Influence of interfacial effect of mesoporous materials on heat transport characteristics of mixed nitrate composite phase change materials
-
摘要: 随着化石燃料的快速消耗,能源安全、气候变化问题日益突出,清洁、可持续能源发展技术及储能技术的研究成为热点。本文采用分子动力学模拟和实验研究相结合的方式,展开界面效应对混合硝酸盐复合相变材料(CPCM)热输运特性的影响研究。首先分别采用激光导热仪和差示扫描量热仪测试了CPCM的热导率和比热容。然后使用Materials Studio软件建立共晶状态下不同NaNO3和KNO3配比、不同骨架的CPCM模型,对其热导率和定压比热进行分子动力学模拟计算,通过径向分布函数、界面结合能和体热膨胀系数的变化分析了实验结果的内在机制,进而深入分析了界面效应与混合硝酸盐配比对热物性影响的竞争关系。结果表明:NaNO3与KNO3质量比为4∶6时离子间相互作用弱于其他配比,界面结合能最大,热导率最大。界面结合能的增加对热导率的增强强于离子间相互作用的减弱对热导率的削弱,界面效应在CPCM热导率的变化中占主导地位;CPCM定压比热受离子对比例变化及骨架材料变化的影响,界面结合能及离子间相互作用对定压比热没有明显影响。Abstract: With the rapid consumption of fossil fuels, the issues of energy security and climate change are becoming increasingly prominent. The research of clean and sustainable energy development technology and energy storage technology has become a hot topic. By combining molecular dynamics simulation and experimental research, the influence of interface effects on the heat transport characteristics of mixed nitrate composite phase change materials (CPCM) was studied. Firstly, the thermal conductivity and specific heat capacity of CPCM were measured by laser thermal conductivity meter and differential scanning calorimeter respectively. Then Materials Studio software was used to establish the models of composite phase change materials with different NaNO3 and KNO3 ratios in eutectic states and different skeletons and the molecular dynamics simulation calculation of its thermal conductivity and specific heat at constant pressure was carried out. The internal mechanism of the experimental results was analyzed through the changes in radial distribution function, interface binding energy, and bulk thermal expansion coefficient, and then the competitive relationship between the interface effect and the mixed nitrate ratio on the thermal properties was further analyzed. The results show that when the mass ratio of NaNO3 and KNO3 is 4∶6, the interaction between ions is weaker than other ratios, and the interface binding energy and thermal conductivity are the largest. An increase in interfacial binding energy enhances the thermal conductivity more strongly than a decrease in the interaction between ions weakens the thermal conductivity, the interfacial effect plays a dominant role in the change in the thermal conductivity of CPCM. The specific heat of CPCM at constant pressure is affected by the change of ratio and skeleton material, interfacial binding energy and ionic interaction have no obvious effect on specific heat at constant pressure.
-
图 8 陶瓷材料界面下离子之间的径向分布函数g(r):(a) K+-Na+;(b) K+-N−;(c) Na+-N−;(d) K+-Al3+;(e) K+-Si4+;(f) Na+-Al3+;(g) Na+-Si4+
Figure 8. Radial distribution function g(r) between ions at the interface of ceramic materials: (a) K+-Na+; (b) K+-N−; (c) Na+-N−; (d) K+-Al3+; (e) K+-Si4+; (f) Na+-Al3+; (g) Na+-Si4+
r—Radius
图 15 不同骨架下混合硝酸盐CPCM定压比热:(a) 熔化前SiO2骨架;(b) 熔化后SiO2骨架;(c) 熔化前陶瓷骨架;(d) 熔化后陶瓷骨架;(e) 熔化前Al2O3骨架;(f) 熔化后Al2O3骨架
Figure 15. Specific heat at constant pressure of mixed nitrate CPCM under different skeletons: (a) SiO2 skeleton before melting; (b) SiO2 skeleton after melting; (c) Ceramic skeleton before melting; (d) Ceramic skeleton after melting; (e) Al2O3 skeleton before melting; (f) Al2O3 skeleton after melting
表 1 材料信息
Table 1. Material information
Materials Manufacturers Purity KNO3 Sinopharm Chemical Reagent
CO., LTD.Analytical purity NaNO3 Sinopharm Chemical Reagent
CO., LTD.Analytical purity Al2O3 Sinopharm Chemical Reagent
CO., LTD.Analytical purity Al(OH)3 Tianjin Damao Chemical
Reagent FactoryAnalytical purity Diatomite Tianjin Damao Chemical
Reagent FactoryAnalytical purity Citrin Shanghai AIbi Chemical
Reagent CO., LTD.99.5% Gelatin Tianjin Bodi Chemical CO., LTD. 99.5% SBA-15 Beijing Solaibao Technology
CO., LTD.100%Si Anhydrous ethanol Sinopharm Chemical Reagent
CO., LTD.99.5% Note: SBA-15—SiO2 molecular sieve. 表 2 混合硝酸盐复合相变材料离子数
Table 2. Ions of mixed nitrate composite phase change material
CPCM Nitrate ions Skeleton molecule Scale/nm Na+ K+ NO3− Al2O3 SiO2 [w(NaNO3∶KNO3)=6∶4]/Al2O3 180 101 281 287 0 6-7 [w(NaNO3∶KNO3)=6∶4]/SiO2 180 101 281 0 473 6-7 [w(NaNO3∶KNO3)=6∶4]/ceramic 180 101 281 77 363 6-7 [w(NaNO3∶KNO3)=5∶5]/Al2O3 151 127 278 294 0 6-7 [w(NaNO3∶KNO3)=5∶5]/SiO2 151 127 278 0 473 6-7 [w(NaNO3∶KNO3)=5∶5]/ceramic 151 127 278 77 363 6-7 [w(NaNO3∶KNO3)=4∶6]/Al2O3 126 159 285 308 0 6-7 [w(NaNO3∶KNO3)=4∶6]/SiO2 126 159 285 0 495 6-7 [w(NaNO3∶KNO3)=4∶6]/ceramic 126 159 285 77 363 6-7 [w(NaNO3∶KNO3)=9∶1]/Al2O3 265 25 290 287 0 6-7 [w(NaNO3∶KNO3)=9∶1]/SiO2 265 25 290 0 462 6-7 [w(NaNO3∶KNO3)=9∶1]/ceramic 265 25 290 70 330 6-7 表 3 混合硝酸盐CPCM熔化前后比热
Table 3. Specific heat of mixed nitrate CPCM before and after melting
CPCM Specific heat
of solid state/
(J·g−1·K−1)Specific heat
of liquid/
(J·g−1·K−1)[w(NaNO3∶KNO3)=6∶4]/Al2O3 1.15568 1.4600 [w(NaNO3∶KNO3)=6∶4]/SiO2 0.97800 1.2940 [w(NaNO3∶KNO3)=6∶4]/ceramic 1.09350 1.3320 [w(NaNO3∶KNO3)=5∶5]/Al2O3 1.14009 1.4200 [w(NaNO3∶KNO3)=5∶5]/SiO2 0.96400 1.2680 [w(NaNO3∶KNO3)=5∶5]/ceramic 1.04930 1.3225 [w(NaNO3∶KNO3)=4∶6]/Al2O3 1.10329 1.3510 [w(NaNO3∶KNO3)=4∶6]/SiO2 0.93000 1.2040 [w(NaNO3∶KNO3)=4∶6]/ceramic 1.01350 1.2865 [w(NaNO3∶KNO3)=9∶1]/Al2O3 1.07772 1.3150 [w(NaNO3∶KNO3)=9∶1]/SiO2 0.92200 1.1360 [w(NaNO3∶KNO3)=9∶1]/ceramic 0.99250 1.2535 -
[1] ZHANG S, LI Z Y, YAO Y P, et al. Heat transfer characteristics and compatibility of molten salt/ceramic porous composite phase change material[J]. Nano Energy,2022,100:107476. doi: 10.1016/j.nanoen.2022.107476 [2] FANG G H, SUN P B, ZHAO M S, et al. Experimental and numerical simulation of paraffin-based ternary composite phase change material used in solar energy system[J]. Applied Thermal Engineering,2022,214:118618. doi: 10.1016/j.applthermaleng.2022.118618 [3] ZHOU B, ZHEN L P, YANG Y J, et al. Novel composite phase change material of high heat storage and photothermal conversion ability[J]. Journal of Energy Storage,2022,49:104101. doi: 10.1016/j.est.2022.104101 [4] LIU Y L, ZHEN J L, DENG Y, et al. Effect of functional modification of porous medium on phase change behavior and heat storage characteristics of form-stable composite phase change materials: A critical review[J]. Journal of Energy Storage, 2021, 44: 103637. [5] BONIFACE D M, GABRIEL Z, EMILIANO B, et al. Trends and future perspectives on the integration of phase change materials in heat exchangers[J]. Journal of Energy Storage,2021,38:102544. doi: 10.1016/j.est.2021.102544 [6] 吴玉庭, 王涛, 马重芳, 等. 二元混合硝酸盐的配制及性能[J]. 太阳能学报, 2012, 33(1):148-152. doi: 10.3969/j.issn.0254-0096.2012.01.025WU Yuting, WANG Tao, MA Zhongfang, et al. Preparation and properties of binary mixed nitrate[J]. Acta Energiae Solaris Sinica,2012,33(1):148-152(in Chinese). doi: 10.3969/j.issn.0254-0096.2012.01.025 [7] DING X P, HUANG J W, ZHU F Y, et al. Study on energy storage performance of thermally enhanced composite phase change material of calcium nitrate tetrahydrate[J]. Journal of Energy Storage, 2022, 52: 104879. [8] LI Q, WEI W Z, LI Y Y, et al. Development and investigation of form-stable quaternary nitrate salt based composite phase change material with extremely low melting temperature and large temperature range for low-mid thermal energy storage[J]. Energy Reports,2022,8:1528-1537. doi: 10.1016/j.egyr.2021.12.054 [9] ALEXANDER B, BRAUN M, BAUER T. Phase diagram, thermodynamic properties and long-term isothermal stability of quaternary molten nitrate salts for thermal energy storage[J]. Solar Energy,2022,231:1061-1071. doi: 10.1016/j.solener.2021.12.020 [10] CHEN Q, WANG H, GAO H B, et al. Effects of porous silicon carbide supports prepared from pyrolyzed precursors on the thermal conductivity and energy storage properties of paraffin-based composite phase change materials[J]. Journal of Energy Storage, 2022, 56: 106046. [11] ZHAO X G, TANG Y L, XIE W M, et al. 3D hierarchical porous expanded perlite-based composite phase-change material with superior latent heat storage capability for thermal management[J]. Construction and Building Materials,2023,362:129768. doi: 10.1016/j.conbuildmat.2022.129768 [12] SANG L X, XU Y W. Form stable binary chlorides/expanded graphite composite material with enhanced compressive strength for high temperature thermal storage[J]. Journal of Energy Storage,2020,31:101611. doi: 10.1016/j.est.2020.101611 [13] LI Y, YUE G, YU Y M, et al. Preparation and thermal characterization of LiNO3-NaNO3-KCl ternary mixture and LiNO3-NaNO3-KCl/EG composites[J]. Energy,2020,196:117067. doi: 10.1016/j.energy.2020.117067 [14] ZHANG G H, SUN Y, WU C X, et al. Low-cost and highly thermally conductive lauric acid-paraffin-expanded graphite multifunctional composite phase change materials for quenching thermal runaway of lithium-ion battery[J]. Energy Reports,2023,9:2538-2547. doi: 10.1016/j.egyr.2023.01.102 [15] GAO J, HAN G J, SONG J Z, et al. Customizing 3D thermally conductive skeleton by 1D aramid nanofiber/2D graphene for high-performance phase change composites with excellent solar-to-thermal conversion ability[J]. Materials Today Physics,2022,27:100811. doi: 10.1016/j.mtphys.2022.100811 [16] JIANG F, LING X, ZHANG L L, et al. Improved thermal conductivity of form-stable NaNO3: Using the skeleton of porous ceramic modified by SiC[J]. Solar Energy Materials and Solar Cells,2021,231:111310. doi: 10.1016/j.solmat.2021.111310 [17] WANG Y C, ZHANG L Y, TAO S Y, et al. Phase change in modified hierarchically porous monolith: An extra energy increase[J]. Microporous and Mesoporous Materials,2014,193:69-76. doi: 10.1016/j.micromeso.2014.03.007 [18] HUANG X Y, LIU Z P, XIA W, et al. Alkylated phase change composites for thermal energy storage based on surface-modified silica aerogels[J]. Journal of Materials Chemistry A,2015,3(5):1935-1940. doi: 10.1039/C4TA06735E [19] DUEMMLER K, WOODS M, KARLSSON T, et al. An ab initio molecular dynamics investigation of the thermophysical properties of molten NaCl-MgCl2[J]. Journal of Nuclear Materials,2022,570:153916. doi: 10.1016/j.jnucmat.2022.153916 [20] LU J F, YANG S F, RONG Z Z, et al. Thermal properties of KCl-MgCl2 eutectic salt for high-temperature heat transfer and thermal storage system[J]. Solar Energy Materials and Solar Cells,2021,228:111130. doi: 10.1016/j.solmat.2021.111130 [21] VAKA M, WALVEKAR R, KHALID M, et al. Low-melting-temperature binary molten nitrate salt mixtures for solar energy storage[J]. Journal of Thermal Analysis and Calorimetry,2020,141(6):2657-2664. doi: 10.1007/s10973-020-09683-y [22] WU J, NI H O, LIANG W S, et al. Molecular dynamics simulation on local structure and thermodynamic properties of molten ternary chlorides systems for thermal energy storage[J]. Computational Materials Science,2019,170:109051. doi: 10.1016/j.commatsci.2019.05.049 [23] OUYANG Y X, QIU L, BAI Y Y, et al. Synergistical thermal modulation function of 2D Ti3C2 MXene composite nanosheets via interfacial structure modification[J]. iScience,2022,25(8):104825. doi: 10.1016/j.isci.2022.104825 [24] YU Z P, FENG D L, FENG Y H, et al. Thermal conductivity and energy storage capacity enhancement and bottleneck of shape-stabilized phase change composites with graphene foam and carbon nanotubes[J]. Composites Part A: Applied Science and Manufacturing,2022,152:106703. doi: 10.1016/j.compositesa.2021.106703 [25] FENG D L, FENG Y H, LI P, et al. Modified mesoporous silica filled with PEG as a shape-stabilized phase change materials for improved thermal energy storage performance[J]. Microporous and Mesoporous Materials,2020,292:109756. doi: 10.1016/j.micromeso.2019.109756 [26] REN N, WU Y T, MA C F, et al. Preparation and thermal properties of quaternary mixed nitrate with low melting point[J]. Solar Energy Materials and Solar Cells,2014,127:6-13. doi: 10.1016/j.solmat.2014.03.056 [27] XIAO S K, LIU X R, CHANG Z X, et al. Si-HfO2 composite powders fabricated by freeze drying for bond layer of environmental barrier coatings[J]. Ceramics International,2022,48(13):19266-19273. doi: 10.1016/j.ceramint.2022.03.219 [28] FENG L L, ZHAO W, ZHENG J, et al. The shape-stabilized phase change materials composed of polyethylene glycol and various mesoporous matrices (AC, SBA-15 and MCM-41)[J]. Solar Energy Materials and Solar Cells,2011,95(12):3550-3556. doi: 10.1016/j.solmat.2011.08.020 [29] YANG B, LIU J M, SONG Y W, et al. Experimental study on the influence of preparation parameters on strengthening stability of phase change materials (PCMs)[J]. Renewable Energy,2020,146:1867-1878. doi: 10.1016/j.renene.2019.08.052 [30] 官云许, 杨启容, 何卓亚, 等. 储能用多孔铝硅酸盐陶瓷基热物性的研究[J]. 功能材料, 2021, 52(2):2153-2160.GUAN Yunxu, YANG Qirong, HE Zhuoya, et al. Study on thermal properties of porous aluminosilicate ceramics for energy storage[J]. Journal of Functional Materials,2021,52(2):2153-2160(in Chinese). [31] ANAGNOSTOPOULOS A, ALEXIADIS A, DING Y. Molecular dynamics simulation of solar salt (NaNO3-KNO3) mixtures[J]. Solar Energy Materials and Solar Cells,2019,200:109897. doi: 10.1016/j.solmat.2019.04.019 [32] KARASAWA N, GODDARD W. Force fields, structures, and properties of poly(vinylidene fluoride) crystals[J]. Macromolecules,1992,25-26:7268-7281. [33] PAN G C, DING J, WANG W, et al. Molecular simulations of the thermal and transport properties of alkali chloride salts for high-temperature thermal energy storage[J]. International Journal of Heat and Mass Transfer,2016,103:417-427. doi: 10.1016/j.ijheatmasstransfer.2016.07.042 [34] HU Y H, SINNOTT S B. Constant temperature molecular dynamics simulations of energetic particle-solid collisions: Comparison of temperature control methods[J]. Journal of Computational Physics,2004,200(1):251-266. doi: 10.1016/j.jcp.2004.03.019 [35] BERENDSEN H J C, POSTMA J P M, VAN GUNSTEREN W F, et al. Molecular dynamics with coupling to an external bath[J]. The Journal of Chemical Physics,1984,81:3684-3690. doi: 10.1063/1.448118 [36] GONG X F, YANG Q R, YAO E R, et al. Molecular dynamics study on the thermal conductivity of graphene and pentaerythritol phase change composites[J]. Journal of Functional Materials,2020,51(1):1214-1220. doi: 10.3969/j.issn.1001-9731.2020.01.036 [37] YANG H A, CAO B Y. Effects and correction of angular momentum non-conservation in RNEMD for calculating thermal conductivity[J]. Computational Materials Science,2020,183:109753. doi: 10.1016/j.commatsci.2020.109753 [38] FOILES S M, BASKES M I, DAW M S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys[J]. Physical Review B,1986,33(12):7983-7991. doi: 10.1103/PhysRevB.33.7983 [39] 何卓亚, 杨启容, 李昭莹, 等. 介孔尺度及结构对混合硝酸盐热输运特性的影响[J]. 物理学报, 2022, 71(3):65-77.HE Zhuoya, YANG Qirong, LI Zhaoying, et al. Effects of mesoporous scale and structure on heat transport characteristics of mixed nitrate[J]. Acta Physica Sinica,2022,71(3):65-77(in Chinese). [40] 毛蕊, 杨启容, 李昭莹, 等. 介孔内太阳盐凝固特性的尺度效应和结构效应分析[J]. 物理学报, 2022, 71(11):71-82.MAO Rui, YANG Qirong, LI Zhaoying, et al. Scale effect and structure effect analysis of solar salt solidification characteristics in mesoporous area[J]. Acta Physica Sinica,2022,71(11):71-82(in Chinese). [41] XIAO J B, HUANG J, ZHU P P, et al. Preparation, characterization and thermal properties of binary nitrate salts/expanded graphite as composite phase change material[J]. Thermochimica Acta,2014,587:52-58. doi: 10.1016/j.tca.2014.04.021 [42] 宋文兵, 鹿院卫, 陈晓彤, 等. 氯化盐/陶瓷定形复合相变材料的制备和热物性研究[J]. 储能科学与技术, 2021, 10(5): 1720-1728.SONG Wenbing, LU Yuanwei, CHEN Xiaotong, et al. Preparation and thermal properties of chloride/ceramic shaped composite phase change materials[J]. Energy Storage Science and Technology, 2021, 10(5): 1720-1728(in Chinese). [43] RONG Z Z, DING J, WANG W L, et al. Ab-initio molecular dynamics calculation on microstructures and thermophysical properties of NaCl-CaCl2-MgCl2 for concentrating solar power[J]. Solar Energy Materials and Solar Cells,2020,216:110696. doi: 10.1016/j.solmat.2020.110696 [44] LI J L, ZHANG Y, ZHAO Y J, et al. Novel high specific heat capacity ternary nitrate/nitrite eutectic salt for solar thermal energy storage[J]. Solar Energy Materials and Solar Cells,2021,227:111075. doi: 10.1016/j.solmat.2021.111075 [45] ANAGNOSTOPOULOS A, ALEXIADIS A, DING Y L. Simplified force field for molecular dynamics simulations of amorphous SiO2 for solar applications[J]. International Journal of Thermal Sciences,2021,160:106647. doi: 10.1016/j.ijthermalsci.2020.106647 [46] HE Z Z, YANG Q R, LI Z Y, et al. Effect of the mesoporous size, structure and surface on the melting and heat transport properties of solar salt[J]. Solar Energy Materials and Solar Cells,2022,248:111978. doi: 10.1016/j.solmat.2022.111978 [47] LONAPPAN M. Thermal expansion of potassium nitrate[J]. Proceedings of the Indian Academy of Sciences—Section A,1955,41(6):239-244. doi: 10.1007/BF03048789 [48] ZHOU W N, YANG Z X, FENG Y H, et al. Insights into the thermophysical properties and heat conduction enhancement of NaCl-Al2O3 composite phase change material by molecular dynamics simulation[J]. International Journal of Heat and Mass Transfer,2022,198:123422. doi: 10.1016/j.ijheatmasstransfer.2022.123422 [49] ZHANG S, YAO Y P, JIN Y G, et al. Heat transfer characteristics of ceramic foam/molten salt composite phase change material (CPCM) for medium-temperature thermal energy storage[J]. International Journal of Heat and Mass Transfer,2022,196:123262. doi: 10.1016/j.ijheatmasstransfer.2022.123262 [50] DONGHYUN S, DEBJYOTI B. Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications[J]. International Journal of Heat and Mass Transfer,2011,54(5-6):1064-1070. doi: 10.1016/j.ijheatmasstransfer.2010.11.017 [51] DONGHYUN S, DEBJYOTI B. Enhanced thermal properties of SiO2 nanocomposite for solar thermal energy storage applications[J]. International Journal of Heat and Mass Transfer,2015,84:898-902. doi: 10.1016/j.ijheatmasstransfer.2015.01.100