, et al. Janus cages of bilayered polymer-inorganic composites[J]. Macromolecules,2013,46(10):4126-4130. doi: 10.1021/ma4006236 [23] ZHAO L, ZHU L, CHEN Y, et al. Janus micro-reactors[J]. Chemical Communications,2013,49(55):6161-6163. doi: 10.1039/c3cc42505c [24] LIANG F, LIU J, ZHANG C, et al. Janus hollow spheres by emulsion interfacial self-assembled sol-gel process[J]. Chemical Communications,2011,47(4):1231-1233. doi: 10.1039/C0CC03599H [25] LI G, PENG W, LI X, et al. Pressure and solvent induced low-temperature synthesis of monodisperse superparamagnetic nanocrystals: The case of Fe3O4 in alkanols[J]. Applied Surface Science,2008,254(16):4970-4979. doi: 10.1016/j.apsusc.2008.01.167 [26] CHE Y, ZHANG T, DU Y, et al. "On water" surface-initiated polymerization of hydrophobic monomers[J]. Angewandte Chemie International Edition,2018,57(50):16380-16384. doi: 10.1002/anie.201809100