留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宽频蜂窝夹层结构吸波复合材料的低频隐身介质超材料研究

鹿海军 礼嵩明 黄浩 吴思保 王甲富

鹿海军, 礼嵩明, 黄浩, 等. 宽频蜂窝夹层结构吸波复合材料的低频隐身介质超材料研究[J]. 复合材料学报, 2024, 41(1): 188-195. doi: 10.13801/j.cnki.fhclxb.20230512.002
引用本文: 鹿海军, 礼嵩明, 黄浩, 等. 宽频蜂窝夹层结构吸波复合材料的低频隐身介质超材料研究[J]. 复合材料学报, 2024, 41(1): 188-195. doi: 10.13801/j.cnki.fhclxb.20230512.002
LU Haijun, LI Songming, HUANG Hao, et al. Study on the low frequency radar-stealth dielectric metamaterial of broadband wave-absorbing honeycomb sandwich composites[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 188-195. doi: 10.13801/j.cnki.fhclxb.20230512.002
Citation: LU Haijun, LI Songming, HUANG Hao, et al. Study on the low frequency radar-stealth dielectric metamaterial of broadband wave-absorbing honeycomb sandwich composites[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 188-195. doi: 10.13801/j.cnki.fhclxb.20230512.002

宽频蜂窝夹层结构吸波复合材料的低频隐身介质超材料研究

doi: 10.13801/j.cnki.fhclxb.20230512.002
详细信息
    通讯作者:

    鹿海军,博士,高级工程师,研究方向为结构功能一体化复合材料 E-mail: haijunlu_hjl@163.com

  • 中图分类号: TB332

Study on the low frequency radar-stealth dielectric metamaterial of broadband wave-absorbing honeycomb sandwich composites

  • 摘要: 研究用于宽频蜂窝夹层结构吸波复合材料的介质超材料的低频隐身性能,分析碳纤维介质超材料单元的电磁响应特性及其对蜂窝夹层结构吸波复合材料电性能和力学性能的影响。结果表明:制备的碳纤维介质超材料单元可以实现与金属超材料单元相当的电磁响应效果;当吸波蜂窝高度为50 mm、透波面板厚度为1 mm时,碳纤维介质超材料单元的引入,可以使吸波蜂窝夹层结构复合材料低频吸波性能得到显著提升,L波段反射率最弱值提升2 dB以上,平均反射率提升4 dB以上;含碳纤维介质超材料单元透波面板基本力学性能与透波面板复合材料自身力学性能基本相当,引入碳纤维介质超材料单元不会降低透波面板力学性能。

     

  • 图  1  含介质超材料蜂窝夹层结构吸波复合材料制备流程图

    Figure  1.  Fabrication process of the wave-absorbing honeycomb sandwich composite containing dielectric metamaterial

    图  2  含超材料蜂窝夹层结构吸波复合材料结构示意图

    Figure  2.  Schematic structure of the honeycomb sandwich composite containing metamaterial

    图  3  超材料单元结构示意图

    Figure  3.  Schematic diagram of metamaterial unit structure

    图  4  含超材料单元与不含超材料单元的透波面板在1~18 GHz频率范围内的透波率曲线

    Figure  4.  Transmittivity curves of the wave-transmitting skin with/without metamaterial units in the frequency range of 1-18 GHz

    图  5  含超材料单元与不含超材料单元的透波蜂窝夹层结构在L波段的反射率曲线

    Figure  5.  Reflectivity curves of the wave-transmitting honeycomb sandwich composites with/without metamaterial units in the L-band

    图  6  超材料单元模板的实物照片

    Figure  6.  Photograph of the template for metamaterial unit

    图  7  含介质超材料单元透波面板 (a) 及含金属超材料单元透波面板 (b) 的实物照片

    Figure  7.  Photograph of the wave-transmitting skin containing dielectric metamaterial units (a) and metal metamaterial units (b)

    图  8  碳纤维超材料单元与金属超材料单元在L波段的透波率曲线

    Figure  8.  Transmittivity curves of the carbon fiber metamaterial units and metal metamaterial units in the L-band

    图  9  含碳纤维超材料单元与不含超材料单元的吸波蜂窝夹层结构的L波段反射率曲线

    Figure  9.  Reflectivity curves of the wave-absorbing honeycomb sandwich composites with/without carbon fiber metamaterials in the L-band

    表  1  碳纤维超材料单元与金属超材料单元在L波段透波特性的统计结果

    Table  1.   Statistical results about the wave-transmitting properties of carbon fiber metamaterial units and metal metamaterial units in the L-band

    Material
    type
    Peak frequency/
    GHz
    Minimum transmittivity/
    dB
    Averaged transmittivity/
    dB
    Metal metamaterial1.64−11.23−4.91
    Carbon fiber metamaterial1.63 −8.79−4.81
    下载: 导出CSV

    表  2  不同吸波蜂窝夹层结构复合材料在L波段吸波特性的统计结果

    Table  2.   Statistical results about the wave-absorbing properties of different wave-absorbing honeycomb sandwich composites in the L-band

    Material typeMaximum reflectivity/dBAveraged reflectivity/dB
    Without metamaterial−7.27−10.38
    With carbon fiber metamaterial−9.34−14.66
    下载: 导出CSV

    表  3  含碳纤维超材料单元与不含超材料单元的透波面板力学性能对比

    Table  3.   Comparison of the mechanical properties of wave-transmitting skin with/without carbon fiber metamaterial units

    Material Tensile property Compression property Bending property Interlaminar shear
    strength/MPa
    Strength/
    MPa
    Modulus/
    GPa
    Strength/
    MPa
    Modulus/
    GPa
    Strength/
    MPa
    Modulus/
    GPa
    With carbon fiber metamaterial 810 31.2 310 29.1 625 24.7 407
    Without metamaterial 815 30.1 307 28.1 629 25.6 51.5
    下载: 导出CSV
  • [1] 庞建峰, 马喜君, 谢兴勇. 电磁吸波材料的研究进展[J]. 电子元件与材料, 2015, 34(2):7-12.

    PANG Jianfeng, MA Xijun, XIE Xingyong. Research progress of microwave absorption materials[J]. Electronic Components and Materials,2015,34(2):7-12(in Chinese).
    [2] 曾强, 王荣超, 张小兰等. 电磁吸波材料研究进展[J]. 江西化工, 2021, 37(6):100-103. doi: 10.3969/j.issn.1008-3103.2021.06.028

    ZENG Qiang, WANG Rongchao, ZHANG Xiaolan, et al. Research progress of electromagnetic wave absorption materials[J]. Jiangxi Chemical Industry,2021,37(6):100-103(in Chinese). doi: 10.3969/j.issn.1008-3103.2021.06.028
    [3] 刘丹莉, 刘平安, 杨青松, 等. 吸波材料的研究现状及其发展趋势[J]. 材料导报, 2013, 27(17):74-78.

    LIU Danli, LIU Ping'an, YANG Qingsong, et al. Research status and prospect of wave absorbing materials[J]. Materials Reports,2013,27(17):74-78(in Chinese).
    [4] 孙占红, 郭春艳. 复合材料夹层吸波结构[J]. 航空制造技术, 2002(1):38-40.

    SUN Zhanhong, GUO Chunyan. Microwave-absorbing composite sandwich structure[J]. Aeronautical Manufacturing Technology,2002(1):38-40(in Chinese).
    [5] 赵彦凯, 毕松, 侯根良, 等. 轻质蜂窝夹层复合材料的制备及其吸波性能研究[J]. 化工新型材料, 2021, 49(5):93-96.

    ZHAO Yankai, BI Song, HOU Genliang, et al. Preparation and microwave absorption property of lightweight honeycomb sandwich composite[J]. New Chemical Materials,2021,49(5):93-96(in Chinese).
    [6] 常霞, 袁昊, 高正平. 蜂窝夹芯吸波材料电磁特性研究进展[J]. 磁性材料及器件, 2013, 44(5):73-76.

    CHANG Xia, YUAN Hao, GAO Zhengping. Research development on electromagnetic properties of honeycomb sandwich wave-absorbing materials[J]. Journal of Magnetic Materials and Devices,2013,44(5):73-76(in Chinese).
    [7] 赵宏杰, 嵇培军, 胡本慧, 等. 蜂窝夹层复合材料的吸波性能[J]. 宇航材料工艺, 2010, 40(2):72-73.

    ZHAO Hongjie, JI Peijun, HU Benhui, et al. Absorbing properties of honeycomb sandwich composites[J]. Aerospace Materials & Technology,2010,40(2):72-73(in Chinese).
    [8] 邢丽英, 刘俊能. 蜂窝夹层结构吸波材料研究[J]. 材料工程, 1992(6):15-18.

    XING Liying, LIU Junneng. The study of honeycomb sandwich microwave absorbing materials[J]. Journal of Materials Engineering,1992(6):15-18(in Chinese).
    [9] 礼嵩明, 吴思保, 院伟, 等. 宽频蜂窝夹层结构吸波复合材料设计方法研究[J]. 玻璃钢/复合材料, 2019, 306(7):92-97.

    LI Songming, WU Sibao, YUAN Wei, et al. Study on design method of wide-band wave-absorbing honeycomb sandwich composites[J]. Composites Science and Engineering,2019,306(7):92-97(in Chinese).
    [10] 马科峰, 张广成, 刘良威, 等. 夹层结构复合材料的吸波隐身技术研究进展[J]. 材料开发与应用, 2010, 25(6):53-57.

    MA Kefeng, ZHANG Guangcheng, LIU Liangwei, et al. Research progress of technology for sandwich structural absorbing stealthy composite materials[J]. Development and Application of Materials,2010,25(6):53-57(in Chinese).
    [11] 韩敏阳, 韦国科, 周明, 等. 低频雷达吸波材料的研究进展[J]. 复合材料学报, 2022, 39(4):1363-1377.

    HAN Minyang, WEI Guoke, ZHOU Ming, et al. Research progress of low-frequency radar absorbents[J]. Acta Materiae Compositae Sinica,2022,39(4):1363-1377(in Chinese).
    [12] 王霞, 张冉冉, 吕浩, 等. 超材料的发展及研究现状[J]. 青岛科技大学学报(自然科学版), 2016, 37(2):119-126.

    WANG Xia, ZHANG Ranran, LV Hao, et al. Development and research actuality of meta-materials[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition),2016,37(2):119-126(in Chinese).
    [13] 杜云峰, 姜交来, 廖俊生. 超材料的应用及制备技术研究进展[J]. 材料导报, 2016, 30(9):115-121.

    DU Yunfeng, JIANG Jiaolai, LIAO Junsheng. Review on fabrication and application of metamaterial[J]. Materials Review,2016,30(9):115-121(in Chinese).
    [14] 宋波, 张磊, 王晓波, 等. 面向航空航天的增材制造超材料的研究现状及发展趋势[J]. 航空制造技术, 2022, 65(14):22-33.

    SONG Bo, ZHANG Lei, WANG Xiaobo, et al. Research status and development trend of additive manufacturing metamaterials toward aerospace[J]. Aeronautical Manufacturing Technology,2022,65(14):22-33(in Chinese).
    [15] 孔祥鲲, 孔令奇, 姜顺流, 等. 电磁超材料在超宽带雷达隐身微小卫星设计中的应用[J]. 宇航学报, 2021, 42(6):775-782.

    KONG Xiangkun, KONG Lingqi, JIANG Shunliu, et al. Application of electromagnetic metamaterials in design of ultra-wideband radar stealth microsatellite[J]. Journal of Astronautics,2021,42(6):775-782(in Chinese).
    [16] 李宝毅, 赵亚娟, 王蓬, 等. 电磁防护超材料在国防领域中的应用与前景展望[J]. 电子元件与材料, 2019, 38(5):1-5.

    LI Baoyi, ZHAO Yajuan, WANG Peng, et al. The application and prospects of metamaterials for electromagnetic protection in defense fields[J]. Electronic Components and Materials,2019,38(5):1-5(in Chinese).
    [17] 崔铁军. 电磁超材料−从等效媒质到现场可编程系统[J]. 中国科学: 信息科学, 2020, 50(10):1427-1461. doi: 10.1360/SSI-2020-0123

    CUI Tiejun. Electromagnetic metamaterials—From effective media to field programmable systems[J]. Scientia Sinica (Informationis),2020,50(10):1427-1461(in Chinese). doi: 10.1360/SSI-2020-0123
    [18] 张磊, 卓林蓉, 汤桂平, 等. 增材制造超材料及其隐身功能调控的研究进展[J]. 航空材料学报, 2018, 38(3):10-19.

    ZHANG Lei, ZHUO Linrong, TANG Guiping, et al. Additive manufacture of metamaterials: A review[J]. Journal of Aeronautical Materials,2018,38(3):10-19(in Chinese).
    [19] 范亚, 屈绍波, 王甲富, 等. 基于交叉极化旋转相位梯度超表面的宽带异常反射[J]. 物理学报, 2015, 64(18):238-244.

    FAN Ya, QU Shaobo, WANG Jiafu, et al. Broadband anomalous reflector based on cross-polarized version phase gradient metasurface[J]. Acta Physica Sinica,2015,64(18):238-244(in Chinese).
    [20] 马瑶, 王建宝, 石立华, 等. 一款透明柔性超材料宽频微波吸收器[J]. 复合材料学报, 2022, 39(4):1601-1609.

    MA Yao, WANG Jianbao, SHI Lihua, et al. A wideband, transparent and flexible microwave metamaterial absorber[J]. Acta Materiae Compositae Sinica,2022,39(4):1601-1609(in Chinese).
    [21] 李勇峰, 张介秋, 屈绍波, 等. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证[J]. 物理学报, 2014, 63(8):149-155. doi: 10.7498/aps.63.084103

    LI Yongfeng, ZHANG Jieqiu, QU Shaobo, et al. Design and experimental verification of a two-dimensional phase gradient metasurface used for radar cross section reduction[J]. Acta Physica Sinica,2014,63(8):149-155(in Chinese). doi: 10.7498/aps.63.084103
    [22] 周卓辉, 黄大庆, 刘晓来, 等. 超材料在宽频微波衰减吸收材料中的应用研究进展[J]. 材料工程, 2014, 30(5):91-96. doi: 10.11868/j.issn.1001-4381.2014.05.016

    ZHOU Zhuohui, HUANG Daqing, LIU Xiaolai, et al. Application developments of metamaterials in wideband microwave absorbing materials[J]. Journal of Materials Engineering,2014,30(5):91-96(in Chinese). doi: 10.11868/j.issn.1001-4381.2014.05.016
    [23] 李宝毅, 王蓬, 周必成, 等. 超材料宽频吸波技术研究进展[J]. 应用化工, 2016, 45(3):542-546.

    LI Baoyi, WANG Peng, ZHOU Bicheng, et al. Research progress of wide-band absorbing metamaterial technology[J]. Applied Chemical Industry,2016,45(3):542-546(in Chinese).
    [24] LI S M, HUANG H, WU S B, et al. Study on microwave absorption performance enhancement of metamaterial/honeycomb sandwich composites in the low frequency band[J]. Polymers,2022,14(7):1424. doi: 10.3390/polym14071424
    [25] 吕通, 张辰威, 刘甲, 等. 吸波超材料研究进展[J]. 复合材料学报, 2021, 38(1):25-35.

    LV Tong, ZHANG Chenwei, LIU Jia, et al. Research progress in metamaterial absorber[J]. Acta Materiae Compositae Sinica,2021,38(1):25-35(in Chinese).
    [26] ZHOU Q, SHI T T, XUE B, et al. Multi-scale integrated design and fabrication of ultra-broadband electromagnetic absorption utilizing multi-walled carbon nanotubes-based hierarchical metamaterial[J]. Composites Science and Technology,2023,232:109877. doi: 10.1016/j.compscitech.2022.109877
    [27] SHAN M T, ZHANG Y H, LEI H, et al. Vehicle metastructure skin designed by overall-parameter evolutionary optimization for broadband microwave absorption[J]. Composites Science and Technology,2023,232:109880. doi: 10.1016/j.compscitech.2022.109880
    [28] ASTM International. Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039[S]. West Conshohocken: ASTM International, 2017.
    [29] ASTM International. Standard test method for compressive properties of polymer matrix composite materials using a combined loading compression (CLC) test fixture: ASTM D6641[S]. West Conshohocken: ASTM International, 2021.
    [30] ASTM International. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials: ASTM D790[S]. West Conshohocken: ASTM International, 2017.
    [31] ASTM International. Standard test method for short-beam strength of polymer matrix composite materials and their laminates: ASTM D2344[S]. West Conshohocken: ASTM International, 2022.
    [32] GUO M C, YI X S. The production of tough, electrically conductive carbon fiber composite laminates for use in airframes[J]. Carbon,2013,58:241-244. doi: 10.1016/j.carbon.2013.02.052
    [33] 郭一帆, 付尚琛, 赵辉, 等. 碳纤维复合材料电导率-温度特性测量及其在预测雷击热效应中的应用[J]. 电波科学学报, 2019, 34(4):408-415.

    GUO Yifan, FU Shangchen, ZHAO Hui, et al. Measurement of the conductivity temperature dependence of CFRP and its application in anticipating lightning strike thermal effect[J]. Chinese Journal of Radio Science,2019,34(4):408-415(in Chinese).
    [34] 程柄午, 郑程, 许鹤君. 测量铜合金电导率的方法比较[J]. 理化检验(物理分册), 2015, 51(9):628-631.

    CHENG Bingwu, ZHENG Cheng, XU Hejun. Method comparison of electrical conductivity measurement of copper alloy[J]. Physical Testing and Chemical Analysis (Part A: Physical Testing),2015,51(9):628-631(in Chinese).
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  1127
  • HTML全文浏览量:  465
  • PDF下载量:  198
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-22
  • 修回日期:  2023-05-03
  • 录用日期:  2023-05-06
  • 网络出版日期:  2023-05-12
  • 刊出日期:  2024-01-01

目录

    /

    返回文章
    返回