留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

模拟海水-海砂混凝土环境下连续玻璃纤维增强聚丙烯复合材料杆层间剪切性能的演化

周平 白艳博 李承高 董少策 咸贵军

周平, 白艳博, 李承高, 等. 模拟海水-海砂混凝土环境下连续玻璃纤维增强聚丙烯复合材料杆层间剪切性能的演化[J]. 复合材料学报, 2024, 41(1): 323-332. doi: 10.13801/j.cnki.fhclxb.20230516.003
引用本文: 周平, 白艳博, 李承高, 等. 模拟海水-海砂混凝土环境下连续玻璃纤维增强聚丙烯复合材料杆层间剪切性能的演化[J]. 复合材料学报, 2024, 41(1): 323-332. doi: 10.13801/j.cnki.fhclxb.20230516.003
ZHOU Ping, BAI Yanbo, LI Chenggao, et al. Interlaminar shear behavior of glass-fibre reinforced polypropylene rod under seawater and sea sand concrete simulation environment[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 323-332. doi: 10.13801/j.cnki.fhclxb.20230516.003
Citation: ZHOU Ping, BAI Yanbo, LI Chenggao, et al. Interlaminar shear behavior of glass-fibre reinforced polypropylene rod under seawater and sea sand concrete simulation environment[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 323-332. doi: 10.13801/j.cnki.fhclxb.20230516.003

模拟海水-海砂混凝土环境下连续玻璃纤维增强聚丙烯复合材料杆层间剪切性能的演化

doi: 10.13801/j.cnki.fhclxb.20230516.003
基金项目: 国家重点研发计划(2022YFB3706501);中央高校基本科研业务费专项资金(HIT. OCEF. 2022032);国家自然科学基金(52008137)
详细信息
    通讯作者:

    咸贵军,博士,教授,博士生导师,研究方向为土木工程结构纤维增强树脂复合材料与结构 E-mail: gjxian@hit.edu.cn

  • 中图分类号: TB332;TU398+.9

Interlaminar shear behavior of glass-fibre reinforced polypropylene rod under seawater and sea sand concrete simulation environment

Funds: National Key Research and Development Program of China (2022YFB3706501); Fundamental Research Funds for the Central Universities (HIT. OCEF. 2022032); National Natural Science Foundation of China (52008137)
  • 摘要: 连续玻璃纤维增强聚丙烯(GFRPP)复合材料杆集成了热塑性树脂可多次成型、环境友好、可回收利用和玻璃纤维高应变、低成本等优点,在混凝土结构领域,GFRPP复合材料有望替代钢筋和热固性纤维增强聚合物(FRP)筋成为新型热塑性复合材料。本文采用加速实验研究了模拟海水-海砂混凝土环境下GFRPP杆的水吸收及层间剪切性能长期演化规律与退化机制。研究结果表明:GFRPP杆吸水行为符合Fick定律,21℃、40℃和60℃浸泡温度下GFRPP杆的饱和吸水率分别为0.63%、0.78%和0.81%;经120天21℃、40℃和60℃模拟海水-海砂混凝土孔溶液浸泡后,GFRPP杆层间剪切强度保留率分别为80.5%、72.8%和66.5%。最后,结合SEM和FTIR表征技术,揭示模拟海水-海砂混凝土孔溶液浸泡下GFRPP杆性能退化机制。

     

  • 图  1  拉挤成型的玻璃纤维增强聚丙烯(GFRPP)杆(直径6 mm)

    Figure  1.  Pultruded glass fibre reinforced polypropylene (GFRPP) rods (Diameter 6 mm)

    图  2  GFRPP杆短梁剪切测试装置

    Figure  2.  GFRPP rod short beam shear test device

    图  3  不同浸泡温度下GFRPP杆动态热机械分析(DMA)曲线

    Figure  3.  Dynamic thermomechanical analysis (DMA) curves of the GFRPP rods under different immersion temperatures

    图  4  不同浸泡温度下GFRPP杆的吸水曲线

    Figure  4.  Water absorption curves of GFRPP rod at different immersion temperatures

    R2—Goodness of fit

    图  5  GFRPP杆的水吸收扩散系数(Dr)与温度(T)关系曲线

    Figure  5.  Curve of water absorption diffusion coefficient (Dr) vs temperature (T) of GFRPP rod

    图  6  GFRPP杆层间剪切荷载-位移曲线

    Figure  6.  Interlaminar shear load-deformation curves of the GFRPP rods

    图  7  GFRPP杆老化后层间剪切强度(ILSS)测试典型荷载-位移曲线

    Figure  7.  Typical load-displacement curves for interlaminar shear strength (ILSS) test after GFRPP rod aging

    图  8  不同浸泡温度下GFRPP杆层间剪切强度退化比较

    Figure  8.  Comparison of ILSS degradation of GFRPP rods at different immersion temperatures

    图  9  老化后GFRPP杆图片

    Figure  9.  Photos of GFRPP rods after aging

    图  10  老化前GFRPP杆SEM图像

    Figure  10.  SEM images of GFRPP rod before aging

    GF—Glass fiber; PP—Polypropylene

    图  11  120天、60℃模拟溶液GFRPP杆老化SEM 图像

    Figure  11.  SEM images of GFRPP rod aging in 120 days, 60℃ simulated solution

    图  12  不同浸泡时间下GFRPP杆的FTIR图谱

    Figure  12.  FTIR spectra of GFRPP rods at different immersion time

    表  1  GFRPP杆的部分力学性能测试数据[19]

    Table  1.   Part mechanical properties data of the GFRPP rods[19]

    Mechanical
    property
    Tensile
    strength/
    MPa
    Tensile
    modulus/
    GPa
    Flexural
    strength/
    MPa
    Flexural
    modulus/
    GPa
    Mean 632.0 26.2 750.0 20.0
    Standard
    deviation
    31.4 2.2 118.0 2.7
    下载: 导出CSV

    表  2  GFRPP杆的水吸收拟合参数

    Table  2.   Water absorption fitting parameters of GFRPP rods

    Temperature/℃Dr/(10−13 m·s-1)M/%R2
    21 3.020.630.989
    40 6.730.780.991
    6016.030.810.978
    Notes: Dr—Water absorption diffusion coefficient; M—Saturation water absorption rate.
    下载: 导出CSV
  • [1] 王自柯. FRP筋在模拟海水-海砂混凝土孔溶液浸泡下的耐久性研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    WANG Zike. Study on the durability performances of fiber reinforced polymer (FRP) bars exposed to simulated seawater and sea sand concrete pore solution[D]. Harbin: Harbin Institute of Technology, 2018(in Chinese).
    [2] KATANO K, TAKEDA N, ISHIZEKI Y, et al. Properties and application of concrete made with sea water and un-washed sea sand[C]. Proceedings of 3rd International Conference on Sustainable Construction Material and Technologies (SCMT3). Kyoto: Claisse, 2013: 10.
    [3] TAREK U M, HIDENORI H, TORU Y. Performance of seawater-mixed concrete in the tidal environment[J]. Cement and Concrete Research,2004,34:593-601. doi: 10.1016/j.cemconres.2003.09.020
    [4] LI C G, YIN X L, LIU Y C, et al. Long-term service evaluation of a pultruded carbon/glass hybrid rod exposed to elevated temperature, hydraulic pressure and fatigue load coupling[J]. International Journal of Fatigue,2020,134:105480. doi: 10.1016/j.ijfatigue.2020.105480
    [5] ZHOU P, LI C G, BAI Y B, et al. Durability study on the interlaminar shear behavior of glass-fibre reinforced polypropylene (GFRPP) bars for marine applications[J]. Construction and Building Materials,2022,349:128694. doi: 10.1016/j.conbuildmat.2022.128694
    [6] WASIM M, TUAN D N, ABID M. Investigation of long-term corrosion resistance of reinforced concrete structures constructed with various types of concretes in marine and various climate environments[J]. Construction and Building Materials,2020,237:117701. doi: 10.1016/j.conbuildmat.2019.117701
    [7] 霍瑞丽, 陈登场, 方海, 等. 不同温度环境下轻木夹芯复合材料板弯曲疲劳性能试验[J]. 南京工业大学学报(自然科学版), 2021, 43(3): 344-350.

    HUO Ruili, CHEN Dengchang, FANG Hai, et al. Flexural fatigue test of composite sandwich plate with light wood core in different temperatures[J]. Journal of Nanjing Tech University (Natural Science Edition), 2021, 43(3): 344-350(in Chinese).
    [8] CHANG Y F, WANG Y L, WANG M F, et al. Bond durability and degradation mechanism of GFRP bars in seawater sea-sand concrete under the coupling effect of seawater immersion and sustained load[J]. Construction and Building Materials,2021,307:124878. doi: 10.1016/j.conbuildmat.2021.124878
    [9] 常鑫泉, 汪昕, 刘长源, 等. 预应力FRP板加固RC梁抗弯性能有限元模型可靠性评价[J]. 南京工业大学学报(自然科学版), 2021, 43(3): 318-328.

    CHANG Xinquan, WANG Xin, LIU Changyuan, et al. Reliability evaluation of finite element model for flexural behavior of RC beams reinforced with prestressed FRP laminates[J]. Journal of Nanjing Tech University (Natural Science Edition), 2021, 43(3): 318-328(in Chinese).
    [10] BENMOKRANE B, MOUSA S, MOHAMED K, et al. Physical, mechanical, and durability characteristics of newly developed thermoplastic GFRP bars for reinforcing concrete structures[J]. Construction and Building Materials,2021,276:122200. doi: 10.1016/j.conbuildmat.2020.122200
    [11] 吴超强, 王俊, 李帅, 等. 玻璃纤维增强复合材料 钢复合筋混凝土夹芯墙板抗弯性能[J]. 南京工业大学学报(自然科学版), 2021, 43(6): 782-786.

    WU Chaoqiang, WANG Jun, LI Shuai, et al. Bending behavior of concrete sandwich wall panels with GFRP-steel bar connectors[J]. Journal of Nanjing Tech University (Natural Science Edition), 2021, 43(6): 782-786(in Chinese).
    [12] GAMBLE W L. Flexural strength and design analysis of circular reinforced concrete members with glass fiber-reinforced polymer bars and spirals[J]. ACI Structural Journal, 2019, 116(4): 301-302.
    [13] KAMAL A S M, BOULFIZA M. Durability of GFRP rebars in simulated concrete solutions under accelerated aging conditions[J]. Journal of Composites for Construction,2011,15(4):473-481.
    [14] WANG Z K, ZHAO X L, XIAN G J, et al. Effect of sustained load and seawater and sea sand concrete environment on durability of basalt- and glass-fibre reinforced polymer (B/GFRP) bars[J]. Corrosion Science,2018,138:200-218. doi: 10.1016/j.corsci.2018.04.002
    [15] MOSSAB E, KHALED G, VAN S H. New thermoplastic CFRP bendable rebars for reinforcing structural concrete elements[J]. Composites Part B: Engineering,2013,45(1):1207-1215. doi: 10.1016/j.compositesb.2012.09.025
    [16] SOUTIS C. Fibre reinforced composites in aircraft construction[J]. Progress in Aerospace Sciences,2005,41(2):143-151. doi: 10.1016/j.paerosci.2005.02.004
    [17] ASENSIO M, ESFANDIARI P, MARQUES A, et al. Processing of pre-impregnated thermoplastic towpreg reinforced by continuous glass fibre and recycled PET by pultrusion[J]. Composites Part B: Engineering,2020,200:108365. doi: 10.1016/j.compositesb.2020.108365
    [18] CHEN K, JIA M Y, SUN H, et al. Thermoplastic reaction injection pultrusion for continuous glass fiber-reinforced polyamide-6 composites[J]. Materials,2019,12(3):463. doi: 10.3390/ma12030463
    [19] ALEXANDER V, KIRILL M, SERGEY G, et al. Effects of the pre-consolidated materials manufacturing method on the mechanical properties of pultruded thermoplastic composites[J]. Polymers,2022,14(11):2246. doi: 10.3390/polym14112246
    [20] MAXIMILIAN V, JOANNA W, SHELLY A, et al. Pultrusion of large thermoplastic composite profiles up to Ø40 mm from glass-fibre/PET commingled yarns[J]. Composites Part B: Engineering,2021,227:109339. doi: 10.1016/j.compositesb.2021.109339
    [21] CURRIER J, FOGSTAD C, WALRATH D, et al. Bond development of thermoplastic FRP shear reinforcement stirrups[C]. The 3rd Materials Engineering Conference. San Diego: ASCE, 1994: 6.
    [22] MEHRABI A E, VANDERPOOL D. Mechanical performance of thermoplastic fiber reinforced polymer rebars[Z]. Proceedings of the 6th International Symposium on FRP Reinforcement for Concrete Structures (FRPRCS-6). Singapore: World Scientific, 2003: 79-88.
    [23] MICELLI F, NANNI A. Durability of FRP rods for concrete structures[J]. Construction and Building Materials,2004,18(7):491-503. doi: 10.1016/j.conbuildmat.2004.04.012
    [24] WANG X, PENG Z Q, DING L N, et al. Mechanical and bonding behavior of a bendable fiber-reinforced thermoplastic rebar[J]. Construction and Building Materials,2021,302:124222. doi: 10.1016/j.conbuildmat.2021.124222
    [25] FERRIER E, RABINOVITCH O, MICHEL L. Mechanical behavior of concrete-resin/adhesive-FRP structural assemblies under low and high temperatures[J]. Construction and Building Materials,2016,127:1017-1028. doi: 10.1016/j.conbuildmat.2015.12.127
    [26] American Society for Testing and Materials Committee. Standard test method for moisture absorption properties and equilibrium conditioning of polymer matrix composite materials: ASTM-D5229/D5229 M—14[S]. West Conshohocken: American Society for Testing and Materials Committee, 2014.
    [27] CHEN Y, JULIO F D, INDRAJIT R, et al. Accelerated aging tests for evaluations of durability performance of FRP reinforcing bars for concrete structures[J]. Composite Structures,2007,78(1):101-111. doi: 10.1016/j.compstruct.2005.08.015
    [28] YU Y X, LIU S, PAN Y F, et al. Durability of glass fiber-reinforced polymer bars in water and simulated concrete pore solution[J]. Construction and Building Materials,2021,299:123995. doi: 10.1016/j.conbuildmat.2021.123995
    [29] American Society for Testing and Materials Committee. Standard test method for apparent horizontal shear strength of pultruded reinforced plastic rods by the short-beam method: ASTM D4475—02[S]. West Conshohocken: American Society for Testing and Materials Committee, 2002.
    [30] GERARD J, PERRET P, CHABERT B. Study of carbon/epoxy interface (or interphase): Effect of surface treatment of carbon fibers on the dynamic mechanical behavior of carbon/epoxy unidirectional composites[M]. Controlled Interphases in Composite Materials. Cleveland: Springer, 1990: 449-456.
    [31] 杨国威, 梅志远, 李华东, 等. 典型舰用复合材料DMA动态力学性能试验研究[J]. 玻璃钢/复合材料, 2018(6):66-72.

    YANG Guowei, MEI Zhiyuan, LI Huadong, et al. Experimental study on dynamic mechanical properties of typical naval ship composite materials[J]. Fiber Reinforced Plastics/Composites,2018(6):66-72(in Chinese).
    [32] 李承高, 郭瑞, 王俊琦, 等. CFRP@GFRP 混杂复合材料杆体在水浸泡环境下的性能演化[J]. 复合材料学报, 2021, 38(10):3290-3301.

    LI Chenggao, GUO Rui, WANG Junqi, et al. Property evolution of CFRP@GFRP hybrid composite rod exposed in the distilled water[J]. Acta Materiae Compositae Sinica,2021,38(10):3290-3301(in Chinese).
    [33] DENG H, REYNOLDS C T, CABRERA N O, et al. The water absorption behaviour of all-polypropylene composites and its effect on mechanical properties[J]. Composites Part B: Engineering,2010,41(4):268-275. doi: 10.1016/j.compositesb.2010.02.007
    [34] 王传伟, 肖玮佳, 刘晨光. 傅里叶变换红外光谱法快速测定聚丙烯/聚丁烯釜内合金的组分含量[J]. 青岛科技大学学报(自然科学版), 2022, 43(1):64-70. doi: 10.16351/j.1672-6987.2022.01.009

    WANG Chuanwei, XIAO Weijia, LIU Chenguang. Rapid determination of polypropylene/polybutene alloy composition by fourier transform infrared spectroscopy[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition),2022,43(1):64-70(in Chinese). doi: 10.16351/j.1672-6987.2022.01.009
    [35] AZZURRI F, FLORES A, ALFONSE G C, et al. Polymorphism of isotactic polybutene-1 as revealed by microindentation hardness. Part II: Correlations to microstructure[J]. Polymer,2003,44(5):1641-1645. doi: 10.1016/S0032-3861(02)00864-9
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  657
  • HTML全文浏览量:  382
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-08
  • 修回日期:  2023-04-28
  • 录用日期:  2023-05-06
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2024-01-01

目录

    /

    返回文章
    返回