留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轻质高导电金属化碳纳米管薄膜的制备及其雷击防护性能

席佳琦 戴亚光 夏雷 王玉琼 杨文刚 吕卫帮

席佳琦, 戴亚光, 夏雷, 等. 轻质高导电金属化碳纳米管薄膜的制备及其雷击防护性能[J]. 复合材料学报, 2024, 41(1): 196-206. doi: 10.13801/j.cnki.fhclxb.20230427.002
引用本文: 席佳琦, 戴亚光, 夏雷, 等. 轻质高导电金属化碳纳米管薄膜的制备及其雷击防护性能[J]. 复合材料学报, 2024, 41(1): 196-206. doi: 10.13801/j.cnki.fhclxb.20230427.002
XI Jiaqi, DAI Yaguang, XIA Lei, et al. Preparation and lightning strike protection properties of lightweight high conductive metallized carbon nanotube film[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 196-206. doi: 10.13801/j.cnki.fhclxb.20230427.002
Citation: XI Jiaqi, DAI Yaguang, XIA Lei, et al. Preparation and lightning strike protection properties of lightweight high conductive metallized carbon nanotube film[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 196-206. doi: 10.13801/j.cnki.fhclxb.20230427.002

轻质高导电金属化碳纳米管薄膜的制备及其雷击防护性能

doi: 10.13801/j.cnki.fhclxb.20230427.002
基金项目: 科技部重点研发计划(2022YFA1205400)
详细信息
    通讯作者:

    杨文刚,硕士,工程师,研究方向为纳米复合材料 E-mail: wgyang2019@sinano.ac.cn

    吕卫帮,博士,研究员,博士生导师,研究方向为纳米复合材料 E-mail: wblv2013@sinano.ac.cn

  • 中图分类号: TB333

Preparation and lightning strike protection properties of lightweight high conductive metallized carbon nanotube film

Funds: National Key Basic Research Program of China (2022YFA1205400)
  • 摘要: 碳纤维增强树脂基复合材料(CFRP)导电性差,无法满足飞机航行过程中的雷击防护需求。金属化碳纳米管薄膜具备轻质、高导电、高载流的特点,可应用于复合材料雷击防护。采用电化学沉积工艺成功制备了一种碳纳米管(CNT)/Cu复合薄膜,并对其微观结构、电学性能及载流失效行为进行了表征分析。结果表明,CNT/Cu复合薄膜柔性较好,具有明显的梯度结构,铜的含量在薄膜厚度方向上逐渐递减。复合薄膜电导率与Cu同一量级,比电导率为Cu的2倍,载流量及比载流量分别为商用铜网的1.4倍和7倍。复合薄膜中的CNT抑制了Cu在大载流作用下电迁移的发生,进而延长其载流失效时间。基于CNT/Cu复合薄膜制备了CFRP雷击防护试样,进行人工模拟雷击试验及高精度损伤分析,评估雷击防护效果。与商用铜网雷击防护材料相比,CNT/Cu复合薄膜质量减轻61%,且表现出更为优异的雷击防护性能。

     

  • 图  1  (a) 浮动催化化学气相沉积法(FCCVD)制备的碳纳米管(CNT)薄膜;(b) 电化学沉积装置示意图

    Figure  1.  (a) Carbon nanotube (CNT) film prepared by floating catalytic chemical vapor deposition (FCCVD); (b) Schematic diagram of electrochemical deposition device

    图  2  (a) 人工模拟雷击测试装置;(b) 飞行器雷电效应2A区电流分量B波形;(c) 电流分量D波形;(d) 电流分量C*波形

    Figure  2.  (a) Artificial simulation lightning strike test device; (b) Waveform of current component B of aircraft lightning effect zone 2A; (c) Waveform of current component D; (d) Waveform of current component C*

    图  3  (a) 电化学沉积法制备的CNT/Cu复合薄膜试样;CNT/Cu复合薄膜上表面 (b) 及下表面 (c) 的SEM图像;复合薄膜截面微观形貌 (d) 及对应EDS元素表征 (e);(f) 复合薄膜截面Cu元素分布示意图

    Figure  3.  (a) CNT/Cu composite film sample prepared by electrochemical deposition; SEM images of upper (b) and lower surfaces (c) of CNT/Cu composite film; Micromorphology of CNT/Cu composite film section (d) and its elemental analysis by EDS (e); (f) Schematic diagram of Cu element distribution of composite film section

    图  4  CNT/Cu复合薄膜与铜网的电导率比较

    Figure  4.  Comparison of electrical conductivity between CNT/Cu composite film and Cu mesh

    图  5  CNT/Cu复合薄膜与铜网的载流量比较

    Figure  5.  Comparison of ampacity between CNT/Cu composite film and Cu mesh

    CCC—Current-carrying capacity

    图  6  CNT/Cu复合薄膜 ((a)~(d)) 及铜网 ((e)~(h)) 载流失效时的电迁移

    Figure  6.  Electromigration of CNT/Cu ((a)-(d)) and Cu mesh ((e)-(h)) current-carrying failure

    图  7  CNT/Cu复合薄膜载流失效断口形貌及元素分析:((a), (b)) 复合薄膜断口处SEM图像;((c), (d)) 图7(b)中对应位置元素线扫描及面扫描结果

    Figure  7.  Fracture morphology and elemental analysis of current carrying failure of CNT/Cu composite films: ((a), (b)) SEM images of composite film fracture; ((c), (d)) Line scan and map scan results of corresponding position elements in Fig. 7(b)

    图  8  CFRP试样截面形貌及界面形态:((a), (d), (g)) 商用铜网防护(Cu mesh-CFRP);((b), (e), (h)) 磁控溅射CNT/Cu复合薄膜防护(MS CNT/Cu-CFRP);((c), (f), (i)) 电沉积 CNT/Cu 复合薄膜防护(EP CNT/Cu-CFRP) (由上至下分别为3D共聚焦显微图、金相图、SEM图像)

    Figure  8.  Section morphology and interface morphology of CFRP samples: ((a), (d), (g)) Commercial copper mesh (Cu mesh-CFRP); ((b), (e), (h)) CNT/Cu composite films produced by magnetron sputtering (MS CNT/Cu-CFRP); ((c), (f), (i)) CNT/Cu composite films produced by electrodeposition (EP CNT/Cu-CFRP ) (From top to bottom are 3D confocal micrograph, metallographic diagram, SEM images)

    图  9  人工模拟雷击测试后试样表面损伤形貌:(a) NP-CFRP;(b) Cu mesh-CFRP;(c) MS CNT/Cu-CFRP;(d) EP CNT/Cu-CFRP

    Figure  9.  Surface damage morphologies after artificial simulated lightning strike tests: (a) NP-CFRP; (b) Cu mesh-CFRP; (c) MS CNT/Cu-CFRP; (f) EP CNT/Cu-CFRP

    图  10  雷击中心点形貌表征:((a), (d)) Cu mesh-CFRP;((b), (e)) MS CNT/Cu-CFRP;((c), (f)) EP CNT/Cu-CFRP

    Figure  10.  Morphological characterization of lightning strike center point: ((a), (d)) Cu mesh-CFRP; ((b), (e)) MS CNT/Cu-CFRP; ((c), (f)) EP CNT/Cu-CFRP

    图  11  试样雷击试验后计算机断层(CT)扫描整体形貌:(a) NP-CFRP;(b) Cu mesh-CFRP;(c) MS CNT/Cu-CFRP;(d) EP CNT/Cu-CFRP;随深度变化10%、20%、40%的剖面损伤形貌: ((a1)~(a3)) NP-CFRP;((b1)~(b3)) Cu mesh-CFRP;((c1)~(c3)) MS CNT/Cu-CFRP;((d1)~(d3)) EP CNT/Cu-CFRP

    Figure  11.  Computed tomography (CT) scanning of samples overall damage morphology after lightning strike test: (a) NP-CFRP; (b) Cu mesh-CFRP; (c) MS CNT/Cu-CFRP; (d) EP CNT/Cu-CFRP; Profile damage morphology varies by 10%, 20% and 40% with depth: ((a1)-(a3)) NP-CFRP; ((b1)-(b3)) Cu mesh-CFRP; ((c1)-(c3)) MS CNT/Cu-CFRP; ((d1)-(d2)) EP CNT/Cu-CFRP

    图  12  试样雷击试验后CT扫描截面图

    Figure  12.  CT scanning cross-section of samples after lightning strike test

    D—Thickness of the undamaged area after lightning strike

    图  13  试样雷击防护机制示意图

    Figure  13.  Schematic diagram of lightning strike protection mechanism for samples

    IH—Horizontal current; IV—Vertical current

    表  1  商用铜网参数

    Table  1.   Commercial copper mesh parameters

    ProjectParameter
    Long intercept2.54 mm±5%
    Short intercept1.40 mm±6%
    Areal density(245±20) g/m2
    Long intercept direction resistance≤2.10 mΩ
    Short intercept direction resistance≤6.30 mΩ
    下载: 导出CSV

    表  2  雷击防护CFRP试样电导率测试结果

    Table  2.   Conductivity test results of CFRP samples for lightning strike protection

    DirectionSampleConductivity/(S·m−1)
    X NP-CFRP 23.14±3.47
    Cu mesh-CFRP 31.02±2.88
    MS CNT/Cu-CFRP 55.82±6.55
    EP CNT/Cu-CFRP 99.81±7.13
    Y NP-CFRP 8.57±0.61
    Cu mesh-CFRP 19.62±2.36
    MS CNT/Cu-CFRP 32.19±2.66
    EP CNT/Cu-CFRP 62.87±9.47
    Z NP-CFRP 0.79±0.06
    Cu mesh-CFRP 1.30±0.07
    MS CNT/Cu-CFRP 1.65±0.25
    EP CNT/Cu-CFRP 2.38±0.35
    Notes: NP-CFRP—Completely unprotected carbon fiber reinforced composite;MS—Magnetron sputtering; EP—Electrodeposition.
    下载: 导出CSV

    表  3  4组CFRP试样雷击测试后损伤深度分析

    Table  3.   Analysis of damage depth of four groups of CFRP samples after lightning strike test

    SampleTotal thickness/mmProtective layer thickness/mmTotal damage thickness/mmTotal damage rate/%Damage rate of carbon
    fiber structural layer/%
    NP-CFRP3.83701.45637.9537.95
    Cu mesh-CFRP4.3720.2180.67115.3510.91
    MS CNT/Cu-CFRP3.8700.0550.370 9.56 8.26
    EP CNT/Cu-CFRP3.8500.0500.050 1.30 0
    下载: 导出CSV
  • [1] SOULAS F, ESPINOSA C, LACHAUD F, et al. A method to replace lightning strike tests by ball impacts in the design process of lightweight composite aircraft panels[J]. International Journal of Impact Engineering,2018,111:165-176. doi: 10.1016/j.ijimpeng.2017.09.007
    [2] VICTOR G. Structural health monitoring of aerospace composites[M]. New York: Academic Press, 2016: 1-23.
    [3] GUO Y L, XU Y, WANG Q, et al. Eliminating lightning strike damage to carbon fiber composite structures in Zone 2 of aircraft by Ni-coated carbon fiber nonwoven veils[J]. Composites Science and Technology,2019,169:95-102. doi: 10.1016/j.compscitech.2018.11.011
    [4] UMAN M A, RAKOV V A. The interaction of lightning with airborne vehicles[J]. Progress in Aerospace Sciences,2003,39(1):61-81. doi: 10.1016/S0376-0421(02)00051-9
    [5] GAGNE M, THERRIAULT D. Lightning strike protection of composites[J]. Progress in Aerospace Sciences,2014,64:1-16. doi: 10.1016/j.paerosci.2013.07.002
    [6] WANG F S, DING N, LIU Z Q, et al. Ablation damage characteristic and residual strength prediction of carbon fiber/epoxy composite suffered from lightning strike[J]. Composite Structures,2014,117:222-233. doi: 10.1016/j.compstruct.2014.06.029
    [7] DONG Q, GUO Y, SUN X, et al. Coupled electrical-thermal-pyrolytic analysis of carbon fiber/epoxy composites subjected to lightning strike[J]. Polymer,2015,56:385-394. doi: 10.1016/j.polymer.2014.11.029
    [8] CHEN H, WANG F S, MA X T, et al. The coupling mechanism and damage prediction of carbon fiber/epoxy composites exposed to lightning current[J]. Composite Structures,2018,203:436-445. doi: 10.1016/j.compstruct.2018.07.017
    [9] WANG B, ZHU Y, MING Y, et al. Understanding lightning strike induced damage mechanism of carbon fiber reinforced polymer composites: An experimental study[J]. Materials & Design,2020,192:108724.
    [10] ZHAO Z J, XIAN G J, YU J G, et al. Development of electrically conductive structural BMI based CFRPs for lightning strike protection[J]. Composites Science and Technology,2018,167:555-562. doi: 10.1016/j.compscitech.2018.08.026
    [11] KUMAR V, YOKOZEKI T, KARCH C, et al. Factors affecting direct lightning strike damage to fiber reinforced composites: A review[J]. Composites Part B: Engineering,2020,183:107688. doi: 10.1016/j.compositesb.2019.107688
    [12] IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56-58. doi: 10.1038/354056a0
    [13] ZHANG S, NGUYEN N, LEONHARDT B, et al. Carbon-nanotube-based electrical conductors: Fabrication, optimization, and applications[J]. Advanced Electronic Materials,2019,5(6):1800811. doi: 10.1002/aelm.201800811
    [14] DYDEK K, BOCZKOWSKA A, KOZERA R, et al. Effect of SWCNT-tuball paper on the lightning strike protection of CFRPs and their selected mechanical properties[J]. Materials,2021,14(11):3140. doi: 10.3390/ma14113140
    [15] ZHANG J, ZHANG X, CHENG X, et al. Lightning strike damage on the composite laminates with carbon nanotube films: Protection effect and damage mechanism[J]. Composites Part B: Engineering,2019,168:342-352. doi: 10.1016/j.compositesb.2019.03.054
    [16] ARAI S. Fabrication of metal/carbon nanotube composites by electrochemical deposition[J]. Electrochem,2021,2(4):563-589. doi: 10.3390/electrochem2040036
    [17] SUBRAMANIAM C, YAMADA T, KOBASHI K, et al. One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite[J]. Nature Communications,2013,4:2202. doi: 10.1038/ncomms3202
    [18] LEGGIERO A P, TRETTNER K J, URSINO H L, et al. High conductivity copper-carbon nanotube hybrids via site-specific chemical vapor deposition[J]. ACS Applied Nano Materials,2018,2(1):118-126.
    [19] BAZBOUZ M B, AZIZ A, COPIC D, et al. Fabrication of high specific electrical conductivity and high ampacity carbon nanotube/copper composite wires[J]. Advanced Electronic Materials,2021,7(4):2001213. doi: 10.1002/aelm.202001213
    [20] SUNDARAM R M, YAMADA T, HATA K, et al. The influence of Cu electrodeposition parameters on fabricating structurally uniform CNT-Cu composite wires[J]. Materials Today Communications,2017,13:119-125. doi: 10.1016/j.mtcomm.2017.09.003
    [21] SUNDARAM R M, YAMADA T, HATA K, et al. Electrical performance of lightweight CNT-Cu composite wires impacted by surface and internal Cu spatial distribution[J]. Scientific Reports,2017,7(1):9267. doi: 10.1038/s41598-017-09279-x
    [22] SUNDARAM R, SEKIGUCHI A, SEKIYA M, et al. Copper/carbon nanotube composites: Research trends and outlook[J]. Royal Society Open Science,2018,5(11):180814. doi: 10.1098/rsos.180814
    [23] 郭妙才, 黑艳伟, 李斌太, 等. 石墨烯/碳纳米管共改性碳纤维复合材料的结构、力学、导电和雷击性能[J]. 复合材料学报, 2022, 39(9):4354-4365.

    GUO Miaocai, HEI Yanwei, LI Bintai, et al. Structure, mechanical property, electrical conductivity and lightning strike damage behavior of graphene/carbon nanotube co-modified CFRPs[J]. Acta Materiae Compositae Sinica,2022,39(9):4354-4365(in Chinese).
    [24] Society of Automotive Engineers. Aircraft lightning test methods: SAE ARP 5416A—2013[S]. Washington D.C.: Society of Automotive Engineers International, 2013.
    [25] Society of Automotive Engineers. Aircraft lightning environment and related test waveforms: SAE ARP 5412B—2013[S]. Washington D.C.: Society of Automotive Engineers International, 2013.
    [26] HWANG H J, JOO S J, KIM H S. Copper nanoparticle/multiwalled carbon nanotube composite films with high electrical conductivity and fatigue resistance fabricated via flash light sintering[J]. ACS Applied Materials & Interfaces,2015,7(45):25413-25423. doi: 10.1021/acsami.5b08112
    [27] HUANG Y Y, TERENTJEV E M. Dispersion of carbon nanotubes: Mixing, sonication, stabilization, and composite properties[J]. Polymers,2012,4(1):275-295. doi: 10.3390/polym4010275
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  740
  • HTML全文浏览量:  285
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-27
  • 修回日期:  2023-03-28
  • 录用日期:  2023-04-23
  • 网络出版日期:  2023-04-27
  • 刊出日期:  2024-01-01

目录

    /

    返回文章
    返回