留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维多级钴酸镍结构的形貌调控及其电化学性能

李群 张阔 李艳华 王书桓 倪国龙

李群, 张阔, 李艳华, 等. 三维多级钴酸镍结构的形貌调控及其电化学性能[J]. 复合材料学报, 2024, 41(1): 281-292. doi: 10.13801/j.cnki.fhclxb.20230511.005
引用本文: 李群, 张阔, 李艳华, 等. 三维多级钴酸镍结构的形貌调控及其电化学性能[J]. 复合材料学报, 2024, 41(1): 281-292. doi: 10.13801/j.cnki.fhclxb.20230511.005
LI Qun, ZHANG Kuo, LI Yanhua, et al. Morphology control and electrochemical properties of three-dimensional hierarchical NiCo2O4 structure[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 281-292. doi: 10.13801/j.cnki.fhclxb.20230511.005
Citation: LI Qun, ZHANG Kuo, LI Yanhua, et al. Morphology control and electrochemical properties of three-dimensional hierarchical NiCo2O4 structure[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 281-292. doi: 10.13801/j.cnki.fhclxb.20230511.005

三维多级钴酸镍结构的形貌调控及其电化学性能

doi: 10.13801/j.cnki.fhclxb.20230511.005
基金项目: 国家自然科学基金(52104329);河北省自然科学基金(E2021209141);河北省高等学校科学技术研究项目(BJK2022003)
详细信息
    通讯作者:

    倪国龙,博士,讲师,研究方向为新材料制备及应用 E-mail: ngl@ncst.edu.cn

  • 中图分类号: TB34;TB33

Morphology control and electrochemical properties of three-dimensional hierarchical NiCo2O4 structure

Funds: National Natural Science Foundation of China (52104329); Natural Science Foundation of Hebei Province (E2021209141); Funded by Science and Technology Project of Hebei Education Department (BJK2022003)
  • 摘要: 形貌结构的调控对材料的电化学性能具有重要影响。本文采用溶剂热法结合煅烧在不同溶剂比及温度下合成不同形貌结构的钴酸镍,利用XRD及SEM和TEM等对样品的物相组成及形貌结构进行了表征,并对其电化学性能进行了分析。结果表明:当水与乙醇体积比为1∶1时,样品为中空的海胆状NiCo2O4,随着水比例的增加,形貌逐渐转变为规则的中心放射状的针状形貌,且有第二相物质的存在。在水与乙醇体积比为1∶1时,随着温度的增加,形貌主要由毛绒球向花状、海胆状、中心放射状的针状过渡,而样品均为纯NiCo2O4。90℃合成的样品具有较好的电化学性能,在1 A·g−1电流密度下,比电容高达1287.5 F·g−1,当扫速从20~100 mV·s−1变化时,电容保持率达到59.4%,循环1500圈,比电容保持率高达80.1%,此外,在整个电化学反应过程中扩散控制过程起主导作用。

     

  • 图  1  不同溶剂比例合成NiCo2O4的XRD图谱

    Figure  1.  XRD patterns of the obtained NiCo2O4 with different solvent ratios

    图  2  不同溶剂比例合成NiCo2O4的SEM图像

    Figure  2.  SEM images of the obtained NiCo2O4 with different solvent ratios

    图  3  不同溶剂比例合成NiCo2O4的XPS图谱

    Figure  3.  XPS spectra of the obtained NiCo2O4 with different solvent ratios

    Vo—Vacancy defect oxygen; Sat1, Sat2—Satellite peak 1 and satellite peak 2

    图  4  不同温度下合成NiCo2O4的XRD图谱

    Figure  4.  XRD patterns of the obtained NiCo2O4 at different synthesis temperature

    图  5  不同温度下合成NiCo2O4样品的SEM图像:((a), (b)) 90℃;((c), (d)) 110℃;((e), (f)) 130℃;((g), (h)) 150℃;(i) 90℃样品的元素面扫图

    Figure  5.  SEM images of the obtained NiCo2O4 samples at different synthesis temperature: ((a), (b)) 90℃; ((c), (d)) 110℃; ((e), (f)) 130℃; ((g), (h)) 150℃; (i) Elemental mapping images of sample obtained at 90℃

    图  6  不同温度下合成NiCo2O4的TEM图像

    Figure  6.  TEM images of the obtained NiCo2O4 at different synthesis temperature

    图  7  不同温度下合成NiCo2O4的机制示意图

    Figure  7.  Mechanism schematic diagram of the obtained NiCo2O4 at different synthesis temperature

    图  8  不同温度合成的NiCo2O4的CV曲线((a)~(d));(e) 100 mV·s−1扫速下的CV曲线对比图;(f) 扫速与比电容关系图

    Figure  8.  ((a)-(d)) CV curves of the obtained NiCo2O4 at different synthesis temperature; (e) CV curves at 100 mV·s−1; (f) Relationship between scan rate and specific capacity

    图  9  (a) 不同温度合成的NiCo2O4的N2吸脱附曲线(插图为孔径分布图);(b) 90℃的NiCo2O4的结构优势示意图

    Figure  9.  (a) Nitrogen adsorption-desorption isotherm of the obtained NiCo2O4 at different synthesis temperature (Inset of pore size distribution ); (b) Schematic illustration of the structural advantages of NiCo2O4 at 90℃

    dV/dD—Pore volume

    图  10  ((a)~(d)) 不同温度合成的NiCo2O4的GCD曲线;(e) 1 A·g−1电流密度下GCD曲线对比图;(f) 与图10(e)对应的电容值,插图为90℃的NiCo2O4电流密度与比电容关系图

    Figure  10.  ((a)-(d)) GCD curves of the obtained NiCo2O4 at different synthesis temperature; (e) GCD curves at 1 A·g−1; (f) Corresponding specific capacity of Fig. 10(e) (Inset of the relationship between current density and specific capacity of NiCo2O4 at 90℃)

    图  11  不同温度合成的NiCo2O4的EIS曲线

    Figure  11.  EIS curves of the obtained NiCo2O4 at different synthesis temperature

    Rs—Equivalent series resistance; Rct—Charge-transfer resistance; Cd—Double electric layer capacitance; w—Warburg’s resistance

    图  12  90℃的NiCo2O4循环稳定性测试

    Figure  12.  Cycle curves of the obtained NiCo2O4 at 90℃

    图  13  90℃的NiCo2O4电极的阴极峰电流与扫速的对数关系图(a)和不同扫速下电容和扩散控制的相对贡献(b)

    Figure  13.  Relationship between logarithm cathode peak current and logarithm scan rates (a) and relative contributions of capacitive and diffusion-controlled processes at different scanning rates (b) of NiCo2O4 at 90℃

    b—Constants obtained from the slope of the fitting linear curve of lg(scan rate) against lg(peak current)

    表  1  不同溶剂比例合成NiCo2O4的表面原子比

    Table  1.   Surface atomic ratios of the obtained NiCo2O4 with different solvent ratios

    SampleNi2p3/2/at%Co2p3/2/at%Ni2+/Ni3+
    (Atomic ratio)
    Co3+/Co2+
    (Atomic ratio)
    Ni/Co
    (Atomic ratio)
    Ni2+Ni3+ Co3+Co2+
    5 mL water77.122.972.227.83.372.600.37
    20 mL water69.830.280.119.92.314.020.60
    35 mL water65.334.775.124.91.883.010.71
    下载: 导出CSV
  • [1] LEE G, NA W, KIM J, et al. Improved electrochemical performances of MOF-derived Ni-Co layered double hydroxide complexes using distinctive hollow-in-hollow structures[J]. Journal of Materials Chemistry A,2019,7:17637-17647. doi: 10.1039/C9TA05138D
    [2] KARIMI-MALEH H, KARIPER İ A, KARAMAN C, et al. Direct utilization of radioactive irradiated graphite as a high-energy supercapacitor a promising electrode material[J]. Fuel,2022,325:124843. doi: 10.1016/j.fuel.2022.124843
    [3] WANG H F, ZHONG Y J, NING J Q, et al. Recent advances in the synthesis of non-carbon two-dimensional electrode materials for the aqueous electrolyte-based supercapacitors[J]. Chinese Chemical Letters,2021,32(12):3733-3752. doi: 10.1016/j.cclet.2021.04.025
    [4] LI J, YUAN X, LIN C, et al. Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification[J]. Advanced Energy Materials,2017,7(15):1602725. doi: 10.1002/aenm.201602725
    [5] LI W, YANG F F, HU Z H, et al. Template synthesis of C@NiCo2O4 hollow microsphere as electrode material for supercapacitor[J]. Journal of Alloys and Compounds,2018,749:305-312. doi: 10.1016/j.jallcom.2018.03.046
    [6] HU M, LI Z, HU T, et al. High-capacitance mechanism for Ti3C2Tx MXene by in situ electrochemical Raman spectroscopy investigation[J]. ACS Nano,2016,10(12):11344-11350. doi: 10.1021/acsnano.6b06597
    [7] LIU M, SHI M, LU W, et al. Core-shell reduced graphene oxide/MnOx@carbon hollow nanospheres for high performance supercapacitor electrodes[J]. Chemical Engineering Journal,2017,313:518-526. doi: 10.1016/j.cej.2016.12.091
    [8] MA L, SHEN X, ZHOU H, et al. High performance supercapacitor electrode materials based on porous NiCo2O4 hexagonal nanoplates/reduced graphene oxide composites[J]. Chemical Engineering Journal,2015,262:980-988. doi: 10.1016/j.cej.2014.10.079
    [9] KHAN A S, PAN L, FARID A, et al. Carbon nanocoils decorated with a porous NiCo2O4 nanosheet array as a highly efficient electrode for supercapacitors[J]. Nanoscale,2021,13:11943-11952. doi: 10.1039/D1NR00949D
    [10] BHAGWAN J, NAGARAJU G, RAMULU B, et al. Rapid synthesis of hexagonal NiCo2O4 nanostructures for high-performance asymmetric supercapacitors[J]. Electrochimica Acta,2019,299:509-517. doi: 10.1016/j.electacta.2018.12.174
    [11] WANG S X, ZOU Y J, XU F, et al. Morphological control and electrochemical performance of NiCo2O4@NiCo layered double hydroxide as an electrode for supercapacitors[J]. Journal of Energy Storage,2021,41:102862. doi: 10.1016/j.est.2021.102862
    [12] KUMAR R, JOANNI E, SAHOO S, et al. An overview of recent progress in nanostructured carbon-based supercapacitor electrodes: From zero to bi-dimensional materials[J]. Carbon,2022,193:298-338. doi: 10.1016/j.carbon.2022.03.023
    [13] 何广源, 陈学敏, 王雨婷, 等. 钴酸镍基纳米材料在超级电容器中的研究进展[J]. 化工进展, 2021, 40(7):3813-3825. doi: 10.16085/j.issn.1000-6613.2020-1540

    HE Guangyuan, CHEN Xuemin, WANG Yuting, et al. Research progress of nickel cobalt based nanomaterials in supercapacitors[J]. Chemical Industry and Engineering Progress,2021,40(7):3813-3825(in Chinese). doi: 10.16085/j.issn.1000-6613.2020-1540
    [14] ZHOU Q, XING J, GAO Y, et al. Ordered assembly of NiCo2O4 multiple hierarchical Structures for high-performance pseudocapacitors[J]. ACS Applied Materials & Interfaces,2014,6(14):11394-11402. doi: 10.1021/am501988s
    [15] QIAN Y, ZHANG J, JIN J, et al. Flexible solid-state asymmetric supercapacitor with high energy density and ultralong lifetime based on hierarchical 3D electrode design[J]. ACS Applied Energy Materials,2022,5(5):5830-5840. doi: 10.1021/acsaem.2c00185
    [16] WANG Y, SHI C, CHEN Y, et al. 3D flower-like MOF-derived NiCo-LDH integrated with Ti3C2Tx for high-performance pseudosupercapacitors[J]. Electrochimica Acta,2021,376(1):138040.
    [17] QU Z C, SHI M J, WU H Z, et al. An efficient binder-free electrode with multiple carbonized channels wrapped by NiCo2O4 nanosheets for high-performance capacitive energy storage[J]. Journal of Power Sources,2019,410-411:179-187. doi: 10.1016/j.jpowsour.2018.11.018
    [18] LI Q, LU C, CHEN C, et al. Layered NiCo2O4/reduced graphene oxide composite as an advanced electrode for supercapacitor[J]. Energy Storage Materials,2017,8:59-67. doi: 10.1016/j.ensm.2017.04.002
    [19] LEI Y, LI J, WANG Y Y, et al. Rapid microwave-assisted green synthesis of 3D hierarchical flower-shaped NiCo2O4 microsphere for high-performance supercapacitor[J]. ACS Applied Materials & Interfaces,2014,6(3):1773-1780. doi: 10.1021/am404765y
    [20] ZHANG Y, WANG J, YE J, et al. NiCo2O4 arrays nanostructures on nickel foam: Morphology control and application for pseudocapacitors[J]. Ceramics International,2016,42(13):14976-14983. doi: 10.1016/j.ceramint.2016.06.142
    [21] 苏展, 于金山, 裴锋, 等. 溶剂热法制备形貌可控的NiCo2O4超电材料及其性能研究[J]. 电镀与精饰, 2021, 43(12):1-6. doi: 10.3969/j.issn.1001-3849.2021.12.001

    SU Zhan, YU Jinshan, PEI Feng, et al. Preparation of NiCo2O4 supercapacitor electrode materials with controllable morphology by solvothermal method and research of their properties[J]. Plating & Finishing,2021,43(12):1-6(in Chinese). doi: 10.3969/j.issn.1001-3849.2021.12.001
    [22] KUMAR D R, PRAKASHA K R, PRAKASH A S, et al. Direct growth of honeycomb-like NiCo2O4@Ni foam electrode for pouch-type high-performance asymmetric supercapacitor[J]. Journal of Alloys and Compounds,2020,836:155370. doi: 10.1016/j.jallcom.2020.155370
    [23] WAN L, ZHAO Z, CHEN X, et al. Controlled synthesis of bifunctional NiCo2O4@FeNi LDH core-shell nanoarray air electrodes for rechargeable zinc-air batteries[J]. ACS Sustainable Chemistry & Engineering,2020,8(30):11079-11087. doi: 10.1021/acssuschemeng.0c00442
    [24] ZHOU X, WEN J, WANG Z, et al. Size-controllable porous flower-like NiCo2O4 fabricated via sodium tartrate assisted hydrothermal synthesis for lightweight electromagnetic absorber[J]. Journal of Colloid and Interface Science,2021,602:834-845. doi: 10.1016/j.jcis.2021.06.083
    [25] WU H, WU G, REN Y, et al. Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4-CoNiO2 hybrids[J]. Journal of Materials Chemistry C,2015,3(29):7677-7690. doi: 10.1039/C5TC01716E
    [26] XIONG W, GAO Y S, WU X, et al. Composite of macroporous carbon with honeycomb-like structure from mollusc shell and NiCo2O4 nanowires for high-performance[J]. ACS Applied Materials & Interfaces,2014,6(21):19416-19423.
    [27] WANG T L, ZHANG H, LUO H M, et al. Controlled synthesis of NiCo2O4 nanowires and nanosheets on reduced graphene oxide nanosheetsfor supercapacitors[J]. Journal of Solid State Electrochemistry,2015,19(11):3309-3317. doi: 10.1007/s10008-015-2940-6
    [28] JIN C, LU F, CAO X, et al. Facile synthesis and excellent electrochemical properties of NiCo2O4 spinel nanowire arrays as a bifunctional catalyst for the oxygen reduction and evolution reaction[J]. Journal of Materials Chemistry A,2013,1(39):12170-12177. doi: 10.1039/c3ta12118f
    [29] XU R, ZENG H C. Dimensional control of cobalt-hydroxide-carbonate nanorods and their thermal conversion to one-dimensional arrays of Co3O4 nanoparticles[J]. Journal of Physical Chemistry B,2003,107(46):12643-12649. doi: 10.1021/jp035751c
    [30] HU Y, WANG Q, CHEN S, et al. Flexible supercapacitors fabricated by growing porous NiCo2O4 in-situ on a carbon nanotube film using a hyperbranched polymer template[J]. ACS Applied Energy Materials,2020,3(4):4043-4050. doi: 10.1021/acsaem.0c00491
    [31] KUMAR L, CHAUHAN H, YADAV N, et al. Faster ion switching NiCo2O4 nanoparticle electrode based supercapacitor device with high performances and long cycling stability[J]. ACS Applied Energy Materials,2018,1(12):6999-7006. doi: 10.1021/acsaem.8b01427
    [32] AN C, WANG Y, HUANG Y, et al. Porous NiCo2O4 nanostructures for high performance supercapacitors via a microemulsion technique[J]. Nano Energy,2014,10:125-134. doi: 10.1016/j.nanoen.2014.09.015
    [33] KAVINKUMAR T, VINODGOPAL K, NEPPOLIAN B. Development of nanohybrids based on porous spinel MCo2O4 (M=Zn, Cu, Ni and Mn)/reduced graphene oxide/carbon nanotube as promising electrodes for high performance energy storage devices[J]. Applied Surface Science,2020,513:145781.
    [34] WU W, ZHAO C, NIU D, et al. Ultrathin N-doped Ti3C2-MXene decorated with NiCo2S4 nanosheets as advanced electrodes for supercapacitors[J]. Applied Surface Science,2021,539:148272. doi: 10.1016/j.apsusc.2020.148272
    [35] CAI Y, WANG Y, ZHANG L, et al. 3D heterostructure constructed by few-layered MXenes with a MoS2 layer as the shielding shell for excellent hybrid capacitive deionization and enhanced structural stability[J]. ACS Applied Materials & Interfaces,2022,14(2):2833-2847. doi: 10.1021/acsami.1c20531
    [36] LI G, CAI H R, LI X L, et al. Construction of hierarchical NiCo2O4@Ni-MOF hybrid arrays on carbon cloth as superior battery-type electrodes for flexible solid-state hybrid supercapacitors[J]. ACS Applied Materials & Interfaces,2019,11(41):37675-37684.
    [37] LI Y, WANG S, NI G, et al. Facile synthesis of NiCo2O4 nanowire arrays/few-layered Ti3C2-MXene composite as binder-free electrode for high-performance supercapacitors[J]. Molecules,2022,27(19):6452. doi: 10.3390/molecules27196452
    [38] PATIL A M. Redox-ambitious route to boost energy and capacity retention of pouch type asymmetric solid-state supercapacitor fabricated with graphene oxide-based battery-type electrodes[J]. Applied Materials Today,2020,19:100563. doi: 10.1016/j.apmt.2020.100563
    [39] LIU H, HU R, QI J, et al. A facile method for synthesizing NiS nanoflower grown on MXene (Ti3C2Tx) as positive electrodes for "supercapattery"[J]. Electrochimica Acta,2020,353:136526. doi: 10.1016/j.electacta.2020.136526
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  571
  • HTML全文浏览量:  178
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-29
  • 修回日期:  2023-05-03
  • 录用日期:  2023-05-06
  • 网络出版日期:  2023-05-12
  • 刊出日期:  2024-01-01

目录

    /

    返回文章
    返回