Morphology control and electrochemical properties of three-dimensional hierarchical NiCo2O4 structure
-
摘要: 形貌结构的调控对材料的电化学性能具有重要影响。本文采用溶剂热法结合煅烧在不同溶剂比及温度下合成不同形貌结构的钴酸镍,利用XRD及SEM和TEM等对样品的物相组成及形貌结构进行了表征,并对其电化学性能进行了分析。结果表明:当水与乙醇体积比为1∶1时,样品为中空的海胆状NiCo2O4,随着水比例的增加,形貌逐渐转变为规则的中心放射状的针状形貌,且有第二相物质的存在。在水与乙醇体积比为1∶1时,随着温度的增加,形貌主要由毛绒球向花状、海胆状、中心放射状的针状过渡,而样品均为纯NiCo2O4。90℃合成的样品具有较好的电化学性能,在1 A·g−1电流密度下,比电容高达1287.5 F·g−1,当扫速从20~100 mV·s−1变化时,电容保持率达到59.4%,循环1500圈,比电容保持率高达80.1%,此外,在整个电化学反应过程中扩散控制过程起主导作用。Abstract: The control of the morphology and structure has an important influence on the electrochemical properties of materials. In this work, NiCo2O4 samples with different morphologies and structures were synthesized by solvothermal method combined with calcination at different solvent ratios and temperatures. The phase composition and morphology of the samples were characterized by XRD, SEM and TEM et al, and the electrochemical performance was further studied. The results show that the sample is hollow sea urchin-like NiCo2O4, when the volume ratio of water to ethanol is 1∶1. With the increase of the content of water, the morphology gradually changes to regular central radial needle-like morphology, and there is a second phase substance. Under the condition of the volume ratio of water to ethanol is 1∶1, with the increase of temperature, the morphology mainly changes from fluffy ball to a flower-like, sea urchin-like, and center-radiating needle, while the phases of samples are pure NiCo2O4. The sample synthesized at 90℃ exhibits better electrochemical performance. The specific capacitance is up to 1287.5 F·g−1 at a current density of 1 A·g−1. The specific capacitance retention rate reaches 59.4% with the scan rate changes from 20-100 mV·s−1, and the specific capacitance retention rate is up to 80.1% after 1500 cycles. In addition, the whole electrochemical reaction is dominated by the diffusion-controlled process.
-
图 5 不同温度下合成NiCo2O4样品的SEM图像:((a), (b)) 90℃;((c), (d)) 110℃;((e), (f)) 130℃;((g), (h)) 150℃;(i) 90℃样品的元素面扫图
Figure 5. SEM images of the obtained NiCo2O4 samples at different synthesis temperature: ((a), (b)) 90℃; ((c), (d)) 110℃; ((e), (f)) 130℃; ((g), (h)) 150℃; (i) Elemental mapping images of sample obtained at 90℃
图 9 (a) 不同温度合成的NiCo2O4的N2吸脱附曲线(插图为孔径分布图);(b) 90℃的NiCo2O4的结构优势示意图
Figure 9. (a) Nitrogen adsorption-desorption isotherm of the obtained NiCo2O4 at different synthesis temperature (Inset of pore size distribution ); (b) Schematic illustration of the structural advantages of NiCo2O4 at 90℃
dV/dD—Pore volume
图 10 ((a)~(d)) 不同温度合成的NiCo2O4的GCD曲线;(e) 1 A·g−1电流密度下GCD曲线对比图;(f) 与图10(e)对应的电容值,插图为90℃的NiCo2O4电流密度与比电容关系图
Figure 10. ((a)-(d)) GCD curves of the obtained NiCo2O4 at different synthesis temperature; (e) GCD curves at 1 A·g−1; (f) Corresponding specific capacity of Fig. 10(e) (Inset of the relationship between current density and specific capacity of NiCo2O4 at 90℃)
图 13 90℃的NiCo2O4电极的阴极峰电流与扫速的对数关系图(a)和不同扫速下电容和扩散控制的相对贡献(b)
Figure 13. Relationship between logarithm cathode peak current and logarithm scan rates (a) and relative contributions of capacitive and diffusion-controlled processes at different scanning rates (b) of NiCo2O4 at 90℃
b—Constants obtained from the slope of the fitting linear curve of lg(scan rate) against lg(peak current)
表 1 不同溶剂比例合成NiCo2O4的表面原子比
Table 1. Surface atomic ratios of the obtained NiCo2O4 with different solvent ratios
Sample Ni2p3/2/at% Co2p3/2/at% Ni2+/Ni3+
(Atomic ratio)Co3+/Co2+
(Atomic ratio)Ni/Co
(Atomic ratio)Ni2+ Ni3+ Co3+ Co2+ 5 mL water 77.1 22.9 72.2 27.8 3.37 2.60 0.37 20 mL water 69.8 30.2 80.1 19.9 2.31 4.02 0.60 35 mL water 65.3 34.7 75.1 24.9 1.88 3.01 0.71 -
[1] LEE G, NA W, KIM J, et al. Improved electrochemical performances of MOF-derived Ni-Co layered double hydroxide complexes using distinctive hollow-in-hollow structures[J]. Journal of Materials Chemistry A,2019,7:17637-17647. doi: 10.1039/C9TA05138D [2] KARIMI-MALEH H, KARIPER İ A, KARAMAN C, et al. Direct utilization of radioactive irradiated graphite as a high-energy supercapacitor a promising electrode material[J]. Fuel,2022,325:124843. doi: 10.1016/j.fuel.2022.124843 [3] WANG H F, ZHONG Y J, NING J Q, et al. Recent advances in the synthesis of non-carbon two-dimensional electrode materials for the aqueous electrolyte-based supercapacitors[J]. Chinese Chemical Letters,2021,32(12):3733-3752. doi: 10.1016/j.cclet.2021.04.025 [4] LI J, YUAN X, LIN C, et al. Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification[J]. Advanced Energy Materials,2017,7(15):1602725. doi: 10.1002/aenm.201602725 [5] LI W, YANG F F, HU Z H, et al. Template synthesis of C@NiCo2O4 hollow microsphere as electrode material for supercapacitor[J]. Journal of Alloys and Compounds,2018,749:305-312. doi: 10.1016/j.jallcom.2018.03.046 [6] HU M, LI Z, HU T, et al. High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical Raman spectroscopy investigation[J]. ACS Nano,2016,10(12):11344-11350. doi: 10.1021/acsnano.6b06597 [7] LIU M, SHI M, LU W, et al. Core-shell reduced graphene oxide/MnOx@carbon hollow nanospheres for high performance supercapacitor electrodes[J]. Chemical Engineering Journal,2017,313:518-526. doi: 10.1016/j.cej.2016.12.091 [8] MA L, SHEN X, ZHOU H, et al. High performance supercapacitor electrode materials based on porous NiCo2O4 hexagonal nanoplates/reduced graphene oxide composites[J]. Chemical Engineering Journal,2015,262:980-988. doi: 10.1016/j.cej.2014.10.079 [9] KHAN A S, PAN L, FARID A, et al. Carbon nanocoils decorated with a porous NiCo2O4 nanosheet array as a highly efficient electrode for supercapacitors[J]. Nanoscale,2021,13:11943-11952. doi: 10.1039/D1NR00949D [10] BHAGWAN J, NAGARAJU G, RAMULU B, et al. Rapid synthesis of hexagonal NiCo2O4 nanostructures for high-performance asymmetric supercapacitors[J]. Electrochimica Acta,2019,299:509-517. doi: 10.1016/j.electacta.2018.12.174 [11] WANG S X, ZOU Y J, XU F, et al. Morphological control and electrochemical performance of NiCo2O4@NiCo layered double hydroxide as an electrode for supercapacitors[J]. Journal of Energy Storage,2021,41:102862. doi: 10.1016/j.est.2021.102862 [12] KUMAR R, JOANNI E, SAHOO S, et al. An overview of recent progress in nanostructured carbon-based supercapacitor electrodes: From zero to bi-dimensional materials[J]. Carbon,2022,193:298-338. doi: 10.1016/j.carbon.2022.03.023 [13] 何广源, 陈学敏, 王雨婷, 等. 钴酸镍基纳米材料在超级电容器中的研究进展[J]. 化工进展, 2021, 40(7):3813-3825. doi: 10.16085/j.issn.1000-6613.2020-1540HE Guangyuan, CHEN Xuemin, WANG Yuting, et al. Research progress of nickel cobalt based nanomaterials in supercapacitors[J]. Chemical Industry and Engineering Progress,2021,40(7):3813-3825(in Chinese). doi: 10.16085/j.issn.1000-6613.2020-1540 [14] ZHOU Q, XING J, GAO Y, et al. Ordered assembly of NiCo2O4 multiple hierarchical Structures for high-performance pseudocapacitors[J]. ACS Applied Materials & Interfaces,2014,6(14):11394-11402. doi: 10.1021/am501988s [15] QIAN Y, ZHANG J, JIN J, et al. Flexible solid-state asymmetric supercapacitor with high energy density and ultralong lifetime based on hierarchical 3D electrode design[J]. ACS Applied Energy Materials,2022,5(5):5830-5840. doi: 10.1021/acsaem.2c00185 [16] WANG Y, SHI C, CHEN Y, et al. 3D flower-like MOF-derived NiCo-LDH integrated with Ti3C2Tx for high-performance pseudosupercapacitors[J]. Electrochimica Acta,2021,376(1):138040. [17] QU Z C, SHI M J, WU H Z, et al. An efficient binder-free electrode with multiple carbonized channels wrapped by NiCo2O4 nanosheets for high-performance capacitive energy storage[J]. Journal of Power Sources,2019,410-411:179-187. doi: 10.1016/j.jpowsour.2018.11.018 [18] LI Q, LU C, CHEN C, et al. Layered NiCo2O4/reduced graphene oxide composite as an advanced electrode for supercapacitor[J]. Energy Storage Materials,2017,8:59-67. doi: 10.1016/j.ensm.2017.04.002 [19] LEI Y, LI J, WANG Y Y, et al. Rapid microwave-assisted green synthesis of 3D hierarchical flower-shaped NiCo2O4 microsphere for high-performance supercapacitor[J]. ACS Applied Materials & Interfaces,2014,6(3):1773-1780. doi: 10.1021/am404765y [20] ZHANG Y, WANG J, YE J, et al. NiCo2O4 arrays nanostructures on nickel foam: Morphology control and application for pseudocapacitors[J]. Ceramics International,2016,42(13):14976-14983. doi: 10.1016/j.ceramint.2016.06.142 [21] 苏展, 于金山, 裴锋, 等. 溶剂热法制备形貌可控的NiCo2O4超电材料及其性能研究[J]. 电镀与精饰, 2021, 43(12):1-6. doi: 10.3969/j.issn.1001-3849.2021.12.001SU Zhan, YU Jinshan, PEI Feng, et al. Preparation of NiCo2O4 supercapacitor electrode materials with controllable morphology by solvothermal method and research of their properties[J]. Plating & Finishing,2021,43(12):1-6(in Chinese). doi: 10.3969/j.issn.1001-3849.2021.12.001 [22] KUMAR D R, PRAKASHA K R, PRAKASH A S, et al. Direct growth of honeycomb-like NiCo2O4@Ni foam electrode for pouch-type high-performance asymmetric supercapacitor[J]. Journal of Alloys and Compounds,2020,836:155370. doi: 10.1016/j.jallcom.2020.155370 [23] WAN L, ZHAO Z, CHEN X, et al. Controlled synthesis of bifunctional NiCo2O4@FeNi LDH core-shell nanoarray air electrodes for rechargeable zinc-air batteries[J]. ACS Sustainable Chemistry & Engineering,2020,8(30):11079-11087. doi: 10.1021/acssuschemeng.0c00442 [24] ZHOU X, WEN J, WANG Z, et al. Size-controllable porous flower-like NiCo2O4 fabricated via sodium tartrate assisted hydrothermal synthesis for lightweight electromagnetic absorber[J]. Journal of Colloid and Interface Science,2021,602:834-845. doi: 10.1016/j.jcis.2021.06.083 [25] WU H, WU G, REN Y, et al. Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4-CoNiO2 hybrids[J]. Journal of Materials Chemistry C,2015,3(29):7677-7690. doi: 10.1039/C5TC01716E [26] XIONG W, GAO Y S, WU X, et al. Composite of macroporous carbon with honeycomb-like structure from mollusc shell and NiCo2O4 nanowires for high-performance[J]. ACS Applied Materials & Interfaces,2014,6(21):19416-19423. [27] WANG T L, ZHANG H, LUO H M, et al. Controlled synthesis of NiCo2O4 nanowires and nanosheets on reduced graphene oxide nanosheetsfor supercapacitors[J]. Journal of Solid State Electrochemistry,2015,19(11):3309-3317. doi: 10.1007/s10008-015-2940-6 [28] JIN C, LU F, CAO X, et al. Facile synthesis and excellent electrochemical properties of NiCo2O4 spinel nanowire arrays as a bifunctional catalyst for the oxygen reduction and evolution reaction[J]. Journal of Materials Chemistry A,2013,1(39):12170-12177. doi: 10.1039/c3ta12118f [29] XU R, ZENG H C. Dimensional control of cobalt-hydroxide-carbonate nanorods and their thermal conversion to one-dimensional arrays of Co3O4 nanoparticles[J]. Journal of Physical Chemistry B,2003,107(46):12643-12649. doi: 10.1021/jp035751c [30] HU Y, WANG Q, CHEN S, et al. Flexible supercapacitors fabricated by growing porous NiCo2O4 in-situ on a carbon nanotube film using a hyperbranched polymer template[J]. ACS Applied Energy Materials,2020,3(4):4043-4050. doi: 10.1021/acsaem.0c00491 [31] KUMAR L, CHAUHAN H, YADAV N, et al. Faster ion switching NiCo2O4 nanoparticle electrode based supercapacitor device with high performances and long cycling stability[J]. ACS Applied Energy Materials,2018,1(12):6999-7006. doi: 10.1021/acsaem.8b01427 [32] AN C, WANG Y, HUANG Y, et al. Porous NiCo2O4 nanostructures for high performance supercapacitors via a microemulsion technique[J]. Nano Energy,2014,10:125-134. doi: 10.1016/j.nanoen.2014.09.015 [33] KAVINKUMAR T, VINODGOPAL K, NEPPOLIAN B. Development of nanohybrids based on porous spinel MCo2O4 (M=Zn, Cu, Ni and Mn)/reduced graphene oxide/carbon nanotube as promising electrodes for high performance energy storage devices[J]. Applied Surface Science,2020,513:145781. [34] WU W, ZHAO C, NIU D, et al. Ultrathin N-doped Ti3C2-MXene decorated with NiCo2S4 nanosheets as advanced electrodes for supercapacitors[J]. Applied Surface Science,2021,539:148272. doi: 10.1016/j.apsusc.2020.148272 [35] CAI Y, WANG Y, ZHANG L, et al. 3D heterostructure constructed by few-layered MXenes with a MoS2 layer as the shielding shell for excellent hybrid capacitive deionization and enhanced structural stability[J]. ACS Applied Materials & Interfaces,2022,14(2):2833-2847. doi: 10.1021/acsami.1c20531 [36] LI G, CAI H R, LI X L, et al. Construction of hierarchical NiCo2O4@Ni-MOF hybrid arrays on carbon cloth as superior battery-type electrodes for flexible solid-state hybrid supercapacitors[J]. ACS Applied Materials & Interfaces,2019,11(41):37675-37684. [37] LI Y, WANG S, NI G, et al. Facile synthesis of NiCo2O4 nanowire arrays/few-layered Ti3C2-MXene composite as binder-free electrode for high-performance supercapacitors[J]. Molecules,2022,27(19):6452. doi: 10.3390/molecules27196452 [38] PATIL A M. Redox-ambitious route to boost energy and capacity retention of pouch type asymmetric solid-state supercapacitor fabricated with graphene oxide-based battery-type electrodes[J]. Applied Materials Today,2020,19:100563. doi: 10.1016/j.apmt.2020.100563 [39] LIU H, HU R, QI J, et al. A facile method for synthesizing NiS nanoflower grown on MXene (Ti3C2Tx) as positive electrodes for "supercapattery"[J]. Electrochimica Acta,2020,353:136526. doi: 10.1016/j.electacta.2020.136526