留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

珊瑚废弃物对水泥砂浆强度和体积稳定性的影响

倪雅倩 何智海 石锦炎 贺一烽 刘宝举

倪雅倩, 何智海, 石锦炎, 等. 珊瑚废弃物对水泥砂浆强度和体积稳定性的影响[J]. 复合材料学报, 2024, 41(1): 404-413. doi: 10.13801/j.cnki.fhclxb.20230506.001
引用本文: 倪雅倩, 何智海, 石锦炎, 等. 珊瑚废弃物对水泥砂浆强度和体积稳定性的影响[J]. 复合材料学报, 2024, 41(1): 404-413. doi: 10.13801/j.cnki.fhclxb.20230506.001
NI Yaqian, HE Zhihai, SHI Jinyan, et al. Influence of coral waste on the strength and volume stability of cement mortar[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 404-413. doi: 10.13801/j.cnki.fhclxb.20230506.001
Citation: NI Yaqian, HE Zhihai, SHI Jinyan, et al. Influence of coral waste on the strength and volume stability of cement mortar[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 404-413. doi: 10.13801/j.cnki.fhclxb.20230506.001

珊瑚废弃物对水泥砂浆强度和体积稳定性的影响

doi: 10.13801/j.cnki.fhclxb.20230506.001
基金项目: 国家自然科学基金项目(51602198);浙江省自然科学基金(LY20E020006);中国中铁股份有限公司科技研究开发计划项目(2021-重点-08)
详细信息
    通讯作者:

    何智海,博士,教授,硕士生导师,研究方向为水泥基材料 E-mail: hezhihai@usx.edu.cn

  • 中图分类号: TU528;TB333

Influence of coral waste on the strength and volume stability of cement mortar

Funds: National Natural Science Foundation of China (51602198); Natural Science Foundation of Zhejiang Province (LY20E020006); Science and Technology Research and Development Program Project of China Railway Group Limited (2021-Key-08)
  • 摘要: 在混凝土中应用珊瑚废弃物是制备适用于远海岛礁建设所需建筑材料的有效策略,然而过量应用珊瑚废弃物会导致混凝土性能急剧降低。为保证砂浆性能的同时提升珊瑚废弃物的应用率,本文联合应用珊瑚砂(CS)和珊瑚粉(CP)分别取代部分骨料和粘结剂制备砂浆,研究了CS取代率对砂浆的力学性能、自收缩和干燥收缩的影响,并结合微观形貌和孔隙结构分析其影响机制。结果表明:相比于未掺加CS的砂浆,联合应用10wt%~40wt%CS和10wt%CP制备的砂浆具有更高的力学性能。当CS的取代率为30wt%时,砂浆的强度最高,并且其28天抗压强度较基准组提升29.5%。同时,随着CS含量的升高,砂浆的自收缩变形降低。当CS的含量为40wt%时,砂浆的28天自收缩变形与基准组相比降低33.74%。另外,掺加CS也有益于降低砂浆的干燥收缩,当CS的取代率为30wt%时砂浆的干燥收缩值达到最低。CS的多孔结构使其与水泥基体间紧密咬合,并且其内养护作用也促进了界面性能的提升。通过氮吸附测试的孔隙结果也表明掺加30wt%的CS使样品的孔隙率降低,但进一步增加CS的掺量不利于样品的孔隙结构发展。

     

  • 图  1  水泥和珊瑚粉(CP)的粒径分布曲线

    Figure  1.  Particle size distribution of cement and coral powder(CP)

    图  2  CP的XRD图谱

    Figure  2.  XRD pattern of CP

    图  3  珊瑚废弃物基砂浆的制备流程

    Figure  3.  Preparation process of coral waste-based mortar

    图  4  不同状态下的珊瑚砂(CS):(a) 干燥;(b) 饱和面干

    Figure  4.  Different states of coral sand (CS): (a) Dry; (b) Saturated surface dry

    图  5  CS对砂浆力学性能的影响

    Figure  5.  Effect of CS on mechanical properties of mortar

    图  6  CS对砂浆自收缩的影响

    Figure  6.  Effect of CS on autogenous shrinkage of mortar

    图  7  CS掺量对砂浆干燥收缩的影响

    Figure  7.  Effect of CS content on drying shrinkage of mortar

    图  8  骨料与水泥基体间的界面过渡区 (ITZ)图像

    Figure  8.  Interfacial transition zone (ITZ) images between cement matrix and aggregate

    图  9  不同切面CS与浆体间的ITZ图像

    Figure  9.  ITZ images between cement matrix and CS in different directions

    图  10  CS对砂浆孔结构的影响

    Figure  10.  Effect of CS on pore structure of mortar

    表  1  原材料的化学组成

    Table  1.   Chemical composition of raw materials

    MaterialCaO/wt%SiO2/wt%Al2O3/wt%Fe2O3/wt%SO3/wt%MgO/wt%LOI/wt%
    Cement48.1626.416.245.024.532.27 3.69
    CP52.70 1.700.350.370.610.2441.27
    Note: LOI—Loss on ignition.
    下载: 导出CSV

    表  2  珊瑚废弃物基砂浆配合比

    Table  2.   Mix proportions of coral waste-based mortar

    SampleMix proportions/wt%
    CementCPISOCSWater
    0%CS-10%CP/M405
    45
    1350 0135
    10%CS-10%CP/M1215135135
    20%CS-10%CP/M1080270135
    30%CS-10%CP/M 945405135
    40%CS-10%CP/M 810540135
    Notes: ISO—International standard sand; CS—Coral sand; M—Mortar.
    下载: 导出CSV
  • [1] FU Q, BU M, SU L, et al. Dynamic triaxial compressive response and failure mechanism of basalt fibre-reinforced coral concrete[J]. International Journal of Impact Engi-neering,2021,156:103930. doi: 10.1016/j.ijimpeng.2021.103930
    [2] 朱德举, 李高升. 短切纤维及预应力对玄武岩织物增强水泥基复合材料拉伸力学性能的影响[J]. 复合材料学报, 2017, 34(11):2631-2641.

    ZHU Deju, LI Gaosheng. Effect of short fibers and prestress on the tensile mechanical properties of basalt textile reinforced cementitious matrix composite[J]. Acta Materiae Compositae Sinica,2017,34(11):2631-2641(in Chinese).
    [3] 荀涛, 胡鹏, 梅弢, 等. 西沙群岛珊瑚砂运动特性试验研究[J]. 水道港口, 2009, 30(4):277-281.

    XUN Tao, HU Peng, MEI Tao, et al. Study on movement characteristics of coral sands in Xisha islands[J]. Journal of Waterway and Harbor,2009,30(4):277-281(in Chinese).
    [4] SHI H, WU Q, YU Z, et al. Properties of eco-friendly coral sand powder—Calcium sulfoaluminate cement binary system[J]. Construction and Building Materials,2020,263:120181. doi: 10.1016/j.conbuildmat.2020.120181
    [5] 游伟国, 徐亦冬, 邹毅松, 等. 基于科学计量方法分析珊瑚骨料混凝土研究进展[J]. 功能材料, 2019, 50(5):5064-5071.

    YOU Weiguo, XU Yidong, ZOU Yisong, et al. A scientometric review of research focusing on coral aggregate concrete[J]. Journal of Functional Materials,2019,50(5):5064-5071(in Chinese).
    [6] DA B, YU H, MA H, et al. Experimental investigation of whole stress-strain curves of coral concrete[J]. Construction and Building Materials,2016,122:81-89. doi: 10.1016/j.conbuildmat.2016.06.064
    [7] 糜人杰, 余红发, 麻海燕, 等. 全珊瑚骨料海水混凝土力学性能试验研究[J]. 海洋工程, 2016, 34(4):47-54.

    MI Renjie, YU Hongfa, MA Haiyan, et al. Study on the mechanical property of coral concrete[J]. The Ocean Engineering,2016,34(4):47-54(in Chinese).
    [8] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB/T 50010—2010[S]. 北京: 中国建筑工业出版社, 2010.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of architecture & concrete structures: GB/T 50010—2010[S]. Beijing: China Architecture & Building Press, 2010(in Chinese).
    [9] WANG X, YU R, SHUI Z, et al. Mix design and characteristics evaluation of an eco-friendly ultra-high performance concrete incorporating recycled coral based materials[J]. Journal of Cleaner Production,2017,165:70-80. doi: 10.1016/j.jclepro.2017.07.096
    [10] 韦灼彬, 李仲欣, 沈锦林. 珊瑚混凝土性能影响因素及早期力学性质研究[J]. 工业建筑, 2017, 47(3):130-136.

    WEI Zhuobin, LI Zhongxin, SHEN Jinlin. Research on the influencing factors of performance of coral concrete and its early mechanical property[J]. Industrial Construction,2017,47(3):130-136(in Chinese).
    [11] QIN Y, YAO T, WANG R, et al. Particle breakage-based analysis of deformation law of calcareous sediments under high-pressure consolidation[J]. Rock and Soil Mechanics,2014,35(11):3123-3128.
    [12] LIU K, YU R, SHUI Z, et al. Influence of external water introduced by coral sand on autogenous shrinkage and microstructure development of ultra-high strength concrete (UHSC)[J]. Construction and Building Materials,2020,252:119111. doi: 10.1016/j.conbuildmat.2020.119111
    [13] 王磊, 赵艳林, 吕海波. 珊瑚骨料混凝土的基础性能及研究应用前景[J]. 混凝土, 2012(2):99-100, 113.

    WANG Lei, ZHAO Yanlin, LYU Haibo. Prospect on the properties and application situation of coral aggregate concrete[J]. Concrete,2012(2):99-100, 113(in Chinese).
    [14] 王磊, 范蕾. 珊瑚碎屑混凝土的强度特性及破坏形态分析[J]. 混凝土与水泥制品, 2015(1):1-4.

    WANG Lei, FAN Lei. Strength characteristic and failure pattern analysis on coral debris concrete[J]. China Concrete and Cement Products,2015(1):1-4(in Chinese).
    [15] WATTANACHAI P. A study on chloride ion diffusivity of porous aggregate concretes and improvement method[J]. Advanced Materials Research,2009,65(1):30-44.
    [16] KAKOOEI S, AKIL H M, DOLATI A, et al. The corrosion investigation of rebar embedded in the fibers reinforced concrete[J]. Construction and Building Materials,2012,35:564-570. doi: 10.1016/j.conbuildmat.2012.04.051
    [17] KAKOOEI S, AKIL H M, JAMSHIDI M, et al. The effects of polypropylene fibers on the properties of reinforced concrete structures[J]. Construction and Building Materials,2012,27(1):73-77. doi: 10.1016/j.conbuildmat.2011.08.015
    [18] CHENG S, SHUI Z, SUN T, et al. Effects of fly ash, blast furnace slag and metakaolin on mechanical properties and durability of coral sand concrete[J]. Applied Clay Science,2017,141:111-117. doi: 10.1016/j.clay.2017.02.026
    [19] 贾慧娜, 李亚丽, 张舜泉. 膨润土和石灰石粉对珊瑚混凝土力学与耐久性能的影响[J]. 混凝土与水泥制品, 2020(11):87-91.

    JIA Huina, LI Yali, ZHANG Shunquan. Experimental study on the mechanical properties and durability of coral concrete mixed with bentonite and limestone powder[J]. China Concrete and Cement Products,2020(11):87-91(in Chinese).
    [20] ZELIC J, KRSTULOVIC R, TKALCEC E, et al. The properties of portland cement-limestone-silica fume mortars[J]. Cement and Concrete Research,2000,30(1):145-152. doi: 10.1016/S0008-8846(99)00216-1
    [21] HE Z, HAN X, SHI J, et al. Multi-scale characteristics of eco-friendly marine binder using coral waste[J]. Powder Technology,2022,403:117395. doi: 10.1016/j.powtec.2022.117395
    [22] QIN Q, MENG Q, LI W, et al. Surface chemical properties of coral powder and its effect on hydration and pore structure of cement slurry[J]. Thermochimica Acta,2022,717:179356. doi: 10.1016/j.tca.2022.179356
    [23] American Society for Testing Materials. Standard test method for autogenous strain of cement paste and mortar: ASTM C1698—2009[S]. West Conshohocken: American Society for Testing Materials, 2009.
    [24] 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Building Industry Press, 2009(in Chinese).
    [25] WU W, WANG R, ZHU C, et al. The effect of fly ash and silica fume on mechanical properties and durability of coral aggregate concrete[J]. Construction and Building Materials,2018,185:69-78. doi: 10.1016/j.conbuildmat.2018.06.097
    [26] ARUMUGAM R A, RAMAMURTHY K. Study of compressive strength characteristics of coral aggregate concrete[J]. Magazine of Concrete Research,1996,48(176):141-148. doi: 10.1680/macr.1996.48.176.141
    [27] WU L, FARZADNIA N, SHI C, et al. Autogenous shrinkage of high performance concrete: A review[J]. Construction and Building Materials,2017,149:62-75. doi: 10.1016/j.conbuildmat.2017.05.064
    [28] FUJIWARA T. Effect of aggregate on drying shrinkage of concrete[J]. Journal of Advanced Concrete Technology,2008,6(1):31-44. doi: 10.3151/jact.6.31
    [29] LIU J, OU Z, MO J, et al. Effectiveness of saturated coral aggregate and shrinkage reducing admixture on the autogenous shrinkage of ultrahigh performance concrete[J]. Advances in Materials Science and Engineering, 2017, 2017: 2703264.
    [30] DA B, YU H F, MA H Y, et al. Experimental research on whole stress-strain curves of coral aggregate seawater concrete under uniaxial compression[J]. Journal of Building Structures,2017,38(1):144-151.
    [31] CHENG S, SHUI Z, SUN T, et al. Durability and microstructure of coral sand concrete incorporating supplementary cementitious materials[J]. Construction and Building Materials,2018,171:44-53. doi: 10.1016/j.conbuildmat.2018.03.082
    [32] 薛维培, 刘晓媛, 姚直书, 等. 不同损伤源对玄武岩纤维增强混凝土孔隙结构变化特征的影响[J]. 复合材料学报, 2020, 37(9):2285-2293.

    XUE Weipei, LIU Xiaoyuan, YAO Zhishu, et al. Effects of different damage sources on pore structure change characteristics of basalt fiber reinforced concrete[J]. Acta Materiae Compositae Sinica,2020,37(9):2285-2293(in Chinese).
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  587
  • HTML全文浏览量:  288
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-24
  • 修回日期:  2023-04-14
  • 录用日期:  2023-04-25
  • 网络出版日期:  2023-05-08
  • 刊出日期:  2024-01-01

目录

    /

    返回文章
    返回