Preparation and temperature-sensitive response behavior of graphene-carbon nanotubes-polylactic acid/polyethylene glycol phase change energy storage composites
-
摘要: 本文通过溶液-熔融共混法制备了石墨烯-碳纳米管-聚乳酸/聚乙二醇(Gr-CNT-PLA/PEG)相变储能复合材料,详细探究了导电粒子和PEG对PLA相变储能复合材料结晶性能、导电性能和温敏响应行为的影响。在溶液-熔融共混过程中,二维结构的石墨烯和一维结构的碳纳米管在热力学和动力学因素的作用下可以物理复配为三维结构的Gr-CNT杂化粒子,改善导电粒子在复合材料内部的分散性,使复合材料具有较低的导电逾渗域值,约为0.51wt%。此外,在PEG相变储能材料和导电粒子的作用下,进一步改善了Gr-CNT-PLA/PEG复合材料的导电性能和结晶性能,结晶温度从100℃(PLA)提高到了约130℃((Gr-CNT50)0.6-PLA/PEG10)。在恒温温度-电阻测试中发现Gr-CNT-PLA/PEG复合材料的电导率随等温热处理温度的提高表现出先降低后升高的现象;在循环变温温度-电阻测试中,Gr-CNT-PLA复合材料在37℃到140℃的循环温度区间内表现出了低温正温度系数(PTC)和高温负温度系数(NTC)效应;而通过相变储能材料PEG和循环温度值的协同调控,Gr-CNT-PLA/PEG复合材料在降温过程中表现出良好的相转变储能平台,成功地实现了复合材料单调的PTC效应和高温度灵敏度,灵敏度(ΔR/R0)可达3000%;且随着PEG质量含量的提高可以有效地实现复合材料的储能平台越宽,可达16.28 min,为高灵敏度温度传感器的制备奠定了基础。Abstract: In this study, a graphene-carbon nanotube-poly(lactic acid)/polyethylene glycol (Gr-CNT-PLA/PEG) phase change energy storage composite material was prepared using a solution-melt blending method. The effects of conductive particles and PEG on the crystallization behavior, electrical conductivity, and temperature-sensitive response of the PLA phase change energy storage composite material were investigated in detail. During the solution-melt blending process, the two-dimensional graphene and one-dimensional carbon nanotubes can physically hybridize into three-dimensional Gr-CNT hybrid particles under the influence of thermodynamic and kinetic factors, improving the dispersion of conductive particles in the composite material and reducing the percolation threshold to about 0.51wt%. Furthermore, the electrical conductivity and crystallization behavior of the Gr-CNT-PLA/PEG composite material are further improved by the interaction between PEG phase change energy storage material and conductive particles, and the crystallization temperature is increased from 100℃ (PLA) to about 130℃ ((Gr-CNT50)0.6-PLA/PEG10). In the constant temperature-resistance test, the conductivity of the Gr-CNT-PLA/PEG composite material decreases and then increases with the increase of isothermal heat treatment temperature. In the cyclic temperature-resistance test, the Gr-CNT-PLA composite material exhibites low-temperature PTC and high-temperature NTC effects in the cyclic temperature range of 37℃ to 140℃. Through the synergistic regulation of phase change energy storage material PEG and cyclic temperature value, the Gr-CNT-PLA/PEG composite material exhibites a good phase transition energy storage platform during cooling, successfully achieving a monotonic PTC effect and high-temperature sensitivity, with a sensitivity (ΔR/R0) up to 3000%. Moreover, with the increase of PEG mass content, the energy storage platform of the composite material can be effectively widened, up to 16.28 min, providing a basis for the preparation of high-sensitivity temperature sensors.
-
图 4 (Gr-CNT50)y-PLA (a) 和(Gr-CNT50)0.6-PLA/PEGz (b) 复合材料的非等温DSC曲线;(Gr-CNT50)y-PLA (c) 和(Gr-CNT50)0.6-PLA/PEGz (d) 复合材料的相对结晶度随时间变化曲线
Figure 4. Non-isothermal DSC curves of (Gr-CNT50)x-PLA (a) and (Gr-CNT50)0.6-PLA/PEGz (b) composites; Relative crystallinity curves of (Gr-CNT50)x-PLA (c) and (Gr-CNT50)0.6-PLA/PEGz (d) composites with time
表 1 (Gr-CNTx)0.6-PLA/PEGz复合材料配比表
Table 1. Ratio table of (Gr-CNTx)0.6-PLA/PEGz composites
Sample PLA
/wt%CNT
/wt%Gr
/wt%PEG
/wt%(Gr-CNT20)0.6-PLA 99.4 0.12 0.48 0 (Gr-CNT30)0.6-PLA 99.4 0.18 0.42 0 (Gr-CNT50)0.6-PLA 99.4 0.3 0.3 0 (Gr-CNT70)0.6-PLA 99.4 0.4 0.2 0 (Gr-CNT80)0.6-PLA 99.4 0.48 0.12 0 (Gr-CNT50)0.6-PLA/PEG1 98.4 0.3 0.3 1 (Gr-CNT50)0.6-PLA/PEG3 96.4 0.3 0.3 3 (Gr-CNT50)0.6-PLA/PEG5 94.4 0.3 0.3 5 (Gr-CNT50)0.6-PLA/PEG7 92.4 0.3 0.3 7 (Gr-CNT50)0.6-PLA/PEG10 89.4 0.3 0.3 10 (Gr-CNT50)0.6-PLA/PEG20 79.4 0.3 0.3 20 表 2 (Gr-CNT50)0.6-PLA/PEGz复合材料相对结晶度Xi变化
Table 2. Change in relative crystallinity Xi of (Gr-CNT50)0.6-PLA/PEGz composites
Samples Tend/℃ ∆Hcc/
(J·g−1)∆Hm/
(J·g−1)$ {X}_{i} $/% (Gr-CNT50)0.6-PLA 25 24.6 39.7 16.2 100 0 40.5 43.3 120 0 46.9 50.2 135 0 49.2 52.6 (Gr-CNT50)0.6-PLA/
PEG1025 8.3 42.9 37.8 100 0 42.8 46.8 120 0 53.9 59.0 135 0 56.0 61.2 Notes: Tend—Isothermal heat treatment temperature; ∆Hcc—Enthalpy of cold crystallization; ∆Hm—Melting enthalpy. -
[1] KASHI K, GUPTA R K, BAUM T, et al. Morphology, electromagnetic properties and electromagnetic interference shielding performance of poly lactide/graphene nanoplatelet nanocomposites[J]. Materials & Design,2016,95:119-126. [2] SHI S, CHEN Y, JING J, et al. Preparation and 3D-printing of highly conductive polylactic acid/carbon nanotube nanocomposites via local enrichment strategy[J]. RSC Advances,2019,9(51):29980-29986. doi: 10.1039/C9RA05684J [3] SU T Y, LIU N H, LEI D D, et al. Flexible MXene/bacterial cellulose film sound detector based on piezoresistive sensing mechanism[J]. ACS Nano,2022,16(5):8461-8471. doi: 10.1021/acsnano.2c03155 [4] SPINELLI G, LAMBERTI P, TUCCI V, et al. Rheological and electrical behaviour of nanocarbon/poly(lactic) acid for 3D printing applications[J]. Composites Part B: Engineering,2019,167:467-476. doi: 10.1016/j.compositesb.2019.03.021 [5] ZHAO S G, LOU D D, ZHAN P F, et al. Heating-induced negative temperature coefficient effect in conductive graphene/polymer ternary nanocomposites with a segregated and double-percolated structure[J]. Journal of Materials Chemistry C,2017,5(32):8233-8242. doi: 10.1039/C7TC02472J [6] ZHA J W, WU D H, YANG Y, et al. Enhanced positive temperature coefficient behavior of the high-density polyethylene composites with multi-dimensional carbon fillers and their use for temperature-sensing resistors[J]. RSC Advances,2017,7(19):11338-11344. doi: 10.1039/C6RA27367J [7] CHEN B Y, ZHANG W H, ZHAO H B, et al. Processing and characterization of supercritical CO2 batch foamed poly (lactic acid)/poly (ethylene glycol) scaffold for tissue engineering application[J]. Journal of Applied Polymer Science,2013,130(5):3066-3073. doi: 10.1002/app.39523 [8] SUNDARARAJAN S, SAMUI A B, KULKARNI P S. Versatility of polyethylene glycol (PEG) in designing solid-solid phase change materials (PCMs) for thermal management and their application to innovative technologies[J]. Journal of Materials Chemistry A,2017,5(35):18379-18396. doi: 10.1039/C7TA04968D [9] RAAM D G, SREEKUMAR A. Influence of nanomaterials on properties of latent heat solar thermal energy storage materials: A review[J]. Energy Conversion and Management,2014,83:133-148. doi: 10.1016/j.enconman.2014.03.058 [10] MENG Q, HU J. A poly(ethylene glycol)-based smart phase change material[J]. Solar Energy Materials and Solar Cells,2008,92(10):1260-1268. doi: 10.1016/j.solmat.2008.04.026 [11] FAN X, XIAO J, WANG W, et al. Novel magnetic-to-thermal conversion and thermal energy management composite phase change material[J]. Polymers,2018,10(6):585-596. doi: 10.3390/polym10060585 [12] WANG Y, TANG B, ZHANG S. Single-walled carbon nanotube/phase change material composites: Sunlight-driven, reversible, form-stable phase transitions for solar thermal energy storage[J]. Advanced Functional Materials,2013,23(35):4354-4360. doi: 10.1002/adfm.201203728 [13] ZHANG H Y, WANG L, XI S B, et al. 3D porous copper foam-based shape-stabilized composite phase change materials for high photothermal conversion, thermal conductivity and storage[J]. Renewable Energy,2021,175:307-317. doi: 10.1016/j.renene.2021.05.019 [14] ZHAO Z, SHEN S, LI Y, et al. Strain-sensing behavior of flexible polypropylene/poly (ethylene-co-octene)/multiwalled carbon nanotube nanocomposites under cyclic tensile deformation[J]. Polymer Composites,2022,43(1):7-20. doi: 10.1002/pc.26353 [15] 佘亚楠, 付烨, 朱钦睿, 等. 纸浆纤维/聚乳酸复合材料的力学和热学性能[J]. 复合材料学报, 2022, 39(10):4856-4867. doi: 10.13801/j.cnki.fhclxb.20211115.005SHE Yanan, FU Ye, ZHU Qinrui, et al. Mechanical and thermal properties of pulp fiber/polylactic acid composite[J]. Acta Materiae Compositae Sinica,2022,39(10):4856-4867(in Chinese). doi: 10.13801/j.cnki.fhclxb.20211115.005 [16] 石素宇, 赵康, 张笑源, 等. 各向异性导电 PP-MWCNTs/HDPE 复合材料的结构及性能[J]. 复合材料学报, 2022, 39(10):4694-4700.SHI Suyu, ZHAO Kang, ZHANG Xiaoyuan, et al. Structure and properties of PP-MWCNTs/HDPE composites with anisotropic conductivity[J]. Acta Materiae Compositae Sinica,2022,39(10):4694-4700(in Chinese). [17] 张鑫, 陈立贵, 苏巨桥, 等. 聚乳酸/石墨烯复合材料的制备及温敏响应行为[J]. 塑料工业, 2020, 48(10):53-58.ZHANG Xin, CHEN Ligui, SU Juqiao, et al. Preparation and resistivity-temperature performance of poly(lactic acid)/graphene composites[J]. China Plastics Industry,2020,48(10):53-58(in Chinese). [18] 贾旭妙, 刘欣月, 刘少飞, 等. 碳纳米管和立构复合晶对聚乳酸/碳纳米管复合材料结构和性能调控[J]. 塑料工业, 2021, 49(4):54-59. doi: 10.3969/j.issn.1005-5770.2021.04.010JIA Xumiao, LIU Xinyue, LIU Shaofei, et al. The influence of multiwalled carbon nanotube and stereocomplex crystallization on structures and properties of polylactic acid/carbon nanotube composite material[J]. China Plastics Industry,2021,49(4):54-59(in Chinese). doi: 10.3969/j.issn.1005-5770.2021.04.010 [19] YUE H, FERNÁNDEZ-BlÁZQUEZ J P, VILATELA J J, et al. Morphology, thermal, and crystallization analysis of polylactic acid in the presence of carbon nanotube fibers with tunable fiber loadings through polymer infiltration[J]. Polymer Crystallization,2019,2(5):e10081. [20] 曲玉婷, 王立梅, 齐斌. 聚乙二醇对聚乳酸/淀粉纳米晶复合材料性能的影响[J]. 中国塑料, 2022, 36(8):56-61.QU Yuting, WANG Limei, QI Bin. Effect of poly(ethylene glycol)on properties of poly(lactic acid)/starch nanocrystal composites[J]. China Plastics,2022,36(8):56-61(in Chinese). [21] JIA S K, YU D M, WANG Z, et al. Morphologies, crystallization, and mechanical properties of PLA-based nanocomposites: Synergistic effects of PEG/HNTs[J]. Journal of Applied Polymer Science,2019,136(18):47385. doi: 10.1002/app.47385 [22] VU T, NIKAEEN P, AKOBI M, et al. Enhanced nucleation and crystallization in PLA/CNT composites via disperse orange 3 with corresponding improvement in nanomechanical properties[J]. Polymers for Advanced Technologies,2020,31(3):415-424. doi: 10.1002/pat.4777 [23] LI G J, HU C, ZHAI W, et al. Particle size induced tunable positive temperature coefficient characteristics in electrically conductive carbon nanotubes/polypropylene composites[J]. Materials Letters,2016,182:314-317. doi: 10.1016/j.matlet.2016.07.020 [24] ZHANG C, YI F, ZHAN H, et al. Morphological regulation improved electrical conductivity and electromagnetic interference shielding in poly(L-lactide)/poly(ε-caprolactone)/carbon nanotube nanocomposites via constructing stereocomplex crystallites[J]. Journal of Materials Chemistry C,2017,5(11):2807-2817. doi: 10.1039/C7TC00389G [25] NAKANO H, SHIMIZU K, TAKAHASHI S, et al. Resistivity-temperature characteristics of filler-dispersed polymer composites[J]. Polymer,2012,53(26):6112-6117. doi: 10.1016/j.polymer.2012.10.046 [26] YANG J, TANG L S, BAI L, et al. High-performance composite phase change materials for energy conversion based on macroscopically three-dimensional structural materials[J]. Materials Horizons,2019,6(2):250-273. doi: 10.1039/C8MH01219A