Preparation of Fe3O4/poly(styrene-isooctyl acrylate) composite emulsion via miniemulsion polymerization and damping properties of its latex film
-
摘要: 用于制备水性阻尼涂层的苯丙乳液需进一步提升阻尼因子并拓宽有效阻尼温域范围。为改进苯丙乳液阻尼性能,本文以油酸(OA)修饰的纳米Fe3O4 (OA-Fe3O4)为被包覆填料,采用细乳液聚合法制备了Fe3O4/聚(苯乙烯-丙烯酸异辛酯) (Fe3O4/P(St-2-EHA))复合乳液,使用FTIR、XRD、TEM、SEM、DLS、TG和DMA等方法对复合乳液及其胶膜进行表征,研究了共聚物组成、纳米Fe3O4表面特性与掺量对乳液及胶膜结构与性能的影响。结果表明,OA-Fe3O4颗粒的直接团聚现象减弱,在复合乳液中的分散性显著改善。单体St与2-EHA质量比为5∶5时,所得P(St-2-EHA)胶膜具有最高的损耗因子(tanδ)峰值1.926。当OA-Fe3O4用量为St、2-EHA 总质量的10wt%时,所得Fe3O4/P(St-2-EHA)复合胶膜的性能最佳,其tanδ峰值和有效阻尼温域分别为2.066和59.2℃,均优于纯P(St-2-EHA)胶膜和共混法制备的复合胶膜;其吸水率比后两者分别降低3.4%和10.4%,且初始热分解温度升高,热稳定性改善。Abstract: The styrene-acrylic emulsion used to prepare waterborne damping coatings needs to further increase the damping factor and broaden the effective damping temperature range. In order to improve the damping performance of styrene-acrylic emulsion, oleic acid (OA) modified nano-Fe3O4 (OA-Fe3O4) was used as the coated filler to prepare Fe3O4/poly(styrene acrylate) (Fe3O4/P(St-2-EHA)) composite damping emulsion via miniemulsion polymerization. The composite emulsion and its latex film were characterized by FTIR, XRD, TEM, SEM, DLS, TG and DMA. The effects of copolymer composition, surface properties and content of nano-Fe3O4 on the structure and performance of the emulsion and latex film were studied. The results show that the direct agglomeration of OA-Fe3O4 nanoparticles is weakened, and its dispersion in the composite emulsion is significantly improved. When the mass ratio of monomer St to 2-EHA is 5∶5, the obtained P(St-2-EHA) latex film has the highest loss factor (tanδ) peak (1.926). When the mass ratio of OA-Fe3O4 to the total mass of St and 2-EHA is 10wt%, the obtained Fe3O4/P(St-2-EHA) composite latex film has the best performance. Its tanδ peak value and effective damping temperature range width are 2.066 and 59.2℃, which are better than pure P(St-2-EHA) latex film and composite latex film prepared by blending method. Its water absorption rate is 3.4% and 10.4% lower than the latter two respectively. And the initial thermal decomposition temperature is higher, with the thermal stability improved.
-
Key words:
- Fe3O4 /
- miniemulsion polymerization /
- encapsule /
- damping performance /
- water absorption /
- thermostability
-
图 1 纳米Fe3O4 (a)、Fe3O4/聚(苯乙烯-丙烯酸异辛酯) (P(St-2-EHA))复合乳液及其胶膜 (b) 的制备过程示意图
Figure 1. Schematic diagrams of preparation process of Fe3O4 nanoparticles (a), Fe3O4/poly(styrene-isooctyl acrylate) (P(St-2-EHA)) composite latex and its latex films (b)
SDS—Sodium dodecyl sulfate; APS—Ammonium persulfate; OA—Oleic acid
表 1 纯Fe3O4颗粒和OA-Fe3O4的粒度数据
Table 1. Particle size data of pure Fe3O4 particles and OA-Fe3O4
Particle Size/nm PDI Zeta/mV Fe3O4 1796.0 0.929 −11.3 OA-Fe3O4 197.5 0.395 −19.3 Note: PDI—Polydispersion index. -
[1] SU Y P, LIN H, ZHANG S T, et al. One-step synthesis of novel renewable vegetable oil-based acrylate prepolymers and their application in UV-curable coatings[J]. Polymers,2020,12(5):1165. doi: 10.3390/polym12051165 [2] DENG Y J, ZHOU C, ZHANG M Y, et al. Effects of the reagent ratio on the properties of waterborne polyurethanes-acrylate for application in damping coating[J]. Progress in Organic Coatings, 2018, 122: 239-247. [3] LI Y, GUO L H, YE J, et al. The crosslinking directing dynamic behavior of polymer latex under the investigation toward waterborne damping coatings[J]. Journal of Applied Polymer Science,2020,138(2):e49676. [4] XIAO W, PEI M H, YUAN H X, et al. The performance study of waterborne damping coating[J]. Advanced Materials Research,2015,3818(1088):444-448. [5] ZHENG X Y, ZHOU X, ZHANG G X, et al. Studies on the damping properties of polyacrylate emulsion/hindered phenol hybrids[J]. Polymer Journal, 2012, 44(5): 382-387. [6] CHEN D Y, DING M J, HUANG Z X, et al. Styrene-acrylic emulsion with "transition layer" for damping coating: Synthesis and characterization[J]. Polymers,2021,13(9):1406. doi: 10.3390/polym13091406 [7] FANG L H, SHEN Z, LI J F, et al. Damping properties of expanded graphite filled fluorinated polyacrylate composites[J]. Polymer Bulletin, 2021, 79(7): 4745-4759. [8] KATSIROPOULOS C V, PAPPAS P, KOUTROUMANIS N, et al. Improving the damping behavior of fiber-reinforced polymer composites with embedded superelastic shape memory alloys (SMA)[J]. Smart Materials and Structures,2020,29(2):025006. doi: 10.1088/1361-665X/ab6026 [9] MALEKZADEH Y, SHELESH-NEZHAD K. The effects of HNO3-surface treated carbon fiber and nano-CaCO3 inclusions on dynamic mechanical and heat properties of PA6/ABS-based composites[J]. Journal of Thermoplastic Composite Materials,2019,32(7):867-883. doi: 10.1177/0892705718804604 [10] PANWAR V, PAL K. Dynamic performance of an amorphous polymer composite under controlled loading of reduced graphene oxide based on entanglement of filler with polymer chains[J]. Journal of Polymer Research,2018,25(2):53. doi: 10.1007/s10965-017-1417-y [11] KIM J J, BROWN A D, BAKIS C E, et al. Hybrid carbon nanotube-carbon fiber composites for high damping[J]. Composites Science and Technology,2021,207:108712. doi: 10.1016/j.compscitech.2021.108712 [12] KHADAR P F, MAGHSOUD Z, DASHTI A. Synthesis, characterization, and dynamic-mechanical properties of styrene-acrylate/nanoclay interpenetrating polymer network[J]. Polymer Composites,2020,41(3):982-993. doi: 10.1002/pc.25429 [13] CHEN S B, WANG T M, WANG Q H, et al. Damping properties of polyurethane/epoxy graft interpenetrating polymer network composites filled with short carbon fiber and nano-SiO2[J]. Journal of Macromolecular Science, Part B: Physics,2011,50(5):931-941. doi: 10.1080/00222348.2010.497068 [14] CHO J K, SUN H, SEO H W, et al. Heat dissipative mechanical damping properties of EPDM rubber composites including hybrid fillers of aluminium nitride and boron nitride[J]. Soft Matter,2020,16(29):6812-6818. doi: 10.1039/C9SM02123J [15] ZHOU S S, YANG C H, HU J, et al. Damping analysis of some inorganic particles on poly(butyl-methacrylate)[J]. Materials,2018,11(6):992. doi: 10.3390/ma11060992 [16] HU B, ZHANG Z P, LIU X M, et al. Preparation and damping property study of styrene-acrylic IPN/MT nano-composite[J]. Material Advanced Materials Research,2011,284-286:382-386. doi: 10.4028/www.scientific.net/AMR.284-286.382 [17] LIU M J, SONG G J, YI J, et al. Damping analysis of polyurethane/polyacrylate interpenetrating polymer network composites filled with graphite particles[J]. Polymer Composites,2013,34(2):288-292. doi: 10.1002/pc.22395 [18] 赵艳娜. 苯乙烯-丙烯酸酯树脂/纳米SiO2核壳乳液的制备及性能[J]. 功能材料, 2012, 43(11):1472-1475. doi: 10.3969/j.issn.1001-9731.2012.11.030ZHAO Yanna. Preparation and properties of styrene-acrylate resin/nano-SiO2 core-shell emulsion[J]. Journal of Functional Materials,2012,43(11):1472-1475(in Chinese). doi: 10.3969/j.issn.1001-9731.2012.11.030 [19] RESENDE G, DUTRA G V S, NETA M S B, et al. Well defined poly(methyl methacrylate)-Fe3O4/poly(vinyl pivalate) core-shell superparamagnetic nanoparticles: Design and evaluation of in vitro cytotoxicity activity against cancer cells[J]. Polymers,2020,12(12):2868. doi: 10.3390/polym12122868 [20] 邱守季, 杨磊, 张娅, 等. 微滴乳液聚合制备纳米SiO2/聚丙烯酸酯复合材料[J]. 复合材料学报, 2013, 30(5):29-33. doi: 10.3969/j.issn.1000-3851.2013.05.005QIU Shouji, YANG Lei, ZHANG Ya, et al. Nano-SiO2/polyacrylate composites were prepared by droplet emulsion polymerization[J]. Acta Materiae Compositae Sinica,2013,30(5):29-33(in Chinese). doi: 10.3969/j.issn.1000-3851.2013.05.005 [21] 夏兆旺, 卢志伟, 鞠福瑜, 等. 基于颗粒阻尼技术的海洋平台结构减振试验研究[J]. 船舶力学, 2021, 25(3): 370-374.XIA Zhaowang, LU Zhiwei, JU Fuyu, et al. Experimental study on vibration reduction of offshore platform structures based on particle damping technology [J]. Ship mechanics, 2021, 25(3): 370-374(in Chinese). [22] VEERAMUTHUVEL P, SAIRAJAN K K, SHANKAR K. Vibration suppression of printed circuit boards using an external particle damper[J]. Journal of Sound and Vibration, 2016, 366: 98-116. [23] YU L H, HAO G Z, GU J J, et al. Fe3O4/PS magnetic nanoparticles: Synthesis, characterization and their application as sorbents of oil from waste water[J]. Journal of Magnetism and Magnetic Materials,2015,394:14-21. doi: 10.1016/j.jmmm.2015.06.045 [24] BAHARVAND H. A new method for preparation of magnetic polymer particles[J]. Colloid and Polymer Science,2014,292(12):3311-3318. doi: 10.1007/s00396-014-3386-6 [25] 张和鹏, 张秋禹, 张宝亮, 等. 内部结构不对称磁性复合微球的制备及其影响因素探究[J]. 化学学报, 2012, 70(3): 345-351.ZHANG Hepeng, ZHANG Qiuyu, ZHANG Baoliang, et al. Preparation of asymmetric magnetic composite microspheres with internal structure and its influencing factors[J]. Acta Chemica Sinica, 2012, 70(3): 345-351(in Chinese). [26] WANG T T, LI W P, LUO L, et al. Ultrahigh dielectric constant composites based on the oleic acid modified ferroferric oxide nanoparticles and polyvinylidene fluoride[J]. Applied Physics Letters,2013,102(9):092904. doi: 10.1063/1.4795128 [27] 孙轶男, 刘婷婷, 杨天水, 等. 交联单体种类及其用量对丙烯酸酯乳胶聚合行为的影响[J]. 涂料工业, 2022, 52(6):35-40. doi: 10.12020/j.issn.0253-4312.2022.6.35SUN Yinan, LIU Tingting, YANG Tianshui, et al. Effects of types and amounts of crosslinking monomers on polymerization behavior of acrylate latex[J]. Coatings Industry,2022,52(6):35-40(in Chinese). doi: 10.12020/j.issn.0253-4312.2022.6.35 [28] 徐海燕, 任嗣利, 贾卫红, 等. 磁性可回收氟化石墨烯破乳材料的制备及乳液分离性能[J]. 高等学校化学学报, 2019, 40(3):508-517. doi: 10.7503/cjcu20180559XU Haiyan, REN Sili, JIA Weihong, et al. Preparation of magnetic recyclable fluorinated graphene demulsification material and its emulsion separation performance[J]. Chemical Journal of Chinese Universities,2019,40(3):508-517(in Chinese). doi: 10.7503/cjcu20180559 [29] WANG T, CHEN S, WANG Q, et al. Damping analysis of polyurethane/epoxy graft interpenetrating polymer network composites filled with short carbon fiber and micro hollow glass bead[J]. Materials & Design,2010,31(8):3810-3815.