Damping and mechanical properties of novel CuAlNi/Al composites prepared by infiltration technique
-
摘要: 选用CuAlNi形状记忆合金作为阻尼增强相,设计并制备了新型枣糕状CuAlNi/Al复合材料。制备过程主要由两个步骤组成,首先基于造孔剂颗粒的空间占位和溶除,通过粉末冶金工艺制备了CuAlNi泡沫,随后在此基础上,采用真空负压渗流技术制备了CuAlNi/Al复合材料。详细考察了复合材料的微观结构、阻尼和压缩力学性能。内耗测试表明,CuAlNi/Al复合材料可以实现超高的阻尼能力,远高于相应的Al基体,在室温附近的阻尼值甚至是纯Al的6倍。复合材料优异的阻尼能力不仅来源于CuAlNi合金增强相的高本征阻尼能力,还与CuAlNi和纯Al之间引入的弱结合界面阻尼及复合材料中与残余微孔相关的附加阻尼有关。此外,当CuAlNi/Al复合材料中Al体积分数高于59.5vol%时,具有和纯Al相似的压缩应力-应变曲线和形变机制,但呈现更高的压缩力学强度和能量吸收能力。
-
关键词:
- CuAlNi/Al复合材料 /
- 阻尼能力 /
- 力学性能 /
- 微观结构 /
- 粉末冶金
Abstract: CuAlNi shape memory alloy is chosen as damping reinforced phase, then novel jujube-cake shaped CuAlNi/Al composites were designed and prepared. The whole preparation process can be summarized as two steps, i.e. initial production of parent CuAlNi foam by powder metallurgy process basing on space occupation and dissolution of pore-forming agent and subsequent fabrication of CuAlNi/Al composites by negative pressure infiltration. The microstructure, damping and compressive mechanical properties of the composites were investigated in details. Internal friction measurements indicate that the CuAlNi/Al composites can obtain ultrahigh damping capacity, and the value of damping near the room temperature is even 6 times relative to pure Al. The excellent damping capacity of the composite is rationalized not only to relate to high intrinsic damping of CuAlNi reinforcement, but also to associate with the weak-bonding interface damping introduced between CuAlNi and pure Al and the additional damping arising from the residual micro-pores in the composites. Moreover, the composites exhibit similar compressive stress-strain curves and deformation mechanism as pure Al when the Al volume percent in the composite is more than 59.5vol%, but higher compressive mechanical strength and energy absorption capacity.-
Key words:
- CuAlNi/Al composite /
- damping capacity /
- mechanical properties /
- microstructure /
- powder metallurgy
-
图 4 CuAlNi/Al 复合材料微观形貌:((a)~(c)) 倍率不同的微观结构;(d) CuAlNi合金和纯Al间界面结构(虚线包围区域);(e) CuAlNi 微观结构(矩形区域孔壁上大孔被纯Al填充);(f) CuAlNi 微观结构(其中椭圆区域孔壁上小孔或闭孔未被纯Al填充)
Figure 4. Micromorphologies of CuAlNi/Al composites: ((a)-(c)) Microstructures with various magnification; (d) Interface between pure Al and CuAlNi alloy as the area surrounded by dotted lines; (e) CuAlNi microstructure containing macropores filled by pure Al in rectangular region; (f) CuAlNi microstructure containing micropores or closed pores not filled by pure Al in elliptic region
图 6 CuAlNi/Al复合材料压缩应力-应变曲线:(a) 复合材料和纯Al,其中复合材料中纯Al体积分数高于59.5vol%;(b) 复合材料和CuAlNi泡沫,其中复合材料中纯Al体积分数低于52.2vol% (插图为孔隙率75.7%的CuAlNi泡沫)
Figure 6. Compressive stress-strain curves of CuAlNi/Al composites: (a) Composites and pure Al, where the Al volume percent in the composites is more than 59.5vol%; (b) Composites and CuAlNi foam, where the Al volume percent in the composites is less than 52.2vol% (Inset shows the compressive curve of CuAlNi foam with the porosity of 75.7%)
-
[1] LI G C, MA Y, HE X L, et al. Damping capacity of high strength-damping aluminum alloys prepared by rapid solidification and powder metallurgy process[J]. Transactions of Nonferrous Metals Society of China,2012,22:1112-1117. doi: 10.1016/S1003-6326(11)61291-0 [2] RAHIMAN A H S, SMART D S R. Damping characteristics of aluminium matrix composites—A review[J]. Materials Today: Proceedings,2019,11:1139-1143. doi: 10.1016/j.matpr.2018.12.048 [3] TSIMOURI I C, MONTIBELLER S, KERN L, et al. A simulation-driven design approach to the manufacturing of stiff composites with high viscoelastic damping[J]. Composites Science and Technology,2021,208:108744. doi: 10.1016/j.compscitech.2021.108744 [4] JIAO Z X, WANG Q Z, YIN F X, et al. Novel laminated multi-layer graphene/Cu-Al-Mn composites with ultrahigh damping capacity and superior tensile mechanical properties[J]. Carbon,2022,188:45-58. doi: 10.1016/j.carbon.2021.11.055 [5] WILLIAMS J C, STARKE E A. Process in structural materials for aerospace systems[J]. Acta Materialia,2003,51(19):5775-5799. doi: 10.1016/j.actamat.2003.08.023 [6] LIU F C, MA Z Y, ZHANG F C. High strain rate superplasticity in a micro-grained Al-Mg-Sc alloy with predominant high angle grain boundaries[J]. Journal of Materials Science & Technology,2012,28(11):1025-1030. [7] JIANG H J, LIU C Y, ZHANG B, et al. Simultaneously improving mechanical properties and damping capacity of Al-Mg-Si alloy through friction stir processing[J]. Materials Characterization,2017,131:425-430. doi: 10.1016/j.matchar.2017.07.037 [8] WANG W, YI D Q, HUA W, et al. High damping capacity of Al-40Zn alloys with fine grain and eutectoid structures via Yb alloying[J]. Journal of Alloys and Compounds,2021,870:159485. doi: 10.1016/j.jallcom.2021.159485 [9] JIANG H J, LIU C Y, CHEN Y, et al. Evaluation of microstructure, damping capacity and mechanical properties of Al-35Zn and Al-35Zn-0.5Sc alloys[J]. Journal of Alloys and Compounds,2018,739:114-121. doi: 10.1016/j.jallcom.2017.12.234 [10] ZHANG Z H, XIAO F X, WANG Y W, et al. Mechanism of improving strength and damping properties of powder-extruded Al/Zn composite after diffusion annealing[J]. Transactions of Nonferrous Metals Society of China,2018,28:1928-1937. doi: 10.1016/S1003-6326(18)64838-1 [11] ZHANG Z M, HU B, GAO F T, et al. Room-temperature damping capacity of Al2O3P/Al composites prepared by reciprocating extrusion[J]. Acta Materiae Compositae Sinica,2011,28(4):130-135. [12] XIAO C J. A study on the damping capacity of BaTiO3-reinforced Al-matrix composites[J]. Bulletin of Materials Science,2016,39(2):463-467. doi: 10.1007/s12034-016-1171-5 [13] WENG W, WANG H W, MA N H, et al. Effect of domain structure on the damping properties of LiNbO3/Al composites[J]. Materials & Design,2010,31(9):4116-4121. [14] ZHANG Y J, MA N H, WANG H W, et al. Effect of Ti on the damping behavior of aluminum composite reinforced with in situ TiB2 particulate[J]. Scripta Materialia, 2005, 53(10): 1171-1174. [15] ZHANG Y J, MA N H, WANG H W. Effect of particulate/Al interface on the damping behavior of in situ TiB2 reinforced aluminium composite[J]. Materials Letters,2007,61(14-15):3273-3275. doi: 10.1016/j.matlet.2006.11.052 [16] EMADODDIN E, TAJALLY M, MASOUMI M. Damping behavior of Al/SiCp multilayer composite manufactured by roll bonding[J]. Materials & Design,2012,42:334-338. doi: 10.1016/j.matdes.2012.06.009 [17] ZHANG Y J, MA N H, LI X F, et al. Study on damping capacity of aluminum composite reinforced with in situ TiAl3 rod[J]. Materials & Design,2008,29(5):1057-1059. [18] JIA C L. Study on damping behavior of FeAl3 reinforced commercial purity aluminum[J]. Materials & Design,2007,28(5):1711-1713. [19] YU Y H, WU X N, XU P. Research on damping of foamed Al composite filled epoxy resin in the holes[J]. Advanced Materials Research,2011,146-147:318-322. [20] JIANG Z H, CAI H Y, CHEN X L, et al. Improving the mechanical and damping properties of polymer/memory alloy composite by introducing nanotubes covered with nano-scale Ni particles[J]. Composites Part A: Applied Science and Manufacturing,2022,156:106856. doi: 10.1016/j.compositesa.2022.106856 [21] JIANG Z H, WANG F M J, YIN J L, et al. Vibration damping mechanism of CuAlMn/polymer/carbon nanomaterials multi-scale composites[J]. Composites Part B: Engineering,2020,199:108266. doi: 10.1016/j.compositesb.2020.108266 [22] JI X W, WANG Q Z, YIN F X, et al. Fabrication and properties of novel porous CuAlMn shape memory alloys and polymer/CuAlMn composites[J]. Composites Part A: Applied Science and Manufacturing,2018,107:21-30. doi: 10.1016/j.compositesa.2017.12.013 [23] HU J, WU G H, ZHAGN Q, et al. Mechanical properties and damping capacity of SiCp/TiNif/Al composite with different volume fraction of SiC particle[J]. Composites Part B: Engineering, 2014, 66: 400-406. [24] HAN F S, ZHU Z G, GAO J C. Compressive deformation and energy absorbing characteristic of foamed aluminum[J]. Metallurgical and Materials Transactions A,1998,29:2497-2502. doi: 10.1007/s11661-998-0221-z [25] ASHBY M F. The mechanical properties of cellular solids[J]. Metallurgical Transaction A,1981,14(9):1755-1769. [26] 何德坪. 超轻多孔金属[M]. 北京: 科学出版社, 2008: 337.HE Deping. Ultralight porous metal[M]. Beijing: Science Press, 2008: 337(in Chinese). [27] 雷波, 郝刚领, 李育川, 等. 冷却速率对CuAlNi形状记忆合金阻尼行为的影响[J]. 材料导报, 2022, 36(24):21090026. doi: 10.11896/cldb.21090026LEI Bo, HAO Gangling, LI Yuchuan, et al. Effect of cooling rates on damping behavior of CuAlNi shape memory alloy[J]. Materials Report,2022,36(24):21090026(in Chinese). doi: 10.11896/cldb.21090026 [28] WANG Q Z, HAN F S, WANG Q. Low frequency damping behavior of CuAlMn shape memory alloys[J]. Physica Status Solidi A,2004,201:2910-2914. [29] LIU X J, WANG Q Z, KONDRAT'EV SERGEY Y, et al. Microstructural, mechanical, and damping properties of a Cu-based shape memory alloy refined by an in situ LaB6/Al inoculant[J]. Metallurgical and Materials Transacton A,2019,50:2310-2321. doi: 10.1007/s11661-019-05153-9 [30] SURESH N, RAMAMURTY U. Aging response and its effect on the functional properties of Cu-Al-Ni shape memory alloys[J]. Journal of Alloys and Compounds,2008,449:113-118. doi: 10.1016/j.jallcom.2006.02.094 [31] ZHANG J M, PEREZ R J, WONG C R, et al. Effects of secondary phases on the damping behavior of metals, alloys and metal matrix composites[J]. Materials Science and Engineering: R: Reports,1994,13(8):325-389. doi: 10.1016/0927-796X(94)90010-8 [32] LEDERMAN W A. The damping properties of composite materials[D]. Milwaukee: University of Wisconsin-Milwaukee, 1991. [33] 刘长松, 韩福生, 朱震刚. 泡沫铝的低频内耗特征研究[J]. 物理学报, 1997, 46(8):1585-1592. doi: 10.3321/j.issn:1000-3290.1997.08.018LIU Changsong, HAN Fusheng, ZHU Zhengang. Internal fricton features of Al in-lower frequency[J]. Acta Physica Sinica,1997,46(8):1585-1592(in Chinese). doi: 10.3321/j.issn:1000-3290.1997.08.018 [34] ZHANG J, PEREZ R J, LAVERNIA E J. Effect of SiC and graphite particulates on the damping behavior of metal matrix composites[J]. Acta Metallurgica et Materialia,1994,42(2):395-409. doi: 10.1016/0956-7151(94)90495-2