留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CFRP约束地质聚合物混凝土轴向应力-应变关系

周华飞 洪恒达 谢子令 董鑫熠

周华飞, 洪恒达, 谢子令, 等. CFRP约束地质聚合物混凝土轴向应力-应变关系[J]. 复合材料学报, 2024, 41(1): 323-334. doi: 10.13801/j.cnki.fhclxb.20230522.001
引用本文: 周华飞, 洪恒达, 谢子令, 等. CFRP约束地质聚合物混凝土轴向应力-应变关系[J]. 复合材料学报, 2024, 41(1): 323-334. doi: 10.13801/j.cnki.fhclxb.20230522.001
ZHOU Huafei, HONG Hengda, XIE Ziling, et al. Axial stress-strain behavior of CFRP-confined geopolymer concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 323-334. doi: 10.13801/j.cnki.fhclxb.20230522.001
Citation: ZHOU Huafei, HONG Hengda, XIE Ziling, et al. Axial stress-strain behavior of CFRP-confined geopolymer concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 323-334. doi: 10.13801/j.cnki.fhclxb.20230522.001

CFRP约束地质聚合物混凝土轴向应力-应变关系

doi: 10.13801/j.cnki.fhclxb.20230522.001
基金项目: 国家自然科学基金(52278320);浙江省自然科学基金(LGF21E080010)
详细信息
    通讯作者:

    谢子令,博士,副教授,硕士生导师,研究方向为新型建筑材料的组织与性能 E-mail: xiezl@wzu.edu.cn

  • 中图分类号: TU528.41;TB332

Axial stress-strain behavior of CFRP-confined geopolymer concrete

Funds: National Natural Science Foundation of China (52278320); Zhejiang Provincial Natural Science Foundation of China (LGF21E080010)
  • 摘要: 为了探究地质聚合物混凝土(GPC)在多轴应力状态下的应力-应变关系,开展了碳纤维增强树脂复合材料(CFRP)约束GPC圆柱的轴压试验,揭示了GPC在不同约束条件下的应力-应变曲线特征,据此建立了完整的轴向应力-应变模型、抗压强度模型和极限轴向压应变模型,特别是针对CFRP约束普通强度GPC,提出了新的模型参数表达式,并利用文献试验结果予以验证。结果表明:抗压强度模型具有良好的预测能力,预测值的平均绝对误差为3.55%;极限轴向压应变模型也能较精准地对其他研究的试验结果做出预测,预测值的平均绝对误差为17.03%。新的轴向应力-应变模型参数表达式不仅适用于CFRP约束高强GPC也适用于CFRP约束普通强度GPC。

     

  • 图  1  轴压试验的装置与设置

    Figure  1.  Experiment setup and instrumentation for axial compression test

    图  2  无约束试件和碳纤维增强树脂复合材料(CFRP)约束GPC试件的轴向应力-应变曲线

    Figure  2.  Axial stress-strain curves of unconfined and carbon fiber reinforced polymer (CFRP)-confined GPC specimens

    Labels of the specimens are as follows: The letter such as "GA" denotes the mixture of GPC; The first number such as "0" denotes the number of CFRP layers; The second number such as "2" differentiates the two nominally identical specimens. For example, "GC0-2" stands for the second specimen of the two nominally identical specimens of mix GC unconfined GPC; "GA1-1" stands for the first specimen of the two nominally identical specimens of 1 layer CFRP-confined GPC specimens

    图  3  CFRP约束GPC的轴向应力-环向应变曲线

    Figure  3.  Axial stress-hoop strain curves of CFRP-confined GPC specimens

    图  4  极限状态下的CFRP约束GPC试件

    Figure  4.  CFRP-confined GPC specimens in ultimate condition

    图  5  CFRP约束GPC的抗压强度对比

    Figure  5.  Comparison of compressive strength of CFRP-confined GPC

    图  6  CFRP约束GPC的极限轴向应变对比

    Figure  6.  Comparison of ultimate axial strains of CFRP-confined GPC

    图  7  CFRP约束GPC的实测、最优拟合及预测应力-应变曲线对比

    Figure  7.  Comparison of measured, best fit and predicted stress-strain curves of CFRP-confined GPC

    图  8  CFRP约束GPC轴向应力-应变模型参数$ \lambda $的预测曲线

    Figure  8.  Reproduced curves of the axial stress-strain model parameter $ \lambda $ for CFRP-confined GPC

    图  9  CFRP约束GPC的实测与预测应力-应变曲线对比

    Figure  9.  Comparison of measured and predicted stress-strain curves of CFRP-confined GPC

    表  1  地质聚合物混凝土(GPC)配合比

    Table  1.   Mix proportions of geopolymer concrete (GPC)

    MixtureCoarse aggregate/(kg·m−3)Fine aggregate/(kg·m−3)Fly ash/(kg·m−3)Silica fume/(kg·m−3)Alkaline activators/(kg·m−3)
    GA1150415480120250
    GB1150415420180230
    GC1150415330270220
    Note: GA, GB, GC—Three kinds of strength of GPC specimen.
    下载: 导出CSV

    表  2  粉煤灰和硅灰化学成分的X 射线荧光光谱(XRF)分析

    Table  2.   Chemical compositions of fly ash and silica fume obtained from X-ray fluorescence (XRF) analysis

    SiO2/
    wt%
    Al2O3/
    wt%
    CaO/
    wt%
    Fe2O3/
    wt%
    TiO2/
    wt%
    K2O/
    wt%
    SO3/
    wt%
    MgO/
    wt%
    P2O5/
    wt%
    Na2O/
    wt%
    SrO/
    wt%
    ZrO2/
    wt%
    ZnO/
    wt%
    LOI/
    wt%
    Fly ash 49.10 36.70 4.96 3.67 1.39 0.94 0.49 0.37 0.26 0.20 0.18 0.12 0.02 2.08
    Silica fume 84.69 0.39 1.37 3.77 1.25 0.42 3.73 0.16 1.05 0.01 1.18 1.30
    Note:LOI—Loss of weight after ignition
    下载: 导出CSV

    表  3  无约束GPC的弹性模量

    Table  3.   Elasticity modulus of unconfined GPC

    Specimen $ {E_{\text{c}}} $/GPa
    Measured Proposed
    GA0-1 14.88 15.79
    GA0-2 16.54 16.05
    GB0-1 18.82 19.01
    GB0-2 17.93 18.62
    GC0-1 21.49 21.59
    GC0-2 22.61 20.88
    Note: $ {E_{\text{c}}} $—Elasticity modulus of unconfined GPC.
    下载: 导出CSV

    表  4  无约束GPC试件的单轴抗压强度和对应的轴向应变

    Table  4.   Uniaxial compressive strengths and corresponding axial strains of unconfined GPC specimens

    Specimen$ f_{{\text{co}}}' $/MPa$ {\varepsilon _{{\text{co}}}} $/%Average
    $ f_{{\text{co}}}' $/MPa$ {\varepsilon _{{\text{co}}}} $/%
    GA0-124.40.4724.30.46
    GA0-224.20.45
    GB0-134.10.3134.20.32
    GB0-234.30.32
    GC0-143.30.2743.30.27
    GC0-243.20.26
    Note: $ f_{{\text{co}}}' $, $ {\varepsilon _{{\text{co}}}} $—Uniaxial compressive strengths and correspond-ing strains of unconfined GPC specimens.
    下载: 导出CSV

    表  5  CFRP约束GPC试件的抗压强度和极限轴向应变

    Table  5.   Compressive strengths and ultimate axial strains of CFRP-confined GPC specimens

    Specimen$ f_{{\text{cc}}}' $/MPa$ f_{{\text{cc}}}'/f_{{\text{co}}}' $$ {\varepsilon _{{\text{cu}}}} $/%$ {\varepsilon _{{\text{cu}}}}/{\varepsilon _{{\text{co}}}} $
    GA1-140.01.651.583.36
    GA1-239.81.641.453.09
    GA2-149.52.041.833.89
    GA2-248.62.002.074.50
    GB1-147.71.390.832.59
    GB1-249.31.440.792.47
    GB2-164.11.871.344.19
    GB2-265.71.921.273.97
    GC1-152.91.220.592.19
    GC1-252.21.210.582.15
    GC2-166.11.530.863.19
    GC2-269.11.600.993.67
    Note: $ f_{{\text{cc}}}' $, $ {\varepsilon _{{\text{cu}}}} $—Compressive strengths and ultimate axial strains of CFRP-confined GPC specimens.
    下载: 导出CSV

    表  6  CFRP约束GPC极限状态模型的误差

    Table  6.   Reproduction and prediction errors in the ultimate condition model of CFRP-confined GPC

    Ultimate condition$ f_{{\text{cc}}}' $$ {\varepsilon _{{\text{cu}}}} $
    $ \alpha = 3.334 $$ \alpha = 2.651 + 0.026 f_{{\text{co}}}^\prime $
    A/%S/%MA/%S/%MA/%S/%M
    Reproduction 6.95 8.94 0.99 6.11 8.10 1.01 7.75 9.95 1.02
    Prediction 4.35 4.69 0.97 3.55 4.28 1.02 17.03 4.09 1.17
    Notes: α—Strength enhancement coefficient; A—Average absolute error; S—Standard deviation; M—Mean value.
    下载: 导出CSV

    表  7  CFRP约束GPC的轴向应力-应变模型参数对比

    Table  7.   Comparison of parameters in axial stress-strain model of CFRP-confined GPC

    SpecimenBest fitAlrshoudi et al[19]Proposed
    $ {f_{{\text{ct}}}} $/MPa$ {\varepsilon _{{\text{ct}}}} $/%$ \lambda $$ {f_{{\text{ct}}}} $/MPa$ {\varepsilon _{{\text{ct}}}} $/%$ \lambda $$ {f_{{\text{ct}}}} $/MPa$ {\varepsilon _{{\text{ct}}}} $/%$ \lambda $
    GA1-126.80.490.4728.10.720.4029.30.530.49
    GA2-131.00.530.5231.80.970.8033.90.550.54
    GB1-241.10.450.6138.00.440.2939.40.370.53
    GB2-245.00.470.6341.70.560.5744.10.400.58
    GC1-146.60.310.4947.10.350.2348.60.320.55
    GC2-150.70.400.6750.80.430.4553.30.350.61
    Notes: $ {f_{{\text{ct}}}} $ and $ {\varepsilon _{{\text{ct}}}} $—Axial strength and strain of transition point; $ \lambda $—Shape parameter of curve.
    下载: 导出CSV
  • [1] DING Y, DAI J G, SHI C J. Mechanical properties of alkali-activated concrete: A state-of-the-art review[J]. Construction and Building Materials,2016,127:68-79. doi: 10.1016/j.conbuildmat.2016.09.121
    [2] HASSAN A, ARIF M, SHARIQ M. Use of geopolymer concrete for a cleaner and sustainable environment—A review of mechanical properties and microstructure[J]. Journal of Cleaner Production,2019,223:704-728. doi: 10.1016/j.jclepro.2019.03.051
    [3] 张大旺, 王栋民. 地质聚合物混凝土研究现状[J]. 材料导报, 2018, 32(9):1519-1527, 1540. doi: 10.11896/j.issn.1005-023X.2018.09.017

    ZHANG Dawang, WANG Dongmin. Research status of geopolymer concrete[J]. Materials Reports,2018,32(9):1519-1527, 1540(in Chinese). doi: 10.11896/j.issn.1005-023X.2018.09.017
    [4] MCLELLAN B C, WILLIAMS R P, LAY J, et al. Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement[J]. Journal of Cleaner Production,2011,19(9-10):1080-1090. doi: 10.1016/j.jclepro.2011.02.010
    [5] DINDI A, QUANG D V, VEGA L F, et al. Applications of fly ash for CO2 capture, utilization, and storage[J]. Journal of CO2 Utilization,2019,29:82-102. doi: 10.1016/j.jcou.2018.11.011
    [6] SETOODEH JAHROMY S, JORDAN C, AZAM M, et al. Fly ash from municipal solid waste incineration as a potential thermochemical energy storage material[J]. Energy & Fuels,2019,33(7):5810-5819. doi: 10.1021/acs.energyfuels.8b04106
    [7] MUSHTAQ F, ZAHID M, BHATTI I A, et al. Possible applications of coal fly ash in wastewater treatment[J]. Journal of Environmental Management,2019,240:27-46. doi: 10.1016/j.jenvman.2019.03.054
    [8] JUENGER M C G, SIDDIQUE R. Recent advances in understanding the role of supplementary cementitious materials in concrete[J]. Cement and Concrete Research,2015,78:71-80. doi: 10.1016/j.cemconres.2015.03.018
    [9] THOMAS B S, YANG J, BAHURUDEEN A, et al. Geopolymer concrete incorporating recycled aggregates: A comprehensive review[J]. Cleaner Materials,2022,3:100056. doi: 10.1016/j.clema.2022.100056
    [10] HUANG B, WANG X, KUA H, et al. Construction and demolition waste management in China through the 3R principle[J]. Resources, Conservation and Recycling,2018,129:36-44. doi: 10.1016/j.resconrec.2017.09.029
    [11] 滕锦光. 新材料组合结构[J]. 土木工程学报, 2018, 51(12):1-11. doi: 10.15951/j.tmgcxb.2018.12.001

    TENG Jinguang. New-material hybrid structures[J]. China Civil Engineering Journal,2018,51(12):1-11(in Chinese). doi: 10.15951/j.tmgcxb.2018.12.001
    [12] MA C K, APANDI N M, YUNG S C S, et al. Repair and rehabilitation of concrete structures using confinement: A review[J]. Construction and Building Materials,2017,133:502-515. doi: 10.1016/j.conbuildmat.2016.12.100
    [13] AL-SAADI A U, ARAVINTHAN T, LOKUGE W. Structural applications of fibre reinforced polymer (FRP) composite tubes: A review of columns members[J]. Composite Structures,2018,204:513-524. doi: 10.1016/j.compstruct.2018.07.109
    [14] PPATIL S, JOSHI D, MANGLA D, et al. Recent development in geopolymer concrete: A review [J/OL]. Materials Today: Proceedings, 2023-04-17. https://doi.org/10.1016/j.matpr. 2023.04.046.
    [15] 许凌云, 张祖华, 史才军, 等. 地质聚合物混凝土力学性能和结构性能的研究进展[J/OL]. 材料导报, 2022(7): 1-29[2023-12-07].

    XU Lingyun, ZHANG Zuhua, SHI Caijun, et al. Research progress on mechanical properties and structural performances of geopolymer concrete[J/OL]. Materials Reports, 2022(7): 1-29[2023-12-07](in Chinese).
    [16] ANVARI M, TOUFIGH V. Experimental and probabilistic investigation on the durability of geopolymer concrete confined with fiber reinforced polymer[J]. Construction and Building Materials,2022,334:127419. doi: 0.1016/j.conbuildmat.2022.127419
    [17] OZBAKKALOGLU T, XIE T Y. Geopolymer concrete-filled FRP tubes: Behavior of circular and square columns under axial compression[J]. Composites Part B: Engineering,2016,96:215-230. doi: 10.1016/j.compositesb.2016.04.013
    [18] TANG Z, LI W, TAM V W Y, et al. Mechanical behaviors of CFRP-confined sustainable geopolymeric recycled aggregate concrete under both static and cyclic compressions[J]. Composite Structures,2020,252:112750. doi: 10.1016/j.compstruct.2020.112750
    [19] ALRSHOUDI F, ABBAS H, ABADEL A, et al. Compression behavior and modeling of FRP-confined high strength geopolymer concrete[J]. Construction and Building Materials,2021,283:122759. doi: 10.1016/j.conbuildmat.2021.122759
    [20] HAIDER G M, SANJAYAN J G, RANJITH P G. Complete triaxial stress-strain curves for geopolymer[J]. Construction and Building Materials,2014,69:196-202. doi: 10.1016/j.conbuildmat.2014.07.058
    [21] WANG H, WU Y, WEI M, et al. Hysteretic behavior of geopolymer concrete with active confinement subjected to monotonic and cyclic axial compression: An experimental study[J]. Materials,2020,13(18):3997. doi: 10.3390/ma13183997
    [22] KHAN M Z N, HAO Y, HAO H, et al. Mechanical properties of ambient cured high-strength plain and hybrid fiber reinforced geopolymer composites from triaxial compressive tests[J]. Construction and Building Materials,2018,185:338-353. doi: 10.1016/j.conbuildmat.2018.07.092
    [23] The American Society of Civil Engineers. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete: ASTM C618—22[S]. West Conshohocken: ASTM International, 2022.
    [24] 中国国家标准化管理委员会. 结构加固修复用碳纤维片材: JG/T 167—2016[S]. 北京: 中国标准出版社, 2016.

    Standardization Administration of the People's Republic of China. Carbon fiber laminate for strengthening and restoring structures: JG/T 167—2016[S]. Beijing: China Standards Press, 2016(in Chinese).
    [25] 中国国家标准化管理委员会. 混凝土结构试验方法标准: GB/T 50152—2012[S]. 北京: 中国标准出版社, 2012.

    Standardization Administration of the People's Republic of China. Standard for test method of concrete structures: GB/T 50152—2012[S]. Beijing: China Standards Press, 2012(in Chinese).
    [26] 中国国家标准化管理委员会. 混凝土结构设计规范: GB/T 50010—2010[S]. 北京: 中国标准出版社, 2010.

    Standardization Administration of the People's Republic of China. Code for design of concrete structures: GB/T 50010—2010[S]. Beijing: China Standards Press, 2010(in Chinese).
    [27] 中国国家标准化管理委员会. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国标准出版社, 2019.

    Standardization Administration of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Standards Press, 2019(in Chinese).
    [28] THOMAS R J, PEETHAMPARAN S. Alkali-activated concrete: Engineering properties and stress-strain behavior[J]. Construction and Building Materials,2015,93:49-56. doi: 10.1016/j.conbuildmat.2015.04.039
    [29] NATH P, SARKER P K. Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete[J]. Construction and Building Materials,2017,130:22-31. doi: 10.1016/j.conbuildmat.2016.11.034
    [30] OZBAKKALOGLU T, LIM J C, VINCENT T. FRP-confined concrete in circular sections: Review and assessment of stress-strain models[J]. Engineering Structures,2013,49:1068-1088. doi: 10.1016/j.engstruct.2012.06.010
    [31] RICHART F E, BRANDTZAG A, BROWN R L. A study of the failure of concrete under combined compressive stresses[M]. Illinois: University of Illinois at Urbana Champaign, 1928: 100-102.
    [32] POUR A F, OZBAKKALOGLU T, VINCENT T. Simplified design-oriented axial stress-strain model for FRP-confined normal- and high-strength concrete[J]. Engineering Structures,2018,175:501-516. doi: 10.1016/j.engstruct.2018.07.099
    [33] DE OLIVEIRA D S, RAIZ V, CARRAZEDO R. Experimental study on normal-strength, high-strength and ultrahigh-strength concrete confined by carbon and glass FRP laminates[J]. Journal of Composites for Construction,2019,23(1):04018072.
    [34] LIM J C, OZBAKALOGLU T. Stress-strain model for normal- and light-weight concretes under uniaxial and triaxial compression[J]. Construction and Building Materials,2014,71:492-509. doi: 10.1016/j.conbuildmat.2014.08.050
    [35] TENG J G, LAM L. Behavior and modeling of fiber reinforced polymer-confined concrete[J]. Journal of Structural Engineering,2004,130(11):1713-1723.
    [36] YANG J Q, FENG P. Analysis-oriented model for FRP confined high-strength concrete: 3D interpretation of path dependency[J]. Composite Structures,2021,278:114695.
    [37] TOUTANJI H. Stress-strain characteristics of concrete columns externally confined with advanced fiber composite sheets[J]. Materials Journal,1999,96(3):397-404.
    [38] SAAFI M, TOUTANJI H, LI Z. Behavior of concrete columns confined with fiber reinforced polymer tubes[J]. Materials Journal,1999,96(4):500-509.
  • 加载中
图(9) / 表(7)
计量
  • 文章访问数:  578
  • HTML全文浏览量:  293
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-29
  • 修回日期:  2023-05-04
  • 录用日期:  2023-05-15
  • 网络出版日期:  2023-05-23
  • 刊出日期:  2024-01-01

目录

    /

    返回文章
    返回